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All rights reserved worldwide. No part of this publication may be reproduced or utilized in any 
form, or by any means – electronic, mechanical, magnetic or otherwise – without permission in 
writing from ScriptWarp Systems. 
 
Software use agreement 
 
The use of the software that is the subject of this manual (Sofware) requires a valid license, 
which has a limited duration (usually no more than one year). Individual and organizational 
licenses may be purchased from ScriptWarp Systems, or any authorized ScriptWarp Systems 
reseller. 
 
The Software is provided “as is”, and without any warranty of any kind. Free trial versions of the 
Software are made available by ScriptWarp Systems with the goal of allowing users to assess, 
for a limited time (usually one to three months), the usefulness of the Software for their data 
modeling and analysis purposes. Users are strongly advised to take advantage of those free trial 
versions, and ensure that the Software meets their needs before purchasing a license. 
 
Free trial versions of the Software are full implementations of the software, minus the licenses. 
That is, they are not demo versions. Nevertheless, they are provided for assessment purposes 
only, and not for “production” purposes, such as to analyze data and subsequently publish it as a 
consulting or research report. Users must purchase licenses of the Software before they use it for 
“production” purposes. 
 
Multivariate statistical analysis software systems are inherently complex, sometimes yielding 
results that are biased and disconnected with the reality of the phenomena being modeled. Users 
are strongly cautioned against accepting the results provided by the Software without double-
checking those results against: past empirical results obtained by other means and/or with other 
software, applicable theoretical models, and practical commonsense assumptions. 
 
Under no circumstances is ScriptWarp Systems to be held liable for any damages caused by the 
use of the Software. ScriptWarp Systems does not guarantee in any way that the Software will 
meet the needs of its users. 
 
For more information: 
 
ScriptWarp Systems 
P.O. Box 452428 
Laredo, Texas, 78045 
USA 
www.scriptwarp.com 
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A. Introduction 

    Structural equation modeling (SEM) employing the partial least squares (PLS) method, or 
PLS-based SEM for short, has been and continue being extensively used in a wide variety of 
fields. Examples of fields in which PLS-based SEM is used are information systems (Guo et al., 
2011; Kock & Lynn, 2012), marketing (Biong & Ulvnes, 2011), international business (Ketkar et 
al., 2012), nursing (Kim et al., 2012), medicine (Berglund et al., 2012), and global environmental 
change (Brewer et al., 2012). 
    This software provides users with a wide range of features, several of which are not available 
from other SEM software. For example, this software is the first and only (at the time of this 
writing) to explicitly identify nonlinear functions connecting pairs of latent variables in SEM 
models and calculate multivariate coefficients of association accordingly. 
    Additionally, this software is the first and only (at the time of this writing) to provide classic 
PLS algorithms together with factor-based PLS algorithms for SEM (Kock, 2014). Factor-based 
PLS algorithms generate estimates of both true composites and factors, fully accounting for 
measurement error. They are equivalent to covariance-based SEM algorithms; but bring together 
the “best of both worlds”, so to speak. 
    Factor-based PLS algorithms combine the precision of covariance-based SEM algorithms 
under common factor model assumptions (Kock, 2014) with the nonparametric characteristics of 
classic PLS algorithms. Moreover, factor-based PLS algorithms address head-on a problem that 
has been discussed since the 1920s – the factor indeterminacy problem. Classic PLS algorithms 
yield composites, as linear combinations of indicators, which can be seen as factor 
approximations. Factor-based PLS algorithms, on the other hand, provide estimates of the true 
factors, as linear combinations of indicators and measurement errors. 
    All of the features provided have been extensively tested with both “real” data, collected in 
actual empirical studies, as well as simulated data generated through Monte Carlo procedures 
(Robert & Casella, 2010). Future tests, however, may reveal new properties of these features, 
and clarify the nature of existing properties.  
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A.1. Software installation and uninstallation 

    The software installs automatically from a self-extracting executable file. There are two 
components to the software: the MATLAB Compiler Runtime, and the main software (i.e., 
WarpPLS). The first is a set of free-distribution MATLAB libraries with code that is called by 
the main software. Because the MATLAB Compiler Runtime is used, you do not have to have 
MATLAB (the main MATLAB program) installed on your computer to run WarpPLS. 
    Minimal and harmless changes to the operating system registry are made by the MATLAB 
Compiler Runtime, which are easily reversed upon uninstallation. To uninstall, go the “Control 
Panel”, click on “Add or Remove Programs” or “Programs and Features”, and uninstall the 
MATLAB Compiler Runtime. 
    The MATLAB Compiler Runtime 7.14 is used in this version of WarpPLS. This is the same 
MATLAB Compiler Runtime as the one used in versions 2.0 – 4.0. The MATLAB Compiler 
Runtime used in version 1.0 is a different one, and thus will not work properly with this version 
of WarpPLS. 
    In most cases, previous versions of WarpPLS and of the MATLAB Compiler Runtime 
may be retained on a user’s computer. Different versions of WarpPLS and of the MATLAB 
Compiler Runtime generally do not interfere with one other. 
    To uninstall the main software program, simply delete the main software installation folder. 
This folder is usually “C:\Program Files\WarpPLS 5.0” or “C:\Program Files (x86)\WarpPLS 
5.0”, unless you chose a different folder for the main software program during the installation 
process. Then delete the shortcut created by the software from the desktop. 
    Both programs, the MATLAB Compiler Runtime and the main software, may be retained 
without harm to your computer. They will not normally interfere with other programs; not even 
with MATLAB (the main MATLAB program), if you have it installed on your computer.  
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A.2. Stable version notice 

    This version was initially released as a beta version and was later upgraded to stable. As 
you will see below, it incorporates a large number of new features, when compared with the 
previous version. It has undergone extensive testing in-house prior to its release as a beta 
version, and has been in the hands of users for several months prior to its upgrade to stable. 
Nevertheless, given the large number of new features, and the inherent interconnectedness 
of features, it is very likely that this stable version will still contain some software bugs, 
which we expect to be minor.  
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A.3. New features in version 5.0 

    Factor-Based PLS algorithms. There has been a long and in some instances fairly 
antagonistic debate among proponents and detractors of the use of Wold’s original PLS 
algorithms in the context of SEM. This debate has been fueled by one key issue: Wold’s original 
PLS algorithms do not deal with actual factors, as covariance-based SEM algorithms do; but 
with composites, which are exact linear combinations of indicators (Kock, 2014d). The new 
“factor-based” algorithms provided in this version have been developed specifically to address 
this perceived limitation of Wold’s original PLS algorithms. These new algorithms are called 
Factor-Based PLS Type CFM1, Factor-Based PLS Type REG1, and Factor-Based PLS Type 
PTH1. 
    New descriptive statistics for indicators and latent variables. An extended set of 
descriptive statistics is now provided for both indicators and latent variables. The descriptive 
statistics provided include: minimum and maximum values, medians, modes, skewness and 
excess kurtosis coefficients, as well as results of unimodality and normality tests. These are now 
complemented by histograms, which can be viewed on the screen and saved as files. 
    Unimodality and normality tests. Often the use of PLS-based SEM methods is justified 
based on them making no data normality assumptions, but typically without any accompanying 
test of normality! This is addressed in this version through various outputs of unimodality and 
normality tests, which are now provided for all indicators and latent variables. The unimodality 
tests performed are the Rohatgi- Székely test and the Klaassen-Mokveld-van Es test. The 
normality tests performed are the classic Jarque-Bera test and Gel & Gastwirth’s robust 
modification of this test. Where these tests are applied to individual indicators, they can be seen 
as “univariate” or “bivariate” unimodality and normality tests. Where these tests are applied to 
latent variables, they can be seen as “multivariate” unimodality and normality tests. 
    New 3D graphs and graph rotation. Rocky and smooth 3D graphs can now be viewed with 
data points excluded. Corresponding graphs with data points included are also available. The 3D 
graph displays with data points excluded are analogous to those used in the focused 2D graphs. 
Additionally, users can now incrementally rotate 3D graphs in the following directions: up, 
down, left, and right. 
    New “stable” P value calculation methods. An extended set of “stable” P value calculation 
methods is now available to users: Stable1, Stable2, and Stable3. The Stable1 method was the 
software’s default up until version 4.0, when it was called simply the “stable” method. The 
Stable2 and Stable3 methods have been developed as alternatives to the Stable1 method that rely 
on the direct application of exponential smoothing formulas (for the formulas, see: Kock, 
2014b), and that can thus be more easily implemented and tested by methodological researchers. 
A Monte Carlo experiment shows that the Stable2 and Stable3 methods yield estimates of the 
actual standard errors that are consistent with those obtained via bootstrapping, in many cases 
yielding more precise estimates of the actual standard errors (Kock, 2014b). The more accurate 
of the two methods appears to be the Stable3 method, which is now the software’s default. 
    New missing data imputation methods. Several missing data imputation methods are now 
available to users: Arithmetic Mean Imputation (the software’s default), Multiple Regression 
Imputation, Hierarchical Regression Imputation, Stochastic Multiple Regression Imputation, and 
Stochastic Hierarchical Regression Imputation. The missing data imputation method chosen by 
the user will be employed in the execution of Step 3, and also after that when the option “Redo 
missing data imputation (via data pre-processing)” is selected. The option is available under the 
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“Modify” menu options. Kock (2014c) provides a detailed discussion of these methods, as well 
as of a Monte Carlo simulation whereby the methods’ relative performances are investigated. 
    Incremental code optimization. This is conducted in each new version of this software. At 
several points the code was optimized for speed, stability, and coefficient estimation precision. 
This led to incremental gains in speed even as a number of new features were added. Several of 
these new features required new and complex calculations, mostly to generate coefficients that 
were not available before.  
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A.4. Experimental features 

    Some of the features provided by the software are still at an experimental stage, and may 
change in the future as more tests are conducted. Normally this is indicated in this user manual 
whenever it is the case. 
    Other novel features of this software may prove useful for applications different from the ones 
they were originally intended for. For example, an extensive set of causality assessment 
coefficients is provided by the software. Yet, the topic of causality assessment in the context 
of SEM is controversial (Pearl, 2009). A causality assessment coefficient that is provided to 
inform the user of the possibility of a reverse link may prove in the future to be useful to identify 
a specific type of bias due to measurement error. 
    Finally, while this software aims at providing a wide range of features and outputs, the 
ubiquity of measurement error in SEM analyses (as well as data analyses in general) would 
tend to make strong and sweeping claims regarding accuracy and statistical power likely to 
be proven exaggerated or even wrong. 
    Researchers analyzing empirical data typically do not know the underlying distributions of 
their data and of error terms. Data analysis software tools help researchers uncover 
characteristics of those distributions, with incomplete information. Given this, it seems 
reasonable to conclude that all SEM algorithms and software tools that implement these 
algorithms have limitations in their accuracy, avoidance of false positives, and statistical power 
(i.e., avoidance of false negatives). 
    Accuracy and statistical power seem to suffer particularly when very small samples and 
deviations from normality are observed in the context of small effect sizes. Goodhue et al.’s 
(2012) extensive analysis of various SEM algorithms illustrates these limitations, although its 
negative results may have been exacerbated by the fairly low path coefficients that they used for 
small and medium effect sizes. Those path coefficients were based on effect sizes that were 
calculated using the stepwise regression procedure proposed by Cohen (1988) for the calculation 
of f-squared coefficients, which is generally not compatible with PLS-based SEM algorithms. 
This theme is further explored later in this user manual. 
    This software attempts to ameliorate this situation in connection with accuracy and statistical 
power by providing an extensive set of features and outputs that can be used by researchers to 
reveal as many aspects of the underlying relationships as possible. 
    Some of the features provided are specifically aimed at increasing accuracy and statistical 
power. For example, Jackknifing, one of the resampling methods provided, tends to generate 
relatively low standard errors with small samples and medium to high effect sizes. This could 
increase statistical power with small samples and medium to high effect sizes, making the use of 
Jackknifing more appropriate than Bootstrapping in these cases. The same may be true for the 
“stable” methods, particularly Stable3. In fact, Monte Carlo simulations suggest that the “stable” 
methods perform better than Jackknifing in this respect.  
    This software’s extensive range of features may also help further research on SEM methods in 
general.  
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B. The main window 

    Prior to displaying the software’s main window, a command prompt window may be shown 
and kept open for the duration of the SEM analysis session. Do not try to close this command 
prompt window, if it is shown, because it will list warnings and error messages that will likely be 
very useful in troubleshooting. Moreover, those warnings and error messages will indicate where 
in the source code they are happening, which will help the software developer correct any 
possible problems in future versions of the software. 
    In very slow computers, with limited computing power, only the command prompt window 
may be displayed for as long as a few minutes. The reason for this is that the computer needs to 
load a large runtime module prior to actually running this software. Users should not try to do 
anything during this time, as that will only delay the launch of the software’s main window.  
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B.1. The SEM analysis steps 

    The software’s main window (see Figure B.1.2) is where the SEM analysis starts. The top-left 
part of the main window contains a brief description of the five steps through which the SEM 
analysis takes place. The steps are executed by pressing each of the push buttons on the top-right 
part of the window. Not all menu options and push buttons become available right away. Menu 
options and push buttons become available as the analysis progresses. 
 
Figure B.1.2. The main window showing the steps (after a complete analysis was conducted) 
 

 
 
    The steps must be carried out in the proper sequence. For example, Step 5, which is to perform 
the SEM analysis and view the results, cannot be carried out before Step 1 takes place, which is 
to open or create a project file to save your work. This is the main reason why steps have their 
push buttons grayed out and deactivated until it is time for the corresponding steps to be carried 
out. 
    The bottom-left part of the main window shows the status of the SEM analysis; after each step 
in the SEM analysis is completed, this status window is updated. A miniature version of the SEM 
model graph is shown at the bottom-right part of the main window. This miniature version is 
displayed without results after Step 4 is completed. After Step 5 is completed, this miniature 
version is displayed with results. 
    The “Project” menu options. There are three project menu options available: “Save project”, 
“Save project as …”, and “Exit”. Through the “Save project” option you can save the project 
file that has just been created or that has been created before and is currently open. To open an 
existing project or create a new project you need to execute Step 1, by pressing the “Proceed to 
Step 1” push button. The “Save project as …” option allows you to save an existing project 
with a different name and in a different folder from ones for the project that is currently open or 
has just been created. This option is useful in the SEM analysis of multiple models where each 
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model is a small variation of the previous one. Finally, the “Exit” option ends the software 
session. If your project has not been saved, and you choose the “Exit” option, the software will 
ask you if you want to save your project before exiting. In some cases, you will not want to save 
your project before exiting, which is why a project is not automatically saved after each step is 
completed. For example, you may want to open an existing project, change a few things and then 
run a SEM analysis, and then discard that project. You can do this by simply not saving the 
project before exiting. 
    After Step 3 is completed, whereby the data used in the SEM analysis is pre-processed, three 
sets of menu options become available from the main window: “Data”, “Modify”, and 
“Settings”. 
    The “Data” menu options. These menu options allow you to view or save data and various 
statistics, mostly descriptive statistics, into tab-delimited .txt files. The “tab-delimited .txt file” is 
the general file format used by the software to save most of the files containing analysis and 
summarization results. These files can be opened and edited using Excel, Notepad, and other 
similar spreadsheet or text editing software. These menu options are discussed in more detail 
later. 
    The “Modify” menu options. These menu options allow you to add new data labels and raw 
data to your dataset, redo missing data imputation, as well as add one or more latent variable 
scores (a.k.a. factor scores) to the dataset as new standardized indicators. Also available is the 
option of adding all latent variable scores at once to the dataset as new standardized indicators. 
Data labels can be shown on graphs as text next to data points, or as legends for data points using 
different markers. These menu options are discussed in more detail later. 
    The “Settings” menu options. You can view or change general SEM analysis settings 
through the “Settings” menu options. Here you can select the analysis algorithms used in the 
SEM analysis, the resampling method used to calculate standard errors and P values, as well as 
other elements that will define how the SEM analysis will be conducted. These menu options are 
discussed in more detail later. 
    The “Help” menu options. There are several help menu options available on the main 
window, as well as on several other windows displayed by the software. The “Open context-
sensitive User Manual file (PDF)” option opens this document as a PDF file from a Web 
location in a context-sensitive manner, in this case at an area that is specific to the main window. 
The “Open User Manual file (PDF)” option opens this document as a PDF file from a Web 
location, and is not context-specific. The “Open Web page with video for this window” option 
opens a Web page with a video clip that is context-specific, in this case specific to the main 
window. The “Open Web page with links to various videos” option is not context-specific, 
and opens a Web page with links to various video clips. The “Open Web page with WarpPLS 
blog” option opens a Web page with the WarpPLS blog. Similar help options are available from 
several other windows in this software.  
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B.2. Data 

    The “Data” menu options allow you to view or save data and various statistics, mostly 
descriptive statistics (see Figure B.2). These menu options are discussed individually below. 
Some of them are discussed in more detail later in this document. 
 
Figure B.2. Data menu options 
 

 
 
    The “View or save correlations and descriptive statistics for indicators” option allows you 
to view or save general descriptive statistics about the data. These include the following, which 
are shown at the bottom of the table that is displayed through this option: means, standard 
deviations, minimum and maximum values, medians, modes, skewness and excess kurtosis 
coefficients, results of unimodality and normality tests, and histograms. The unimodality tests for 
which results are provided are the Rohatgi- Székely test (Rohatgi & Székely, 1989) and the 
Klaassen-Mokveld-van Es test (Klaassen et al., 2000). The normality tests for which results are 
provided are the classic Jarque-Bera test (Jarque & Bera, 1980; Bera & Jarque, 1981) and Gel & 
Gastwirth’s (2008) robust modification of this test. Since these tests are applied to individual 
indicators, they can be seen as “univariate” or “bivariate” unimodality and normality tests. 
    These descriptive statistics are complemented by the option “View or save P values for 
indicator correlations”. This option may be useful in the identification of candidate indicators 
for latent variables through the anchor variable procedure discussed by Kock & Verville (2012). 
This can be done prior to defining the variables and links in a model. This can also be done after 
the model is defined and an analysis is conducted, particularly in cases where the results suggest 
outer model misspecification. Examples of outer model misspecification are instances in which 
indicators are mistakenly included in the model by being assigned to certain latent variables, and 
instances in which indicators are assigned to the wrong latent variables (Kock & Lynn, 2012; 
Kock & Verville, 2012). 
    The “View of save raw indicator data” option allows you to view or save the raw data used 
in the analysis. This is a useful feature for geographically distributed researchers conducting 
collaborative analyses. With it, those researchers do not have to share the raw data as a separate 
file, as that data is already part of the project file. 
    Two menu options allow you to view or save unstandardized pre-processed indicator data. 
This pre-processed data is not the same as the raw data, as it has already been through the 
automated missing value correction procedure in Step 3. The options that allow you to view or 
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save unstandardized pre-processed indicator data are: “View or save unstandardized pre-
processed indicator data” and “View or save unstandardized ranked pre-processed 
indicator data”. The latter option refers to ranked data. 
    When data is ranked, typically the value distances that typify outliers in data on ratio scales, 
whether standardized or unstandardized, are significantly reduced. This effectively eliminates 
outliers from the data, without any decrease in sample size. Often some information is lost due to 
ranking – e.g., the distances among data points based on answers on ratio scales. 
    Two related menu options allow you to view or save standardized pre-processed indicator 
data: “View or save standardized pre-processed indicator data” and “View or save 
standardized ranked pre-processed indicator data”. The latter option ranks the data prior to 
standardizing it. Ranking often has little effect on ordinal data (e.g., data on Likert-type scales), 
and a major impact on ratio data (e.g., yearly income). 
    The options that refer to unstandardized data allow you to view or save pre-processed data 
prior to standardization. The options that refer to standardized data allow you to view or save 
pre-processed data after standardization; that is, after all indicators have been transformed in 
such a way that they have a mean of zero and a standard deviation of one. 
    The “View or save data labels” option allows you to view or save data labels. These are text 
identifiers that are entered by you separately, through one of the “Modify” menu options. Like 
the original numeric dataset, the data labels are stored in a table. Each column of this table refers 
to one data label, and each row to the corresponding row of the original numeric dataset. Data 
labels can later be shown on graphs, either next to each data point that they refer to, or as part of 
a graph’s legend. 
    The “Save grouped descriptive statistics” option is a special option that allows you to save 
descriptive statistics (means and standard deviations) organized by groups defined based on 
certain parameters; this option is discussed in more detail at the end of this section. 
    The “View or save latent variable (a.k.a. factor) scores” option allows you to view or save 
the latent variable scores generated by the software. There is another option that allows you to 
save latent variable scores, available as a menu option on the window used to view and save 
model analysis results; which becomes available later, after Step 5 is completed. These two 
options return the same latent variable scores in most cases. 
    The exception to the general rule above is a situation in which you specified a range restriction 
for your analysis. In this case, only the latter option will return the range-restricted latent variable 
scores. These latent variable scores will generally have a smaller number of rows than the 
original dataset (because they are range-restricted), and thus will not be exactly matched to the 
original dataset.  
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B.3. Modify 

    The “Modify” menu options allow you to add new data labels and raw data to your dataset, 
redo missing data imputation, as well as add one or more latent variable scores (a.k.a. factor 
scores) to the dataset as new standardized indicators (see Figure B.3). Also available is the 
option of adding all latent variable scores at once to the dataset as new standardized indicators. 
Data labels can be shown on graphs as text next to data points, or as legends for data points using 
different markers. These menu options are discussed individually below. Some of them are 
discussed in more detail later in this document. 
 
Figure B.3. Modify menu options 
 

 
 
    The menu options “Add data labels from clipboard” and “Add data labels from file” allow 
you to add data labels into the project file. Data labels are text identifiers that are entered by you 
through these options, one column at a time. Like the original numeric dataset, the data labels are 
stored in a table. Each column of this table refers to one data label, and each row to the 
corresponding row of the original numeric dataset. Data labels can later be shown on graphs, 
either next to each data point that they refer to, or as part of the legend for a graph. 
    Data labels can be read from the clipboard or from a file, but only one column of labels can 
be read at a time. Data label cells cannot be empty, contain spaces, or contain only numbers; 
they must be combinations of letters, or of letters and numbers. Valid examples are the 
following: “Age>17”, “Y2001”, “AFR”, and “HighSuccess”. These would normally be entered 
without the quotation marks, which are used here only for clarity. Some invalid examples: “123”, 
“Age > 17”, and “Y 2001”. 
    Through the menu options “Add raw data from clipboard” and “Add raw data from file” 
users can add new data from the clipboard or from a file. This data then becomes available for 
use in models, without users having to go back to Step 2. These options relieve users from 
having to go through nearly all of the steps of a SEM analysis if they find out that they need 
more data after they complete Step 5 of the analysis. Past experience supporting users suggests 
that this is a common occurrence. These options employ the same data checks and data 
correction algorithms as in Step 2; please refer to the section describing that step for more 
details. 
    The option “Redo missing data imputation (via data pre-processing)” allows users to redo 
the missing data imputation process after choosing a method through the “View or change 
missing data imputation settings” option, which is available under the “Settings” menu 
options. The following missing data imputation methods are available: Arithmetic Mean 
Imputation (the software’s default), Multiple Regression Imputation, Hierarchical Regression 
Imputation, Stochastic Multiple Regression Imputation, and Stochastic Hierarchical Regression 
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Imputation. Kock (2014c) provides a detailed discussion of these methods and of a Monte Carlo 
simulation that assesses the methods’ relative performances. 
    Latent variable scores can be easily added to the dataset via the options “Add one or more 
latent variable (a.k.a. factor) scores as new standardized indicators” and “Add all latent 
variable (a.k.a. factor) scores as new standardized indicators”. These options allow users, 
after Step 5 is completed, to add one or more latent variables to the model as new standardized 
indicators, and also to add all latent variables as new indicators. Adding one or more latent 
variables at a time may be advisable in certain cases; for example, in hierarchical analyses using 
selected latent variables as indicators of second, third etc. order latent variables at each level. In 
such cases, adding all latent variables at once may soon clutter the set of indicators available to 
be used in the SEM model.  
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B.4. Settings 

    The “Settings” menu options allow you to view or change general SEM analysis settings (see 
Figure B.4). Here you can select the analysis algorithm used in the SEM analysis, the resampling 
method used to calculate standard errors and P values, as well as other elements that will define 
how the SEM analysis will be conducted. These menu options are discussed individually below. 
Several of them are discussed in more detail later in this document. 
 
Figure B.4. Settings menu options 
 

 
 
    The “View or change missing data imputation settings” option allows you to set the missing 
data imputation method to be used by the software, from among the following methods: 
Arithmetic Mean Imputation (the software’s default), Multiple Regression Imputation, 
Hierarchical Regression Imputation, Stochastic Multiple Regression Imputation, and Stochastic 
Hierarchical Regression Imputation. The missing data imputation method chosen will be used 
prior to execution of Step 3, and also after that when the option “Redo missing data 
imputation (via data pre-processing)” under the “Modify” menu option is selected. Kock 
(2014c) provides a detailed discussion of these methods, as well as of a Monte Carlo simulation 
whereby the methods’ relative performances are investigated. 
    The “View or change general settings” option allows you to set the outer model analysis 
algorithm, default inner model analysis algorithm, resampling method, and number of resamples. 
Through these sub-options, users can set outer and default inner model algorithms separately. 
Users are also allowed to set inner model algorithms for individual paths through a different 
option. If users choose not to set inner model algorithms for individual paths in an analysis of a 
new model (i.e., a model that has just been created), their choice of default inner model 
algorithm is automatically used for all paths. 
    The “View or change data modification settings” option allows you to select a range 
restriction variable type, range restriction variable, range (min-max values) for the restriction 
variable, and whether to use only ranked data in the analysis. Through these sub-options, users 
can run their analyses with subsamples defined by a range restriction variable, which is chosen 
from among the indicators available. They can also conduct their analyses with only ranked data, 
whereby all of the data is automatically ranked prior to the SEM analysis. When data on a ratio 
scale is ranked, typically the value distances that typify outliers are significantly reduced, 
effectively eliminating outliers without any decrease in sample size. 
    The “View or change individual inner model analysis algorithm settings” option allows 
you to set inner model algorithms for individual paths. That is, for each path a user can select a 
different algorithm from among the following choices: “Linear”, “Warp2”, “Warp2 Basic”, 
“Warp3”, and “Warp3 Basic”. 
    The “View or change individual latent variable weight and loading starting value 
settings” option allows you to set the initial values of the weights and loadings for each latent 
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variable. The default is 1 for all weights and loadings. With this option, latent variables measured 
in a reversed way, as well as formative latent variables with most of their weights and loadings 
ending up being negative, can be more easily operationalized. 
    Several of the options above, and their component elements, are discussed in more detail in 
the subsections below, still in this section describing the main window options. These 
subsections include further discussions about data labels, general settings, data modification 
settings, individual inner model analysis algorithm settings, as well as individual latent variable 
weight and loading starting value settings. A further discussion of grouped descriptive statistics, 
which can be saved through a sub-option under the “Data” options, is also provided.  
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B.5. Data labels 

    Data labels can be added through the menu options “Add data labels from clipboard” and 
“Add data labels from file” (see Figure B.5). Data labels are text identifiers that are entered by 
you through these options, one column at a time. Like the original numeric dataset, the data 
labels are stored in a table. Each column of this table refers to one data label, and each row to the 
corresponding row of the original numeric dataset. Data labels can later be shown on graphs, 
either next to each data point that they refer to, or as part of the legend for a graph. Once they 
have been added, data labels can be viewed or saved using the “View or save data labels” 
option. 
 
Figure B.5. Add data labels from file window 
 

 
 
    While data labels can be read from the clipboard or from a file, only one column of labels 
can be read at a time. Data label cells cannot be empty, contain spaces, or contain only 
numbers; they must be combinations of letters, or of letters and numbers. Valid examples are 
the following: “Age>17”, “Y2001”, “AFR”, and “HighSuccess”. These would normally be 
entered without the quotation marks, which are used here only for clarity. Some invalid examples 
are: “123”, “Age > 17”, and “Y 2001”.   
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B.6. General settings 

    The “View or change general settings” option allows users to set the outer model analysis 
algorithm, default inner model analysis algorithm, resampling method, and number of resamples 
(see Figure B.6). Through these sub-options, users can set outer and default inner model 
algorithms separately. Users are also allowed to set inner model algorithms for individual paths, 
but through a different settings option. If users choose not to set inner model algorithms for 
individual paths, their choice of default inner model algorithm is automatically used for all paths. 
 
Figure B.6. View or change general settings window 
 

 
 
    The settings chosen for each of the options can have a dramatic effect on the results of a 
SEM analysis. At the same time, the right combinations of settings can provide major insights 
into the data being analyzed. As such, the settings’ options should be used with caution, and 
normally after a new project file (with a unique name) is created and the previous one saved. 
This allows users to compare results and, if necessary, revert back to project files with previously 
selected settings.  
    A key criterion for the calculation of the weights, observed in virtually all classic PLS-based 
algorithms, is that the regression equation expressing the relationship between the indicators and 
the latent variable scores has an error term that equals zero. In other words, in classic PLS-based 
algorithms the latent variable scores are calculated as exact linear combinations of their 
indicators. This is not the case with the new Factor-Based PLS algorithms provided by this 
software, as these new algorithms estimate latent variable scores fully accounting for 
measurement error. 
    The warping takes place during the estimation of path coefficients, and after the estimation of 
all weights, latent variable scores, and loadings in the model. The weights and loadings of a 
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model with latent variables make up what is often referred to as the outer model (a.k.a. 
measurement model), whereas the path coefficients among latent variables make up what is 
often called the inner model (a.k.a. structural model). 
    The outer model analysis algorithms available are Factor-Based PLS Type CFM1, Factor-
Based PLS Type REG1, Factor-Based PLS Type PTH1, PLS Regression, PLS Mode M, 
PLS Mode M Basic, PLS Mode A, PLS Mode A Basic, PLS Mode B, PLS Mode B Basic, 
and Robust Path Analysis. All of these outer model algorithms share a common characteristic. 
They calculate latent variable scores as exact linear combinations of their indicators, or of their 
indicators and measurement errors. With the exception of the Robust Path Analysis algorithm, all 
of these algorithms perform iterations until they converge to a solution. 
    There has been a long and in some instances fairly antagonistic debate among proponents and 
detractors of the use of Wold’s original PLS algorithms (Adelman & Lohmoller, 1994; 
Lohmöller, 1989; Wold, 1980) in the context of SEM. This debate has been fueled by one key 
issue, which is analogous to the issue underlying the related principal components versus factor 
analysis debate. Wold’s original PLS algorithms do not deal with actual factors, as 
covariance-based SEM algorithms do; but with composites, which are exact linear combinations 
of indicators (Kock, 2014d). The Factor-Based PLS algorithms provided by this software have 
been developed specifically to address this perceived limitation of Wold’s original PLS 
algorithms. 
    Factor-Based PLS Type CFM1 generates estimates of both true composites and factors, in 
two stages, explicitly accounting for measurement error (Kock, 2014). Like covariance-based 
SEM algorithms, this algorithm is fully compatible with common factor model assumptions, 
including the assumption that all indicator errors are uncorrelated. In its first stage, this algorithm 
employs a new “true composite” estimation sub-algorithm, which estimates composites based on 
mathematical equations that follow directly from the common factor model. The second stage 
employs a new “variation sharing” sub-algorithm, which can be seen as a “soft” version of the 
classic expectation-maximization algorithm (Dempster et al., 1977) used in maximum likelihood 
estimation, with apparently faster convergence and nonparametric properties. 
    Factor-Based PLS Type REG1 and Factor-Based PLS Type PTH1 are also factor-based 
PLS algorithms that generate estimates of both composites and factors, in two stages, fully 
accounting for measurement error. The Factor-Based PLS Type REG1 algorithm first estimates 
composites via PLS Regression (discussed below), and then estimates factors employing 
variation sharing (Kock, 2014). Among the factor-based algorithms available in this software, 
this Factor-Based PLS Type REG1 algorithm can be seen as the closest to Wold’s original PLS 
design. 
    The Factor-Based PLS Type PTH1 algorithm first estimates composites via Robust Path 
Analysis (discussed below), and then estimates factors employing variation sharing (Kock, 
2014). By doing so, this algorithm addresses several of the concerns about Wold’s original PLS 
algorithms raised in an important critical article by Rönkkö & Evermann (2013). This algorithm 
can also be seen as addressing the call for simplicity in a thought-provoking article on PLS by 
Rigdon (2012). Unlike the Factor-Based PLS Type CFM1algorithm, the Factor-Based PLS 
Type REG1 and Factor-Based PLS Type PTH1 algorithms do not impose certain common 
factor model assumptions that rarely hold in practice, such as the assumption that all indicator 
errors are uncorrelated. 
    PLS Regression has been the default outer model algorithm since the software’s inception, 
and is maintained as such as a matter of tradition. This algorithm iterates until the outer model 
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weights become stable with the following calculations being performed in successive iterations 
for each latent variable in the model: (a) the outer model weights are calculated through a least 
squares regression where the latent variable is the predictor and the indicators are the criteria; 
and (b) the latent variable is calculated as an exact linear combination of the indicator scores. In 
the PLS Regression algorithm, the inner model does not influence the outer model. That is, 
the weights are not influenced by the links connecting latent variables, which are created by the 
user in Step 4. 
    The following outer model algorithms are similar to PLS Regression, but in them the inner 
model influences the outer model: PLS Mode M, PLS Mode M Basic, PLS Mode A, PLS 
Mode A Basic, PLS Mode B, and PLS Mode B Basic. These are classic PLS algorithms that 
have been historically associated with PLS-based SEM software (Chatelin et al., 2002; Temme et 
al., 2006). In them, the iterative process leading to the calculation of latent variable scores 
involves the intermediate calculation of path coefficients, correlations, and signs of correlations. 
These are used as inputs in the calculation of weights in successive iterations, typically leading to 
the addition of collinearity among latent variables that are linked. 
    The above collinearity inflation that occurs when the inner model influences the outer model 
often has the effect of strengthening associations among linked latent variables. This is a real 
phenomenon that has been presented as a weakness of PLS-based SEM, and that has been 
referred to as the “capitalization on error” problem of PLS-based algorithms (see, e.g., Goodhue 
et al., 2012). This problem is generally overstated, as PLS-based algorithms in general tend to 
also reduce collinearity. That is, when the inner model influences the outer model collinearity is 
indeed increased, but often not to the extent that the increase offsets the previous collinearity 
decrease that normally results from the use of PLS-based algorithms. 
    PLS Mode M is often referred as the “MIMIC” or “mixed” mode. In it, the inner model 
influences the outer model through path coefficients and correlations, depending on whether the 
links go into or out from each latent variable, respectively. PLS Mode M in fact uses either PLS 
Mode A or PLS Mode B, based on whether latent variables are defined as reflective or formative, 
respectively. The PLS modes A and B are discussed below. 
    PLS Mode M Basic is a variation of PLS Mode M in which the inner model influences the 
outer model through the signs of correlations among latent variables. This corresponds to what 
Lohmöller (1989) refers to as a “basic scheme”, also referred to as a “centroid scheme” 
(Tenenhaus et al., 2005). 
    For the purposes of PLS-based SEM, the schemes known as “centroid” and “factorial” are 
largely redundant (Tenenhaus et al., 2005), but they share a common property. They tend to 
reduce the number of instances of Simpson’s paradox (Wagner, 1982) in the SEM analysis 
results. Because of this property and the fact that these two schemes are redundant, this software 
implements only one of them, the “centroid” scheme. This scheme is referred to as “basic”, for 
simplicity and consistency with prior seminal publications that set the foundations of PLS-based 
SEM (see, e.g., Lohmöller, 1989). 
    PLS Mode A is often referred to as the “reflective” mode, which is arguably incorrect because 
both reflective and formative latent variables can be used with this algorithm. In other words, 
using PLS Mode A does not make a formative latent variable become a reflective latent variable. 
In it, the inner model influences the outer model through path coefficients and correlations, 
depending on whether the links go into or out from each latent variable, respectively. In this 
mode the outer model weights are calculated through a least squares regression where the latent 
variable is the predictor and the indicators are the criteria. PLS Mode A Basic is a variation of 
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PLS Mode A in which the inner model influences the outer model through the signs of the 
correlations among latent variables. 
    PLS Mode B is often referred to as the “formative” mode. This is arguably incorrect for the 
same reason discussed above, namely that both reflective and formative latent variables can be 
used with this algorithm. In other words, using PLS Mode B does not turn a reflective latent 
variable into a formative latent variable. However, PLS Mode B is often less stable than PLS 
Mode A, and also tends to cause a significant increase in collinearity among linked latent 
variables. In it, the inner model influences the outer model through path coefficients and 
correlations, depending on whether the links go into or out from each latent variable, 
respectively. In this mode the outer model weights are calculated through a least squares 
regression where the indicators are the predictors and the latent variable the criterion. PLS Mode 
B Basic is a variation of PLS Mode B in which the inner model influences the outer model 
through the signs of the correlations among latent variables. 
    The Robust Path Analysis algorithm is a simplified algorithm in which latent variable scores 
are calculated by averaging the scores of the indicators associated with the latent variables. That 
is, in this algorithm weights are not estimated through PLS Regression. This algorithm is called 
“robust” path analysis, because the P values can be calculated through the nonparametric 
resampling or stable methods implemented through the software. If all latent variables are 
measured with single indicators, the Robust Path Analysis algorithm will yield latent variable 
scores and outer model weights that are identical to those generated through the other algorithms. 
    Many relationships in nature, including relationships involving behavioral variables, are 
nonlinear and follow a pattern known as U-curve (or inverted U-curve). In this pattern a variable 
affects another in a way that leads to a maximum or minimum value, where the effect is either 
maximized or minimized, respectively. This type of relationship is also referred to as a J-curve 
pattern; a term that is more commonly used in economics and the health sciences. 
    The term “U-curve” is used here also to refer to nonlinear relationships that can be 
represented as sections of a U curve. As such, it covers all noncyclical nonlinear relationships. 
These relationships include the logarithmic, hyperbolic decay, exponential decay, 
exponential, and quadratic relationships, among others. That is, these relationships can be 
conceptually modeled as variations of U-curve relationships. 
    The default inner model analysis algorithms available are the following: Linear, Warp2, 
Warp2 Basic, Warp3, and Warp3 Basic. All of these inner model algorithms share a common 
characteristic. They calculate path coefficients through least squares regression algorithms based 
on the latent variable scores calculated through one of the outer model analysis algorithms 
available. 
    The Linear algorithm does not perform any warping of relationships. The Warp2 algorithm 
tries to identify U-curve relationships among linked latent variables, and, if those relationships 
exist, the algorithm transforms (or “warps”) the scores of the predictor latent variables so as to 
better reflect the U-curve relationships in the estimated path coefficients in the model. Here the 
signs of the path coefficients are initially (i.e. prior to the inner model least squares regressions) 
assigned as the signs of the corresponding path coefficients obtained without any warping. 
Similarly to the outer model “basic” versions, the Warp2 Basic algorithm is a variation of the 
Warp2 algorithm that tends to reduce the number of instances of Simpson’s paradox (Wagner, 
1982) in the final results. This happens because in this basic version the signs of path coefficients 
are initially assigned as the signs of the corresponding correlations obtained without any 
warping. 
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    The Warp3 algorithm, the default algorithm used by the software, tries to identify 
relationships among latent variables defined by functions whose first derivatives are U-curves. 
These types of relationships follow a pattern that is more similar to an S-curve (or a somewhat 
distorted S-curve). An S-curve can be seen as a combination of two connected U-curves, one of 
which is inverted. Examples of S-curve functions are the sigmoid, hyperbolic sine and 
hyperbolic tangent. The logistic function is a type of sigmoid function, and thus is also an 
example of S-curve function. Similarly to the Warp2 Basic algorithm, the Warp3 Basic 
algorithm is a variation of the Warp3 algorithm that tends to reduce the number of instances of 
Simpson’s paradox (Wagner, 1982) in the final results. Again here this happens because the 
signs of path coefficients are initially assigned as the signs of the corresponding correlations 
obtained without any warping. 
    In summary, with the exception of the Linear algorithm, all of the default inner model analysis 
algorithms perform nonlinear transformations on the predictor latent variable scores prior to the 
calculation of path coefficients. In other words, except for the Linear algorithm, these algorithms 
“warp” the predictor latent variable scores by finding best-fitting nonlinear functions that 
minimize sums of squared residuals on a bivariate basis. This process can be seen as another 
least squares minimization stage that is “in between” those used in the calculation of latent 
variable scores and path coefficients. 
    One of several resampling methods may be selected for the calculation of P values and related 
coefficients (e.g., standard errors). In the calculation of P values, a one-tailed test is generally 
recommended if the coefficient is assumed to have a sign (positive or negative), which should be 
reflected in the hypothesis that refers to the corresponding association (Kock, 2014d). Hence this 
software reports one-tailed P values for coefficients used in hypothesis testing (e.g., path 
coefficients); from which two-tailed P values can be easily obtained if needed (Kock, 2014d). 
The available resampling methods are the following: Stable1, Stable2, and Stable3, 
Bootstrapping, Jackknifing, Blindfolding, and Parametric. 
    With the Stable1 method, the software’s default up until version 4.0 (when it was called 
simply the “stable” method), P values are calculated through nonlinear fitting of standard errors 
to empirical standard errors generated with the other resampling methods available. In other 
words, the Stable1 method could be viewed as a quasi-parametric method that yields P values 
that try to approximate the “average” P values generated by the software’s other resampling 
methods. 
    The Stable2 and Stable3 methods have been developed as alternatives to the Stable1 method. 
Unlike the Stable1 method, they rely on the direct application of exponential smoothing formulas 
(for details, see: Kock, 2014b), and that can thus be more easily implemented and tested by 
methodological researchers. A Monte Carlo experiment shows that the Stable2 and Stable3 
methods yield estimates of the actual standard errors that are consistent with those obtained via 
bootstrapping, in many cases yielding more precise estimates of the actual standard errors (Kock, 
2014b). The more accurate of the two methods appears to be the Stable3 method, which also 
appears to be more accurate than the Stable1 method. As such, the Stable3 method is set as the 
software’s default starting in version 5.0. 
    With the Parametric method, P values are calculated assuming multivariate normality and 
also that path coefficient estimates are distributed as expected based on the central limit theorem. 
Neither the Parametric method nor the three “stable” methods (Stable1, Stable2 and Stable3) 
actually generates resamples, so calling them resampling methods is done here for simplicity in 
the grouping of settings options. Because no resamples are generated, these are the most efficient 
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of the methods from a computing load perspective. These methods can be particularly useful in 
the analysis of large datasets, as in these cases creating resamples can be computationally very 
taxing. With the emergence of the concept of “big data”, the need to analyze large datasets is 
becoming increasingly common. 
    Bootstrapping employs a resampling algorithm that creates a number of resamples (a number 
that can be selected by the user), by a method known as “resampling with replacement”. This 
means that each resample contains a random arrangement of the rows of the original dataset, 
where some rows may be repeated. The commonly used analogy of a deck of cards being 
reshuffled, leading to many resample decks, is a good one; but not entirely correct because in 
Bootstrapping the same “card” may appear more than once in each of the resample “decks”. 
    Jackknifing, on the other hand, creates a number of resamples that equals the original sample 
size, and where each resample has one row removed. That is, the sample size of each resample is 
the original sample size minus 1. Thus, when Jackknifing is selected the number of resamples 
is automatically set as the sample size. This refers to the most common form of jackknifing, 
also known as “delete-1” and “classic” jackknifing, which is the one implemented through this 
software. 
    Blindfolding employs a resampling algorithm that creates a number of resamples (a number 
that can be selected by the user) by a method whereby each resample has a certain number of 
rows replaced with the means of the respective columns. The number of rows modified in this 
way in each resample equals the sample size divided by the number of resamples. For example, 
if the sample size is 200 and the number of resamples selected is 100, then each resample will 
have 2 rows modified. If a user chooses a number of resamples that is greater than the sample 
size, the number of resamples is automatically set to the sample size (as with Jackknifing). 
    The default number of resamples for Bootstrapping and Blindfolding is 100. It can be 
modified by entering a different number in the appropriate edit box. (Please note that we are 
talking about the number of resamples here, not the sample size of the original dataset.) Leaving 
the number of resamples for Bootstrapping as 100 is recommended because it has been 
shown that higher numbers of resamples lead to negligible improvements in the reliability of P 
values (see, e.g., Goodhue et al., 2012). In fact, according to the original developer of the 
Bootstrapping method, even setting the number of resamples at 50 is likely to lead to fairly 
reliable P value estimates (Efron et al., 2004). 
    Conversely, increasing the number of resamples well beyond 100 leads to a higher 
computation load on the software, making the software look like it is having a hard time coming 
up with the results. In very complex models, a high number of resamples may make the software 
run very slowly. Some researchers have suggested in the past that a large number of resamples 
can address problems with the data, such as the presence of outliers due to errors in data 
collection. This opinion is not shared by the original developer of the Bootstrapping method, 
Bradley Efron (see, e.g., Efron et al., 2004). 
    Not considering the “stable” methods, arguably Jackknifing is particularly good at addressing 
problems associated with the presence of outliers due to errors in data collection. Generally 
speaking, Jackknifing tends to generate more stable resample path coefficients (and thus more 
reliable P values) with small sample sizes (lower than 100), and with samples containing outliers 
(see, e.g., Chiquoine & Hjalmarsson, 2009). Monte Carlo simulations suggest that the “stable” 
methods perform better than Jackknifing in this respect. 
    Again, not considering the “stable” methods, Bootstrapping tends to generate more stable 
resample path coefficients (and thus more reliable P values) with larger samples and with 
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samples where the data points are evenly distributed on a scatter plot. Monte Carlo simulations 
suggest that the “stable” methods perform better than Bootstrapping in this respect as well. The 
use of Bootstrapping with small sample sizes (lower than 100) has been discouraged (Nevitt & 
Hancock, 2001). 
    Generally speaking, Bootstrapping and Jackknifing can be seen as complementary resampling 
methods, in that one tends to perform well in situations where the other does not, and vice-versa. 
Nevertheless, the “stable” methods provided by this software seem to be an improvement over 
them, as indicated by Monte Carlo simulations (Kock, 2014b). 
    Blindfolding tends to perform somewhere in between Jackknifing and Bootstrapping. If the 
number of resamples is set as very close to the sample size, particularly with small sample sizes 
(lower than 100) and with samples containing outliers, Blindfolding performs similarly to 
Jackknifing. With larger samples and with samples where the data points are evenly distributed 
on a scatter plot, Blindfolding tends to performs more like Bootstrapping, especially when the 
number of resamples is set as the same for both algorithms. 
    Prior to the development of the “stable” methods, a recommendation was usually made in 
connection with Bootstrapping and Jackknifing. Since the warping algorithms are also sensitive 
to the presence of outliers, the recommendation was to estimate P values with both 
Bootstrapping and Jackknifing, which are complementary resampling methods, and use the P 
values associated with the most stable coefficients. An indication of instability is a high P value 
(i.e., statistically non-significant) associated with path coefficients that could be reasonably 
expected to yield low P values. For example, with a sample size of 100, a path coefficient of 0.2 
could be reasonably expected to yield a P value that is statistically significant at the 0.05 level. If 
that is not the case, there may be a stability problem. Another indication of instability is a 
marked difference between the P values estimated through Bootstrapping and Jackknifing. 
    The recommendation above was based on the fact that P values can be easily estimated using 
two or more resampling methods by following the simple procedure outlined as follows. Run a 
SEM analysis of the desired model, using one of the resampling methods, and save the project. 
Then save the project again, this time with a different name, change the resampling method, and 
run the SEM analysis again. Then save the second project again. Each project file will now have 
results that refer to one of the resampling methods. The P values can then be compared, and the 
most stable ones used in a research report on the SEM analysis. While this is a perfectly valid 
approach for the calculation of P values, as the coefficients to which the P values refer do not 
change across iterations, it is very important to fully disclose this to the readers of the research 
report (or reports) written based on the SEM analyses. 
    An alternative to the above approach is the use one of the “stable” methods, particularly 
the Stable3 method (see, e.g., Kock, 2014b), as these methods can be seen as yielding P values 
that are consistent with and often more precise than the P values generated by the software’s 
other resampling methods. Using these “stable” methods has the advantage of requiring much 
less manual work from the user. Based on various tests in the context of PLS-based SEM, it 
seems that the Stable3 method yields fairly reliable results for path coefficients associated with 
direct effects (Kock, 2014b). It is less clear if the Stable3 method, or any of the other “stable” 
methods, is advisable for the calculation of P values for path coefficients associated with indirect 
and total effects, and research in this area is ongoing.  
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B.7. Data modification settings 

    The “View or change data modification settings” option allows users to run their analyses 
with subsamples defined by a range restriction variable, which is chosen from among the 
indicators available. (After Step 5 is completed, latent variable scores can also be added to the 
model as standardized indicators.). This option also allows users to conduct their analyses with 
only ranked data (see Figure B.7). 
 
Figure B.7. View or change data modification settings 
 

 
 
    Two range restriction variable types are available: standardized and unstandardized 
indicators. This means that the range restriction variable can be either a standardized or 
unstandardized indicator. Once a range restriction variable is selected, minimum and 
maximum values must be set (i.e., a range), which in turn has the effect of restricting the 
analysis to the rows in the dataset within that particular range. 
    The option of selecting a range restriction variable and respective range is useful in multi-
group analyses, whereby separate analyses are conducted for group-specific subsamples, saved 
as different project files, and the results then compared against one another. One example would 
be a multi-country analysis, with each country being treated as a subsample, but without separate 
datasets for each country having to be provided as inputs. 
    Let us assume that an unstandardized variable called “Country” stores the values “1” (for 
Brazil), “2” (for New Zealand), and “3” (for the USA). To run the analysis only with data from 
Brazil one can set the range restriction variable as “Country” (after setting its type as 
“Unstandardized indicator”), and then set both the minimum and maximum values as “1” for the 
range. 
    This range restriction feature is also useful in situations where outliers are causing instability 
in a resample set, which can lead to abnormally high standard errors and thus inflated P values. 
Users can remove outliers by restricting the values assumed by a variable to a range that 
excludes the outliers, without having to modify and re-read a dataset. 
    Users can also select an option to conduct their analyses with only ranked data, whereby all 
of the data is automatically ranked prior to the SEM analysis (the original data is retained in 
unranked format). When data measured on ratio scales is ranked, typically the value distances 
that typify outliers are significantly reduced, effectively eliminating outliers without any 
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decrease in sample size. Contrary to popular belief, this cannot be achieved through 
standardization only. 
    Often some information is lost due to ranking – e.g., the distances among data points based on 
answers on ratio scales. Thus a concomitant increase in collinearity may be observed, but 
typically not to the point of threatening the credibility of the results. The option of using only 
ranked data in the analysis can be very useful in assessments of whether the presence of outliers 
significantly affects path coefficients and respective P values, especially when outliers are not 
believed to be due to measurement error.  
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B.8. Individual inner model algorithm settings 

    The “View or change individual inner model algorithm settings” option allows users to set 
inner model algorithms for individual paths (see Figure B.8). The algorithms available are the 
same as those that can be selected as default inner model analysis algorithms: Linear, Warp2, 
Warp2 Basic, Warp3, and Warp3 Basic. 
 
Figure B.8. View or change individual inner model algorithm settings 
 

 
 
    Individual inner model algorithms can be set for both regular and interaction effect latent 
variables; the latter are associated with moderating effects. If no choice is made for an individual 
inner model algorithm, the default inner model analysis algorithm is used. If a model is changed 
after an analysis is conducted, the individual inner model algorithms are set to the default inner 
model analysis algorithm. 
    This option allows users to customize their analyses based on theory and past empirical 
research. If theory or results from past empirical research suggest that a specific link between 
two latent variables is linear, then the corresponding path can be set to be analyzed using the 
Linear algorithm. Conversely, if theory or results from past empirical research suggest that a 
specific link between two latent variables should have the shape of a U curve (or J curve), the 
corresponding path can be set to be analyzed using the Warp2 algorithm or the Warp2 Basic 
algorithm.  
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B.9. Individual latent variable weight and loading starting value settings 

    The “View or change individual latent variable weight and loading starting value 
settings” option allows users to set the initial values of the weights and loadings for each latent 
variable (see Figure B.9). This is a specialized option that will only rarely be used. The default 
starting value for all latent variables is 1. While any real number can be used here, normally only 
-1 and 1 are used. 
 
Figure B.9. View or change individual latent variable weight and loading starting value settings 
 

 
 
    This option reflects a little known characteristic of classic PLS-based SEM analyses, which is 
that they do not always converge to the same solution. The estimated coefficients depend on the 
starting values of weights and loadings, thus leading to different solutions depending on the 
initial configurations of those starting values. Even in simple models, often at least two solutions 
exist – as long as latent variables are used, with multiple indicators. By convention the solution 
most often accepted as valid is the one associated with the default starting value for all latent 
variables, which is 1. 
    With this option, latent variables measured in a reversed way can be more easily 
operationalized. An example would be a latent variable reflecting boredom being measured 
through a set of indicators that individually reflect excitement. In this type of scenario, generally 
the starting value of weights and loadings for the latent variable should be set to -1. 
    This option can also be useful with formative latent variables for which most of the weights 
and loadings end up being negative after an analysis is conducted. In this case, paths associated 
with the latent variable may end up being reversed, leading to conclusions that are the opposite 
of what is hypothesized. The solution here would normally be a change in sign for starting value 
of weights and loadings, usually from 1 to -1.  



WarpPLS 5.0 User Manual 

 32 

B.10. Grouped descriptive statistics 

    When the “Save grouped descriptive statistics” option is selected, a data entry window is 
displayed (see Figure B.10.1). There you can choose a grouping variable, number of groups, and 
the variables to be grouped. This option is useful if one wants to conduct a comparison of means 
analysis using the software, where one variable (the grouping variable) is the predictor, and one 
or more variables are the criteria (the variables to be grouped). 
 
Figure B.10.1. Save grouped descriptive statistics window 
 

 
 
Figure B.10.2. Grouped descriptive statistics bar chart 
 

 
 
    Figure B.10.2 shows the grouped statistics data saved through the window shown in Figure 
B.10.1. The tab-delimited .txt file was opened with a spreadsheet program, and contained the 
data on the left part of the figure. 
    The data on the left part of Figure B.10.2 was organized as shown above the bar chart; next the 
bar chart was created using the spreadsheet program’s charting feature. If a simple comparison of 
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means analysis using this software had been conducted in which the grouping variable (in this 
case, an indicator called “ECU1”) was the predictor, and the criterion was the indicator called 
“Effe1”, those two variables would have been connected through a path in a simple path model 
with only one path. Assuming that the path coefficient was statistically significant, the bar chart 
displayed in Figure B.10.2, or a similar bar chart, could be added to a report describing the 
analysis. 
    Some may think that it is overkill to conduct a comparison of means analysis using a SEM 
software package such as this, but there are advantages in doing so. One of those advantages is 
that this software calculates P values using a nonparametric class of estimation techniques, 
namely resampling and “stable” estimation techniques. (Resampling techniques are sometimes 
referred to as bootstrapping techniques, which may lead to confusion since bootstrapping is also 
the name of a type of resampling technique.) Nonparametric estimation techniques do not require 
the data to be normally distributed, which is a requirement of other comparison of means 
techniques (e.g., ANOVA). 
    Another advantage of conducting a comparison of means analysis using this software is that 
the analysis can be significantly more elaborate than with traditional comparison of means 
methods, even nonparametric ones. For example, the analysis may include control variables (or 
covariates), which would make it equivalent to an ANCOVA test. Finally, the comparison of 
means analysis may include latent variables, as either predictors or criteria. This is not usually 
possible with ANOVA or commonly used nonparametric comparison of means tests (e.g., the 
Mann-Whitney U test). 
    An even more extreme situation is that discussed by Kock (2013b) where data on only “one 
group and one condition” is available. This situation is illustrated through a scenario in which a 
researcher obtains empirical data by asking questions to gauge the effect of a technology on task 
performance, but does not obtain data on the extent to which the technology is used. Because of 
this, the researcher ends up with only one column of data to analyze. 
    Two other scenarios are also discussed by Kock (2013b). These two scenarios are discussed to 
set the stage for the discussion of the “one group and one condition” scenario. The first is a 
typical study scenario in which the researcher measures the degree to which the technology is 
used, or the degree to which specific features of the technology are used, as well as team 
performance and/or related variables expected to be influenced by technology use. 
    In the second scenario the researcher does not have data on the extent to which the technology 
is used, but has data related to team performance and/or other variables expected to be influenced 
by technology use before and after the technology is introduced. This is a longitudinal data 
collection scenario for which a comparison of means test could be used. Data analyses for all 
three scenarios are discussed by Kock (2013b) based on this software, showing the versatility of 
the software. The main reason for this versatility is that most of the data analysis methods used in 
behavioral research can be conceptually seen as special cases of SEM.  
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C. Step 1: Open or create a project file to save your work 

    In Step 1 you will open or create a project file to save your work (see Figure C.1). Project 
files are saved with the “.prj” extension, and contain all of the elements needed to perform 
a SEM analysis. That is, they contain the original data used in the analysis, the graphical model, 
the inner and outer model structures, and the results. 
 
Figure C.1. Step 1 window 
 

 
 
    Once an original data file is read into a project file, the original data file can be deleted 
without effect on the project file. The project file will store the original location and file name of 
the data file so that this information is available in case it is needed in the future, but the project 
file will no longer use the data file. 
    Project files may be created with one name, and then renamed using Windows Explorer or 
another file management tool. Upon reading a project file that has been renamed in this fashion, 
the software will detect that the original name is different from the file name, and will adjust 
accordingly the name of the project file that it stores internally. 
    Different users of this software can easily exchange project files electronically if they are 
collaborating on a SEM analysis project. This way they will have access to all of the original 
data, intermediate data, and SEM analysis results in one single file. Project files are relatively 
small. For example, a complete project file of a model containing 5 latent variables, 32 indicators 
(columns in the original dataset), and 300 cases (rows in the original dataset) will typically be 
only approximately 200 KB in size. Simpler models may be stored in project files as small as 50 
KB. 
    If a project file created with a previous version of the software is open, the software 
automatically recognizes that and converts the file to the new version. This takes placed even 
with project files where all of the five steps of the SEM analysis were completed. However, 
because each new version incorporates new features, with outputs stored within new or modified 
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software objects, normally previous versions of the software cannot properly reuse project 
files created with more recent versions.  
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D. Step 2: Read the raw data used in the SEM analysis 

    Through Step 2, you will read the raw data used in the SEM analysis (see Figure D.1). While 
this should be a relatively trivial step, it is in fact one of the steps where users have the most 
problems with other SEM software. Often a SEM software application will abort, or freeze, if the 
raw data is not in the exact format required by the SEM software, or if there are any problems 
with the data, such as missing values (empty cells). 
 
Figure D.1. Reading the raw data used in the SEM analysis 
 

 
 
    The buttons “Read from file” and “Read from clipboard” allow you to read raw data into the 
project file from a file or from the clipboard, respectively. This software employs an import 
wizard that avoids most data reading problems, even if it does not entirely eliminate the 
possibility that a problem will occur. Click only on the “Next” and “Finish” buttons of the file 
import wizard, and let the wizard do the rest. Soon after the raw data is imported, it will be 
shown on the screen, and you will be given the opportunity to accept or reject it. If there are 
problems with the data, such as missing column names, simply click “No” when asked if the data 
looks correct. 
   Raw data can be read directly from Excel files, with extensions “.xls” or “.xlsx”, or text files 
where the data is tab-delimited or comma-delimited. When reading from an “.xls” or “.xlsx” 
file that contains a workbook with multiple worksheets, make sure that the worksheet that 
contains the data is the first on the workbook. If the workbook has multiple worksheets, the 
file import wizard used in Step 2 will typically select the first worksheet as the source or raw 
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data. If the desired worksheet is not the first in the workbook, in many cases the user will be able 
to select the proper worksheet through the wizard, but this selection can lead to mistakes when 
made by novice users. Raw data files, whether Excel or text files, must have indicator names 
in the first row, and numeric data in the following rows. They may contain empty cells, or 
missing values; these will be automatically replaced with values calculated by one of the missing 
data imputation algorithms available in a later step. 
    The “View or change missing data imputation settings” option under “Settings” allows you 
to set the missing data imputation method to be used by the software in the next step. Users may 
want to employ non-automated approaches to deal with missing data, such as deleting the rows 
with missing cells, or manually replacing them with the average of nearby values on the same 
column. The most widely used approach, and also a reasonably reliable one in the context of 
PLS-based SEM, is replacing the missing values with column averages. This missing data 
imputation method is called Arithmetic Mean Imputation, and is automated by the software. It is 
in fact the software’s default missing data imputation method. Kock (2014c) provides a detailed 
discussion of various missing data imputation methods, as well as of a Monte Carlo simulation 
whereby the methods’ relative performances are investigated. 
    While missing data imputation is done automatically by the software, you should not use 
datasets with too many missing values, as this will distort the results. A general rule of thumb is 
that your dataset should not have any column with more than 10 percent of its values missing; a 
more relaxed rule would be to set the threshold to 20 percent (Hair et al., 1987; 2009). On the 
other hand, Kock (2014c) shows that even 30 percent of missing data will still not lead to 
significant bias (from the perspective of theory testing) with any of the missing data 
imputation methods employed by this software. One can reduce the percentage of missing 
values per column by deleting rows in the dataset, where the deleted rows are the ones that refer 
to the columns with missing values. 
    One simple test can be used to try to find out if there are problems with a raw data file. Try to 
open it with a spreadsheet software (e.g., Excel), if it is originally a text file; or try to create a 
tab-delimited text file with it, if it is originally a spreadsheet file. If you try to do either of these 
things, and the data looks corrupted (e.g., missing column names, with misplaced columns, 
containing unrecognized symbols), then it is likely that the original file has problems, which may 
be hidden from view. For example, a spreadsheet file may be corrupted, but that may not be 
evident based on a simple visual inspection of the contents of the file.  
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E. Step 3: Pre-process the data for the SEM analysis 

    In Step 3 the raw data will be pre-processed for the SEM analysis. This is mostly an automatic 
process, requiring only a few button clicks from you. This step will correct problems with the 
data, such as: identical column names, columns with zero variance, and missing data. 
    The “View or change missing data imputation settings” option allows you to set the missing 
data imputation method to be used by the software in this step. Missing data imputation can be 
redone after this step, if you later decide to use a different imputation method. To accomplish 
that you should use the option “Redo missing data imputation (via data pre-processing)” under 
the “Modify” menu option. Kock (2014c) provides a detailed discussion of missing data 
imputation methods, as well as of a Monte Carlo simulation comparing the methods’ relative 
performances. 
    This step will also let you know if the data has rank problems, which usually happens when 
the sample size is very small relative to the number of existing indicators. A related cause of rank 
problems is a sample with many repeated or linearly dependent values on different rows or 
columns, which sometimes is an indication of data fabrication. Please note that the term “rank” 
here comes from matrix algebra, and is unrelated to the same term used in the context of ranked 
data, as discussed earlier in connection with the software settings. 
    If there are rank problems, this does not mean that you cannot proceed with the SEM analysis. 
However, the results may be unstable and, in some cases, completely unreliable. On the other 
hand, it is not uncommon for rank problems to be reported and still the results of the ensuing 
SEM analysis turn out to be reliable. This is due to the general robustness of PLS-based methods 
for SEM analysis. 
    At the end of this step, a window will be displayed with the pre-processed data, which will be 
standardized. Standardized data columns have means that equal zero and standard 
deviations that equal one. If you use the Arithmetic Mean Imputation method for dealing with 
missing data (the software’s default), previously missing values will be shown as zero, since they 
were replaced with the averages (or means) of the columns. Standardized data usually ranges 
from -4 to 4, with outliers assuming values toward the left or right end of those extremes, 
sometimes beyond -4 or 4. 
    Outliers can significantly change the shape of a nonlinear relationship, but this may also be the 
case with linear relationships. For example, one single outlier may change the sign of a linear 
association, from positive to negative (i.e., changing the relationship from direct to inverse). 
Because of this, there is invariably the temptation of removing outliers from analyses. 
    This is often a mistake (Giaquinta, 2009; Hair et al., 2009), as outliers can be invaluable in 
elucidating the true nature of an association (Kaiser, 2010; Rosenthal & Rosnow, 1991; Wold et 
al., 2001). Generally speaking, outliers should only be removed if there are good reasons to 
believe that they are due to measurement error. 
    After the software displays the pre-processed and standardized data, typically you will accept 
the data and move on to the next step. If the data looks corrupted, do not accept it; click on the 
“No” button when asked if the data looks correct. If there are problems in this step, they will 
usually be related to problems with the raw data file. Check that file, and see if you can correct 
those problems. 
    As mentioned before in this manual, one simple test can be used to try to find out if there are 
problems with a raw data file. Try to open it with a spreadsheet program, if it is originally a text 
file; or to try to create a tab-delimited text file with it, if it is originally a spreadsheet file. If you 
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try to do either of these things, and the data looks “messed up” (e.g., corrupted, or missing 
column names), then it is likely that the original file has problems, which may be hidden from 
view. For example, a spreadsheet file may be corrupted, but that may not be evident based on a 
simple visual inspection of the contents of the file using spreadsheet software.  
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F. Step 4: Define the variables and links in the SEM model 

    In Step 4 you will define the latent variables and links in the SEM model. The sub-steps that 
make up this step are discussed in more detail in the subsections below. This software employs a 
graphical interface that allows users to create and edit model elements visually and directly; i.e., 
without the need of a scripting language. 
    You will define the latent variables by selecting the indicators that are associated with them, 
and the measurement method used – either formative or reflective. The process of defining the 
latent variables in a SEM model in this fashion is often called “defining the outer model”, in 
SEM lingo. 
    Model links can be of two types, direct and moderating links. Direct links connect pairs of 
latent variables. Moderating links connect latent variables and direct links; that is, they refer to 
effects in which a latent variable moderates the relationship between a pair of latent variables. 
The process of defining model links is often referred to as “defining the inner model”.  
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F.1. Create or edit the SEM model 

    The window used to create or edit a model is shown in Figure F.1. A model can be edited if it 
has been created and saved before as part of a project. While editing or creating a model you can 
choose from a number of menu options related to overall model functions, latent variable 
functions, direct link functions, and moderating link functions. As with other windows in this 
software, there is a help menu option that provides access to this manual in a generic and 
context-specific manner; both displayed as PDF files. The help menu option also provides links 
to Web resources. 
 
Figure F.1. Create or edit the SEM model window 
 

 
 
    A guiding text box is shown at the top of the model editing and creation window. The content 
of this guiding text box changes depending on the menu option you choose, guiding you through 
the sub-steps related to each option. For example, if you choose the option “Create latent 
variable”, the guiding text box will change color, and tell you to select a location for the latent 
variable on the model graph. 
    Direct links are displayed as full arrows in the model graph, and moderating links as 
dashed arrows. Each latent variable is displayed in the model graph within an oval symbol, 
where its name is shown above a combination of alphanumerical characters with this general 
format: “(F)16i”. The “F” refers to the measurement model; where “F” means formative, and 
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“R” reflective. The “16i” reflects the number of indicators of the latent variable, which in this 
case is 16. 
    Save model and close. This option saves the model within the project, and closes the model 
editing and creation window. This option does not, however, save the project file. That is, the 
project file has to be saved for a model to be saved as part of it. This allows you to open a project 
file, change its model, run a SEM analysis, and discard all that you have done, if you wish to do 
so, reverting back to the previous project file. 
    Centralize model graph. This option centralizes the model graph, and is useful when you are 
building complex models and, in the process of doing so, end up making the model visually 
unbalanced. For example, you may move variables around so that they are all accidentally 
concentrated on the left part of the screen. This option corrects that by automatically redrawing 
all symbols in the model graph so that the center of the model graph coincides with the center of 
the model screen. 
    Show/hide indicators. This option shows or hides the list of indicators for each latent 
variable. The indicators are shown on a vertical list next to each latent variable, and without the 
little boxes that are usually shown in other SEM software. This display option is used to give the 
model graph a cleaner look. It also has the advantage that it saves space in the model graph for 
latent variables. Normally you will want to keep the indicators hidden, except when you are 
checking whether the right indicators were selected for the right latent variables. That is, 
normally you will show the indicators to perform a check, and then hide them during most of the 
model building process. 
    Clear model (deletes all latent variables). This option deletes all latent variables, essentially 
clearing the model. Given that choosing this option by mistake can potentially cause some 
serious loss of work (not to mention some major user aggravation), the software shows a dialog 
box asking you to confirm that you want to clear the model before it goes ahead and deletes all 
latent variables. Even if you choose this option by mistake, and confirm your choice also by 
mistake (a double mistake), you can still undo it by choosing the option “Cancel model 
creation/editing (all editing is lost)” immediately after clearing the model. 
    Cancel model creation/editing (all editing is lost). This option cancels the model creation or 
editing, essentially undoing all of the model changes you have made. 
    Save model into .jpg file. This option allows you to save the model graph into a .jpg file. You 
will be asked to select the file name and the folder where the file will be saved. After saved, this 
file can then be viewed and edited with standard picture viewers, as well as included as a picture 
into reports in other files (e.g., a Word file). Users can also generate model graph files by 
copying the model screen into a picture-editing application (e.g., Paint), cropping it to leave out 
unnecessary or unneeded areas, saving it into a picture file (e.g., .jpg or .png), and then importing 
that file into reports. 
    Create latent variable. This option allows you to create a latent variable, and is discussed in 
more detail below. Once a latent variable is created it can be dragged and dropped anywhere 
within the window that contains the model. 
    Edit latent variable. This option allows you to edit a latent variable that has already been 
created, and thus that is visible on the model graph. 
    Delete latent variable. This option allows you to delete an existing latent variable. All links 
associated with the latent variable are also deleted. 
    Move latent variable. This option is rarely used since, once a latent variable is created, it can 
be easily dragged and dropped with the pointing device (e.g., mouse) anywhere within the 
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window that contains the model. This option is a carryover from a previous version, maintained 
for consistency and for those users who still want to use it. It allows a user to move a latent 
variable across the model by first clicking on the variable and then on the destination position. 
    Create direct link. This option allows you to create a direct link between one latent variable 
and another. The arrow representing the link points from the predictor latent variable to the 
criterion latent variable. Direct links are usually associated with direct cause-effect hypotheses; 
testing a direct link’s strength (through the calculation of a path coefficient) and statistical 
significance (through the calculation of a P value) is equivalent to testing a direct cause-effect 
hypothesis. 
    Delete direct link. This option allows you to delete an existing direct link. You will click on 
the direct link that you want to delete, after which the link will be deleted. 
    Create moderating link. This option allows you to create a link between a latent variable and 
a direct link. When the underlying algorithm used for outer model estimation is PLS Regression 
or one of the Factor-Based PLS algorithms, both formative and reflective latent variables can be 
part of moderating links. Arguably this is not possible with the PLS modes M, A and B (see 
Lohmöller, 1989), which are usually the ones implemented through other PLS-based SEM 
software tools. Moderating links are typically associated with moderating cause-effect 
hypotheses, or interaction effect hypotheses. Testing a moderating link’s strength (through the 
calculation of a path coefficient) and statistical significance (through the calculation of a P value) 
is equivalent to testing a moderating cause-effect or interaction effect hypothesis. Moderating 
links should be used with moderation (no pun intended), because they may introduce 
multicollinearity into the model, and also because they tend to add nonlinearity to the model. By 
introducing multicollinearity into the model they may make some model parameter estimates 
unstable and biased. 
    Delete moderating link. This option allows you to delete an existing moderating link. You 
will click on the moderating link that you want to delete, after which the link will be deleted. 
    After you create a model and choose the option “Save model and close” a wait bar will be 
displayed on the screen telling you that the SEM model structure is being created. This is an 
important sub-step where a number of checks are made. In this sub-step, if there are any 
moderating links in the model, new latent variables are created to store information about those 
moderating effects using a product-indicator procedure described and validated by Chin et al. 
(2003). The more moderating links a model has, the longer this sub-step will take. In models 
where only reflective variables are involved in a moderating link, typically this sub-step will not 
take longer than a few seconds. Moderating links with formative variables may lead to longer 
wait times, because formative variables are usually more complex, frequently with significantly 
more indicators than reflective variables. 
    Instead of the product-indicator approach described by Chin et al. (2003), one can use an 
alternative two-stage approach. In the first stage of this alternative approach, the latent variables 
that are part of a moderating relationship will be added to the model as new indicators. This can 
be done via the options “Add one or more latent variable (a.k.a. factor) scores as new 
standardized indicators” or “Add all latent variable (a.k.a. factor) scores as new 
standardized indicators”, which are available under the “Modify” menu options. In the second 
stage, the new one-indicator latent variables will be used in the definition of a moderating 
relationship.  
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F.2. Create or edit latent variable 

    The latent variable creation window is show in Figure F.2, and it is virtually identical to the 
latent variable editing window. The latent variable will appear in the model graph as soon as you 
click on the menu option under “Save”, which saves the latent variable and closes the latent 
variable creation or editing window. A latent variable is not saved as part of a project until the 
model is saved as part of the project and the project file is saved. 
 
Figure F.2. Create latent variable window 
 

 
 
    You create a latent variable by entering a name for it, which must have no more than 8 
characters, but to which not many other restrictions apply. The latent variable name may contain 
letters, numbers, and even special characters such as “@” or “$”. It cannot contain the special 
character “*”, however, because this character is used later by this software in selected outputs to 
indicate that a latent variable is associated with a moderating effect. After entering a name for a 
latent variable, you then select the indicators that make up the latent variable, and define the 
measurement model as reflective or formative. 
    A reflective latent variable is one in which all the indicators are expected to be highly 
correlated with one another, and with the latent variable itself. For example, the answers to 
certain question-statements by a group of people, measured on a 1 to 7 scale (1=strongly 
disagree; 7=strongly agree) and answered after a meal, are expected to be highly correlated with 
the latent variable “satisfaction with a meal”. Among question-statements that would arguably fit 
this definition are the following two: “I am satisfied with this meal”, and “After this meal, I feel 
full”. Therefore, the latent variable “satisfaction with a meal”, can be said to be reflectively 
measured through two indicators. Those indicators store answers to the two question-statements. 
This latent variable could be represented in a model graph as “Satisf”, and the indicators as 
“Satisf1” and “Satisf2”. Notwithstanding this simplified example, users should strive to have 
more than two indicators be latent variable; the more indicators, the better, since the number of 
indicators is inversely related to the amount of measurement error (Kock, 2014; Nunnally, 1978; 
Nunnally & Bernstein, 1994). 
    A formative latent variable is one in which the indicators are expected to measure certain 
attributes of the latent variable, but the indicators are not expected to be highly correlated with 



WarpPLS 5.0 User Manual 

 45 

the latent variable itself, because they (i.e., the indicators) are not expected to be highly 
correlated with one another. For example, let us assume that the latent variable “Satisf” 
(“satisfaction with a meal”) is now measured using the two following question-statements: “I am 
satisfied with the main course” and “I am satisfied with the dessert”. Here, the meal comprises 
the main course, say, filet mignon; and a dessert, such as a fruit salad. Both main course and 
dessert make up the meal (i.e., they are part of the same meal) but their satisfaction indicators are 
not expected to be highly correlated with each other. The reason is that some people may like the 
main course very much, and not like the dessert. Conversely, other people may be vegetarians 
and hate the main course, but may like the dessert very much. 
    If the indicators are not expected to be highly correlated with one another, they cannot be 
expected to be highly correlated with their latent variable’s score. Here is a general rule of thumb 
that can be used to decide if a latent variable is reflectively or formatively measured. If the 
indicators are expected to be highly correlated, and are redundant in their meaning, then the 
measurement model should be set as reflective. If the indicators are not expected to be highly 
correlated, and are clearly not redundant in meaning (they measure different facets of the same 
construct), even though they clearly refer to the same latent variable, then the measurement 
model should be set as formative. 
    Setting a latent variable as formative or reflective affects the calculation of model parameters 
only with the PLS Mode B algorithm, or with algorithms that employ the PLS Mode B algorithm 
or variations of it (e.g., PLS Mode B Basic, PLS Mode M). With other algorithms, setting a 
latent variable as formative or reflective is still recommended, as it helps the user interpret 
outputs and conduct certain assessments (e.g., validity assessments, discussed later in this 
manual). 
    Formative measurement has been facing increasing criticism, particularly since the late 1990s; 
see Edwards (2011) for a particularly critical and cogent discussion. Given this growing 
criticism, it is recommended that the Cronbach’s alpha coefficients associated with formative 
latent variables be equal to or greater than 0.6, for reasons related to measurement error theory 
(Kock, 2014; Nunnally, 1978; Nunnally & Bernstein, 1994). Since loadings tend to be relatively 
low with formative latent variables (and weights relatively high), reliability measures (such as 
the Cronbach’s alpha coefficient) tend to also be relatively low. Nevertheless, Cronbach’s alpha 
coefficients equal to or greater than 0.6 can be achieved by increasing the number of indicators 
used in formative measurement.  
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G. Step 5: Perform the SEM analysis and view the results 

    Step 5 performs the SEM analysis based on the model created in Step 4. After you click on the 
button to perform the SEM analysis, the software will show a wait bar. This wait bar will update 
you on the progress of the SEM analysis, which usually will take only a few seconds or less for 
simple to moderately complex models. As soon as the SEM analysis is completed, the software 
will show the results in graphical format on a window. That window also has menu options that 
allow you to view more details about the results, including some that are not shown on the graph 
(e.g., reliability measures), and also save the results into tab-delimited text files. 
    Collinearity is estimated before the SEM analysis is run. If collinearity appears to be too 
high, users are warned about it. A table with estimated latent variable correlations is shown, 
allowing users to identify the possible offending latent variables. If users so choose, they can 
proceed with the analysis anyway, but in most (not all) cases the full collinearity (a.k.a. 
multicollinearity) measures will confirm that collinearity is too high in their models for the 
analysis results to be considered credible. 
    Measurement error and composite weights are estimated before the SEM analysis is run, 
whenever Factor-Based PLS algorithms are used. Measurement error and composite weights 
play a key role in these algorithms. If at least one measurement error weight is greater than the 
corresponding composite weight, the user is warned about possible unreliability of results. This 
happens usually when at least one of the Cronbach’s alpha coefficients associated with the latent 
variables is lower than 0.5. Foundational aspects of the Factor-Based PLS algorithms are 
discussed by Kock (2014), who lays out the mathematical basis of these algorithms, from which 
the importance of measurement error and composite weights can be gleaned. 
    New options become available from the main window after Step 5 is completed, under the 
“Modify” menu option. These options allow users to add one or more latent variable scores to 
the model as new standardized indicators, and also to add all latent variable scores as new 
indicators. Adding one or more latent variable scores at a time may be advisable in certain cases, 
such as in hierarchical analyses using selected latent variable scores as indicators at each level. In 
these cases, adding all latent variable scores at once may soon clutter the set of indicators 
available to be used in the SEM model. 
    The option of adding latent variable scores to the model as new standardized indicators is 
useful in the removal of outliers, through the use of restricted ranges for latent variable scores, 
particularly for outliers that are clearly visible on the plots depicting associations among latent 
variables. As briefly mentioned earlier, this option is also useful in hierarchical analyses, where 
users define second-order (and higher order) latent variables, and then conduct analyses with 
different models including latent variables of different orders. 
    This software uses algorithms that are fairly computing intensive, in some cases employing 
multiple checks and optimization sub-algorithms in each sub-step. Therefore the speed with 
which the analysis is conducted may be a little slower than that of some other publicly available 
SEM software. The differences in speed are not significant though, and normally the results 
generated by this software are more complete, and in many cases more reliable. For example, 
this software calculates model fit and quality indices, as well as P values for most of its 
parameter estimates. Publicly available PLS-based SEM software usually do not provide those 
measures. 
    Some model elements may reduce the speed of the SEM analysis more than others. These 
are: formative latent variables with many indicators and, more generally, latent variables with 
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many indicators (even if they are reflective); moderating effects, particularly if they associate 
latent variables with many indicators; setting the number of resamples for Bootstrapping or 
Blindfolding as 200 or higher; and using Jackknifing as the resampling method, if the sample 
size is larger than 200. 
    In Jackknifing, the number of resamples equals the sample size, which is why using 
Jackknifing as the resample method may reduce the speed of the SEM analysis with relatively 
large samples. Generating resamples and running calculations on them is one of the most 
computing intensive sub-steps of the SEM analysis. However, Jackknifing often produces more 
stable parameter estimates with warped analysis. So there is a tradeoff between speed and 
reliability when warping algorithms are being used. This tradeoff may tip the balance in favor of 
using Jackknifing, alone or in addition to Bootstrapping or Blindfolding, even if the user has to 
wait longer for the results. 
    An alternative is the use of the “stable” quasi-parametric methods: Stable1, Stable2, and 
Stable3. This alternative is highly recommended, particularly with the Stable3 method, the 
software’s default. As their name implies, these methods yield stable coefficients. They also 
provide fairly accurate estimates of standard errors, which are used in the calculation of P values. 
These methods do not actually generates resamples, so calling them resampling methods is done 
here for simplicity in the grouping of settings options. Because no resamples are generated, these 
are rather efficient methods from a computing load perspective. These methods can be 
particularly useful in the analysis of large datasets, as in these cases creating resamples can be 
computationally very taxing. With the emergence of the concept of “big data”, the need to 
analyze large datasets is becoming increasingly common.  
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H. View and save results 

    As soon as the SEM analysis is completed, the software shows the results in graphical format 
on a window, which also contains a number of menu options that allow you to view and save 
more detailed results (see Figure H.1.1). The graph with the results shows path coefficients, 
respective P values, and R-squared coefficients. 
    The “Save” menu options allow users to save all of the results that they can view, with the 
majority of those results saved under the option to save all model estimates into a tab-delimited 
text file. Additionally, users can save the factor scores calculated for each latent variable. These 
can be useful in some specialized applications; e.g., users may want to generate customized 
graphs based on those scores. 
 
Figure H.1.1. View and save results window 
 

 
 
    Just to be clear, the “factor” scores are the latent variable scores; even though classic PLS 
algorithms approximate latent variables though composites, not factors. This is generally 
perceived as a limitation of classic PLS algorithms (Kock, 2014; 2014d), which is addressed 
through the Factor-Based PLS algorithms. The latter, Factor-Based PLS algorithms, estimate 
latent variables through the estimation of the true factors. The term “factor” is often used when 
we refer to latent variables, in the broader context of SEM analyses in general. The reason is that 
factor analysis, from which the term “factor” originates, can be seen as a special case of SEM 
analysis. 
    The path coefficients are noted as beta coefficients. “Beta coefficient” is another term often 
used to refer to path coefficients in PLS-based SEM analyses; this term is commonly used in 
multiple regression analyses. The P values are displayed below the path coefficients, within 
parentheses. The R-squared coefficients are shown below each endogenous latent variable (i.e., a 
latent variable that is hypothesized to be affected by one or more other latent variables), and 
reflect the percentage of the variance in the latent variable that is explained by the latent 
variables that are hypothesized to affect it. To facilitate the visualization of the results, the path 
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coefficients and P values for moderating effects are shown in a way similar to the corresponding 
values for direct effects, namely next to the arrows representing the effects.  
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H.1. View general results 

    General SEM analysis results include: the version of WarpPLS used in the SEM analysis; 
project file details, such as the project file name and when the file was last saved; model fit and 
quality indices (shown in Figure H.1.2), which are discussed in more detail below; and general 
model elements, such as the algorithm and resampling method used in the SEM analysis. 
 
Figure H.1.2. General results window 
 

 
 
    Under the project file details, both the raw data path and file are provided. Those are provided 
for completeness, because once the raw data is imported into a project file, it is no longer needed 
for the analysis. Once a raw data file is read, it can even be deleted without any effect on the 
project file, or the SEM analysis. 
    Ten global model fit and quality indices are provided: average path coefficient (APC), 
average R-squared (ARS), average adjusted R-squared (AARS), average block variance 
inflation factor (AVIF), average full collinearity VIF (AFVIF), Tenenhaus GoF (GoF), 
Simpson's paradox ratio (SPR), R-squared contribution ratio (RSCR), statistical 
suppression ratio (SSR), and nonlinear bivariate causality direction ratio (NLBCDR). 
    For the APC, ARS, and AARS, P values are also provided. These P values are calculated 
through a process that involves resampling estimations coupled with corrections to counter the 
standard error compression effect associated with adding random variables, in a way analogous 
to Bonferroni corrections (Rosenthal & Rosnow, 1991). This is necessary since the model fit and 
quality indices are calculated as averages of other parameters. 
    The interpretation of the model fit and quality indices depends on the goal of the SEM 
analysis. If the goal is to only test hypotheses, where each arrow represents a hypothesis, then the 
model fit and quality indices are, as a whole, of less importance. However, if the goal is to find 
out whether one model has a better fit with the original data than another, then the model fit and 
quality indices are a useful set of measures related to model quality. When assessing the model 
fit with the data, several criteria are recommended. These criteria are discussed below, together 
with the discussion of the model fit and quality indices. 
    APC, ARS and AARS. Typically the addition of new latent variables into a model will 
increase the ARS, even if those latent variables are weakly associated with the existing latent 
variables in the model. However, that will generally lead to a decrease in the APC, since the path 
coefficients associated with the new latent variables will be low. Thus, the APC and ARS will 
counterbalance each other, and will only increase together if the latent variables that are added to 
the model enhance the overall predictive and explanatory quality of the model. The AARS is 
generally lower than the ARS for a given model. The reason is that it averages adjusted R-
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squared coefficients (Theil, 1958; Wooldridge, 1991), which themselves correct for spurious 
increases in R-squared coefficients due to predictors that add no explanatory value in each latent 
variable block. It is recommended that the P values for the APC, ARS and AARS all be equal 
to or lower than 0.05; that is, significant at the 0.05 level. A more relaxed rule would be that the 
P values for the APC and ARS only be equal to or lower than 0.05. 
    AVIF and AFVIF. The AVIF index will increase if new latent variables are added to the 
model in such a way as to add vertical collinearity in the model’s latent variable blocks. The 
AFVIF index will increase if new latent variables are added to the model in such a way as to add 
full collinearity into the model (i.e., either vertical or lateral collinearity; see Kock & Lynn, 
2012). Full collinearity is often referred to as “muticollinearity”. High AVIF and AFVIF values 
may result from the inclusion of new latent variables that overlap in meaning with existing latent 
variables. It is generally undesirable to have different latent variables in the same model that 
measure the same underlying construct; those should be combined into one single latent variable. 
Thus, the AVIF and AFVIF indices bring in new dimensions that add to a comprehensive 
assessment of a model’s overall predictive and explanatory quality. Because of the way in which 
these indices are calculated (for more details, see: Kock & Lynn, 2012), the AFVIF is not 
sensitive to variations in collinearity due to the use of nonlinear algorithms. The AVIF, on the 
other hand, is sensitive to the use of nonlinear algorithms. Therefore it is recommended that 
both indices, AVIF and AFVIF, be reported in studies, as they are not redundant indices. It is 
recommended (ideally) that both the AVIF and AFVIF be equal to or lower than 3.3, 
particularly in models where most of the variables are measured through two or more 
indicators. A more relaxed (acceptable) criterion is that both indices be equal to or lower than 
5, particularly in models where most variables are single-indicator variables (and thus not 
“true” latent variables). The reason for these differences in criteria in different contexts is that 
PLS-based SEM algorithms in general tend to be particularly effective at reducing collinearity 
(Kock & Lynn, 2012), but only if multiple indicators are available to be aggregated in the 
calculation of latent variable scores. 
    GoF. Similarly to the ARS, the GoF index, referred to as “Tenenhaus GoF” in honor of 
Michel Tenenhaus, is a measure of a model’s explanatory power. Tenenhaus et al. (2005) 
defined the GoF as the square root of the product between what they refer to as the average 
communality index and the ARS. The communality index for a given latent variable is defined as 
the sum of the squared loadings for that latent variable, each loading associated with an 
indicator, divided by the number of indicators. The average communality index for a model is 
defined similarly, and takes all latent variables into account in its calculation. The loadings 
referred to here are the unrotated loadings, which are available from the structure loadings and 
cross-loadings table. It is also worth noting that the definition of the communality index used by 
Tenenhaus et al. (2005) does not match the typical definition of communality, at least as it is 
normally stated in the context of factor analysis. As noted by Wetzels et al. (2009), the average 
variance extracted (AVE) for each latent variable equals the corresponding communality index. 
Wetzels et al. (2009) also proposed the following thresholds for the GoF: small if equal to or 
greater than 0.1, medium if equal to or greater than 0.25, and large if equal to or greater 
than 0.36. They did so by assuming a minimum acceptable average AVE of 0.5, and using 
Cohen’s (1988) thresholds for small, medium, and large effect sizes. A value lower than 0.1 for 
the GoF suggests that the explanatory power of a model may be too low to be considered 
acceptable. 
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    SPR. The SPR index is a measure of the extent to which a model is free from Simpson’s 
paradox instances (Pearl, 2009; Wagner, 1982). An instance of Simpson’s paradox occurs when 
a path coefficient and a correlation associated with a pair of linked variables have different signs. 
A Simpson’s paradox instance is a possible indication of a causality problem, suggesting that a 
hypothesized path is either implausible or reversed. The SPR index is calculated by dividing the 
number of paths in a model that are not associated with Simpson’s paradox instances by the total 
number of paths in the model. At the time of this writing the SPR was an experimental index, 
and thus the following recommendations should also be treated as experimental. Ideally the SPR 
should equal 1, meaning that there are no instances of Simpson’s paradox in a model; 
acceptable values of SPR are equal to or greater than 0.7, meaning that at least 70 percent of 
the paths in a model are free from Simpson’s paradox. 
    RSCR. The RSCR index is a measure of the extent to which a model is free from negative R-
squared contributions, which occur together with Simpson’s paradox instances (Pearl, 2009; 
Wagner, 1982). When a predictor latent variable makes a negative contribution to the R-squared 
of a criterion latent variable (note: the predictor points at the criterion), this means that the 
predictor is actually reducing the percentage of variance explained in the criterion. Such a 
reduction takes into consideration the contributions of all predictors plus that of the residual. 
This index is similar to the SPR. The key difference is that it is calculated based on the actual 
values of the R-squared contributions, not on the number of paths where these contributions have 
specific signs. The RSCR index is calculated by dividing the sum of positive R-squared 
contributions in a model by the sum of the absolute R-squared contributions (be they negative or 
positive) in the model. At the time of this writing the RSCR was an experimental index, and thus 
the following recommendations should also be treated as experimental. Ideally the RSCR 
should equal 1, meaning that there are no negative R-squared contributions in a model; 
acceptable values of RSCR are equal to or greater than 0.9, meaning that the sum of positive 
R-squared contributions in a model makes up at least 90 percent of the total sum of the absolute 
R-squared contributions in the model. 
    SSR. The SSR index is a measure of the extent to which a model is free from statistical 
suppression instances (MacKinnon et al., 2000). An instance of statistical suppression occurs 
when a path coefficient is greater, in absolute terms, than the corresponding correlation 
associated with a pair of linked variables. Like a Simpson’s paradox instance, a statistical 
suppression instance is a possible indication of a causality problem (Spirtes et al., 1993), 
suggesting that a hypothesized path may be either implausible or reversed. The SSR index is 
calculated by dividing the number of paths in a model that are not associated with medium or 
greater statistical suppression instances by the total number of paths in the model. A medium or 
greater statistical suppression instance is characterized by an absolute path-correlation ratio that 
is greater than 1.3. At the time of this writing the SSR was an experimental index, and thus the 
following recommendation should also be treated as experimental. Acceptable values of SSR 
are equal to or greater than 0.7, meaning that at least 70 percent of the paths in a model are 
free from statistical suppression. 
    NLBCDR. One interesting property of nonlinear algorithms is that bivariate nonlinear 
coefficients of association vary depending on the hypothesized direction of causality. That is, 
they tend to be stronger in one direction than the other, which means that the residual (or error) is 
greater when the hypothesized direction of causality is in one way or another. As such, they can 
be used, together with other coefficients, as partial evidence in support or against hypothesized 
causal links. The NLBCDR index is a measure of the extent to which bivariate nonlinear 
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coefficients of association provide support for the hypothesized directions of the causal links in a 
model. The NLBCDR index is calculated by dividing the number of path-related instances in a 
model where the support for the reversed hypothesized direction of causality is more than weak 
by the total number of path-related instances involved in this test (this is discussed in more detail 
later). All of the available nonlinear algorithms are used in this test. Therefore the total number 
of path-related instances involved in this test is greater than the total number of paths. At the 
time of this writing the NLBCDR was an experimental index, and thus the following 
recommendation should also be treated as experimental. Acceptable values of NLBCDR are 
equal to or greater than 0.7, meaning that in at least 70 percent of path-related instances in a 
model the support for the reversed hypothesized direction of causality is weak or less. Here 
“less” may mean that the support for reversed hypothesized direction of causality is less than 
weak (e.g., neutral), or that the hypothesized direction of causality is supported.  
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H.2. View path coefficients and P values 

    Path coefficients and respective P values are shown together, as can be seen in Figure H.2. 
Each path coefficient is displayed in one cell, where the column refers to the predictor latent 
variable and the row to the criterion. For example, let us consider the case in which the cell 
shows 0.225, the column refers to the latent variable “ECUVar”, and the row to the latent 
variable “Proc”. This means that the path coefficient associated with the arrow that points from 
“ECUVar” to “Proc” is 0.225. 
 
Figure H.2. Path coefficients and P values window 
 

 
 
    Since the results refer to standardized variables, a path coefficient of 0.225 means that, in a 
linear analysis, a 1 standard deviation variation in “ECUVar” leads to a 0.225 standard deviation 
variation in “Proc”. In a nonlinear analysis, the meaning is generally the same, except that it 
applies to the overall linear trend of the transformed (or warped) relationship. However, it is 
important to note that, in nonlinear relationships the path coefficient at each point of a curve 
varies. In nonlinear relationships, the path coefficient is given by the first derivative of the 
nonlinear function that describes the relationship. 
    The P values shown are calculated through one of several methods available, and are thus 
method-specific; i.e., they change based on the P value calculation method chosen. In the 
calculation of P values, a one-tailed test is generally recommended if the coefficient is assumed 
to have a sign (positive or negative), which should be reflected in the hypothesis that refers to the 
corresponding association (Kock, 2014d). Hence this software reports one-tailed P values for 
path coefficients; from which two-tailed P values can be easily obtained if needed (Kock, 
2014d). 
    One puzzling aspect of many publicly available PLS-based SEM software systems is that they 
have historically avoided providing P values, instead providing standard errors and T values, and 
leaving the users to figure out what the corresponding P values are. Often users have to resort to 
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tables relating T to P values, or other software (e.g., Excel), to calculate P values based on T 
values. 
    This is puzzling because typically research reports will provide P values associated with path 
coefficients, which are more meaningful than T values for hypothesis testing purposes. This is 
due to the fact that P values reflect not only the strength of the relationship (which is already 
provided by the path coefficient itself) but also the power of the test, which increases with 
sample size. The larger the sample size, the lower a path coefficient has to be to yield a 
statistically significant P value.  
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H.3. View standard errors and effect sizes for path coefficients 

    Standard errors and effect sizes for path coefficients are provided in two tables where one 
standard error and effect size is provided for each path coefficient (see Figure H.3). The effect 
sizes provided are similar to Cohen’s (1988) f-squared coefficients. Standard errors and effect 
sizes are provided in the same order as the path coefficients, so that users can easily visualize 
them; and, in certain cases, use them to perform additional analyses. 
 
Figure H.3. Standard errors and effect sizes for path coefficients window 
 

 
 
    Even though the effect sizes provided are similar to Cohen’s (1988) f-squared coefficients, 
they are calculated using a different procedure. The reason for this is that the stepwise regression 
procedure proposed by Cohen (1988) for the calculation of f-squared coefficients is generally not 
compatible with PLS-based SEM algorithms. The removal of predictor latent variables in latent 
variable blocks, used in the stepwise regression procedure proposed by Cohen (1988), tends to 
cause changes in the weights linking latent variable scores and indicators, thus biasing the effect 
size measures. 
    The effect sizes are calculated by this software as the absolute values of the individual 
contributions of the corresponding predictor latent variables to the R-squared coefficients of the 
criterion latent variable in each latent variable block. With the effect sizes users can ascertain 
whether the effects indicated by path coefficients are small, medium, or large. The values 
usually recommended are 0.02, 0.15, and 0.35; respectively (Cohen, 1988). Values below 0.02 
suggest effects that are too weak to be considered relevant from a practical point of view, 
even when the corresponding P values are statistically significant; a situation that may occur 
with large sample sizes. 
    Additional types of analyses that may be conducted with standard errors are tests of the 
significance of any mediating effects using the approach discussed by Kock (2013). This 
approach consolidates the approaches discussed by Preacher & Hayes (2004), for linear 
relationships; and Hayes & Preacher (2010), for nonlinear relationships. The latter, discussed by 
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Hayes & Preacher (2010), assumes that nonlinear relationships are force-modeled as linear; 
which means that the equivalent test using this software would use warped coefficients with the 
earlier linear approach discussed by Preacher & Hayes (2004). Again, for the consolidated 
version of these approaches, see Kock (2013). The classic approach used for testing mediating 
effects is discussed by Kock (2011b). This approach is a concise version of Baron & Kenny’s 
(1986) classic approach, which does not rely on standard errors. 
    An alternative approach to the analysis of mediating effects, which is arguably much less 
time-consuming and prone to error than the approaches mentioned above, would be to rely on the 
estimation of indirect effects. These indirect effects and related P values are automatically 
calculated by the software, and allow for the test of multiple mediating effects at once, including 
effects with more than one mediating variable. Kock & Gaskins (2014) provide an empirical 
illustration of the use of this approach. Indirect and total effects are discussed in more detail 
later. 
    Another type of analysis that can employ standard errors for path coefficients is what is often 
referred to as a multi-group analysis, where path and measurement model coefficients (usually 
weights) can be compared. One of the main goals of this type of analysis is to compare pairs of 
path coefficients for identical models but based on different samples. An example would be the 
analysis of the same model but with data collected in two different countries. See Kock (2013) 
for a more detailed discussion on the use of effect sizes and other coefficients generated by this 
software on advanced mediating effects tests, comprehensive multi-group analyses, and 
measurement model assessments.  
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H.4. View indicator loadings and cross-loadings 

    The “View indicator loadings and cross-loadings” menu options (see Figure H.4.1) allow users 
to view combined loadings and cross-loadings, normalized combined loadings and cross-
loadings, pattern loadings and cross-loadings, normalized pattern loadings and cross-loadings, 
structure loadings and cross-loadings, and normalized structure loadings and cross-loadings. 
 
Figure H.4.1. Indicator loadings and cross-loadings options 
 

 
 
    Combined loadings and cross-loadings are shown in a window, as illustrated in Figure 
H.4.2. The same is true for other combinations of loadings and cross-loadings, which are shown 
in similar windows. Combined loadings and cross-loadings are provided in a table with each cell 
referring to an indicator-latent variable link. Latent variable names are listed at the top of each 
column, and indicator names at the beginning of each row. In this table, the loadings are from a 
structure matrix (i.e., unrotated), and the cross-loadings from a pattern matrix (i.e., rotated). 
Indicator types, as defined, are also provided – reflective or formative. 
 
Figure H.4.2. Combined loadings and cross-loadings window 
 

 
 
    In the combined loadings and cross-loadings window, since loadings are from a structure 
matrix, and unrotated, they are always within the -1 to 1 range. With some exceptions, 
which are discussed below, this obviates the need for a normalization procedure to avoid the 
presence of loadings whose absolute values are greater than 1. The expectation here is that for 
reflective latent variables loadings, which are shown within parentheses, will be high; and cross-



WarpPLS 5.0 User Manual 

 59 

loadings will be low. The type of the latent variable as defined by the user, namely reflective 
or formative, is also provided in this window to facilitate the application of validity and 
reliability tests. The criteria used in these tests are typically different for formative and reflective 
latent variables. 
    P values are provided for indicators associated with all latent variables. These P values 
are often referred to as validation parameters of a confirmatory factor analysis (Kline, 1998; 
Schumacker & Lomax, 2004), since they result from a test of a model where the relationships 
between indicators and latent variables are defined beforehand. Conversely, in an exploratory 
factor analysis (Ehremberg & Goodhart, 1976), relationships between indicators and latent 
variables are not defined beforehand, but inferred based on the results of a factor extraction 
algorithm. The principal components analysis algorithm is one of the most popular of these 
algorithms, even though it is often classified as outside the scope of classic factor analysis. 
Confirmatory factor analyses, instead of exploratory factor analyses, are usually conducted in 
conjunction with SEM analyses. 
    For research reports, users will typically use the table of combined loadings and cross-loadings 
provided by this software when describing the convergent validity of their measurement 
instrument. A measurement instrument has good convergent validity if the question-statements 
(or other measures) associated with each latent variable are understood by the respondents in the 
same way as they were intended by the designers of the question-statements. In this respect, two 
criteria are recommended as the basis for concluding that a measurement model has acceptable 
convergent validity: that the P values associated with the loadings be equal to or lower than 
0.05; and that the loadings be equal to or greater than 0.5 (Hair et al., 1987; 2009). 
    Indicators for which these criteria are not satisfied may be removed. This does not apply to 
formative latent variable indicators, which are assessed in part based on P values 
associated with indicator weights. If the offending indicators are part of a moderating effect, 
then you should consider removing the moderating effect if it does not meet the requirements for 
formative measurement. Moderating effect latent variable names are displayed on the table as 
product latent variables (e.g., Effi*Proc). 
    Moderating effect indicator names are displayed on the table as product indicators (e.g., 
“Effi1*Proc1”). Long names are reduced to avoid a “crowded” look. High P values for 
moderating effects, to the point of being non-significant at the 0.05 level, may suggest 
multicollinearity problems; which can be further checked based on the latent variable 
coefficients generated by the software, more specifically, the full collinearity VIFs. Some degree 
of collinearity is to be expected with moderating effects, since the corresponding product 
variables are likely to be correlated with at least their component latent variables. Moreover, 
moderating effects add nonlinearity to models, which can in some cases compound 
multicollinearity problems. Because of these and other related issues, moderating effects should 
be included in models with caution. 
    Standard errors are also provided for the loadings, in the column indicated as “SE”, for 
indicators associated with all latent variables. They can be used in specialized tests. Among other 
purposes, these standard errors can be used in multi-group analyses, with the same model but 
different subsamples. In these cases, users may want to compare the measurement models to 
ascertain equivalence based on loadings and weights, using a multi-group comparison technique 
such as the one documented by Kock (2013) and Keil et al. (2000), and thus ensure that any 
observed between-group differences in structural model coefficients are not due to measurement 
model differences. Keil et al.’s (2000) discussion on multi-group analyses includes an equation 
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that contains an error; the correct form of the equation is used in Kock’s (2013) discussion. The 
equation in question is for the calculation of a pooled standard error, and is one of the two 
equations discussed by Kock (2013) in the context of multi-group analyses; the other implements 
the alternative Satterthwaite method. According to Keil et al. (2000), the original proponent of 
the pooled standard error equation is Wynne Chin, one of the world’s foremost authorities on 
PLS-based SEM. 
    Normalized loadings and cross-loadings. Normalized versions of the combined, pattern, and 
structure loadings and cross-loadings tables are also provided. In windows showing normalized 
loadings and cross-loadings, a Kaiser normalization is employed to calculate them (Ferguson, 
1981; Kaiser, 1958; Ogasawara, 1999). Through a Kaiser normalization, each row of a table of 
loadings and cross-loadings is divided by the square root of its communality. This has the effect 
of making the sum of squared values in each row add up to 1. 
    Using a Kaiser normalization is reasonably standard practice (Ferguson, 1981; Ogasawara, 
1999). Sometimes the normalization is followed by a de-normalization, which is not the case 
with this software. The normalized values are useful in situations where the PLS Regression 
algorithm is used and some of the latent variables have only 2 indicators, particularly with 
respect to options displaying unrotated loadings. In such cases the unrotated loadings in the 
combined loadings and cross-loadings window that are associated with each of the 2 indicators 
are the same, because with the PLS Regression algorithm the inner model does not influence the 
outer model. A Kaiser normalization will usually make indicator loadings diverge in value in 
these cases, in a way that is consistent with standard practice and that, some researchers argue, 
frequently leads to more conservative estimates of loadings and cross-loadings. For a more 
detailed discussion, and a review of different perspectives on this topic, see Ogasawara (1999). 
    Pattern loadings and cross-loadings are provided in a table with each cell referring to an 
indicator-latent variable link. Latent variable names are listed at the top of each column, and 
indicator names at the beginning of each row. In this table, both the loadings and cross-loadings 
are from a pattern matrix (i.e., rotated). 
    Since these loadings and cross-loadings are from a pattern matrix, they are obtained after the 
transformation of a structure matrix through a widely used oblique rotation frequently referred to 
as Promax. The structure matrix contains the Pearson correlations between indicators and latent 
variables, which are not particularly meaningful prior to rotation in the context of measurement 
instrument validation. Because an oblique rotation is employed, in some cases loadings may 
be higher than 1 (Rencher, 1998). This could be a hint that two or more latent variables are 
collinear, although this may not necessarily be the case; better measures of collinearity among 
latent variables are the full collinearity VIFs reported with other latent variable coefficients. In 
the normalized version of this table, typically there will be no loadings higher than 1. 
    The main difference between oblique and orthogonal rotation methods is that the former 
assume that there are correlations, some of which may be strong, among latent variables. 
Arguably oblique rotation methods are the most appropriate in a SEM analysis, because by 
definition latent variables are expected to be correlated. Otherwise, no path coefficient would be 
significant. Technically speaking, it is possible that a research study will hypothesize only 
neutral relationships between latent variables, which could call for an orthogonal rotation. 
However, this is rarely, if ever, the case. 
    Structure loadings and cross-loadings are provided in a table with each cell referring to an 
indicator-latent variable link. Latent variable names are listed at the top of each column, and 
indicator names at the beginning of each row. In this table, both the loadings and cross-loadings 
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are from a structure matrix (i.e., unrotated). Often these are the only loadings and cross-loadings 
provided by other PLS-based SEM software systems. 
    As the structure matrix contains the Pearson correlations between indicators and latent 
variables, this matrix is not particularly meaningful or useful prior to rotation in the context of 
collinearity or measurement instrument validation. Here the unrotated cross-loadings tend to be 
fairly high, even when the measurement instrument passes widely used validity and reliability 
tests. This is generally true for the normalized version of this matrix. 
     Still, some researchers recommend using the structure loadings and cross-loadings table as 
well to assess convergent validity, by following two criteria: that the cross-loadings be lower 
than 0.5; and that the loadings be equal to or greater than 0.5 (Hair et al., 1987; 2009). Note 
that the loadings here are the same as those provided in the combined loadings and cross-
loadings table. The cross-loadings, however, are different. Also, these two criteria generally 
apply to the version of this table that is not normalized.  
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H.5. View indicator weights 

    Indicator weights are provided in a table, much in the same way as indicator loadings are (see 
Figure H.5). All cross-weights are zero, because of the way they are calculated through PLS-
based alrgorithms. Each latent variable score is calculated as an exactly linear combination of its 
indicators, or of its indicators and measurement error, where the weights are multiple regression 
coefficients linking the indicators to the latent variable. 
 
Figure H.5. Indicator weights window 
 

 
 
    As with indicator loadings, standard errors are also provided here for the weights, in the 
column indicated as “SE”, for indicators associated with all latent variables. These standard 
errors can be used in specialized tests. Among other purposes, they can be used in multi-group 
analyses, with the same model but different subsamples. Here users may want to compare the 
measurement models to ascertain equivalence, using a multi-group comparison technique such as 
the one documented by Kock (2013), and thus ensure that any observed between-group 
differences in structural model coefficients, particularly in path coefficients, are not due to 
measurement model differences. 
    P values are provided for weights associated with all latent variables. These values can 
also be seen, together with the P values for loadings, as the result of a confirmatory factor 
analysis. In research reports, users may want to report these P values as an indication that 
formative latent variable measurement items were properly constructed. This also applies to 
moderating latent variables that pass criteria for formative measurement, when those variables do 
not pass criteria for reflective measurement. 
    As in multiple regression analysis (Miller & Wichern, 1977; Mueller, 1996), it is 
recommended that weights with P values that are equal to or lower than 0.05 be considered 
valid items in a formative latent variable measurement item subset. Formative latent variable 
indicators whose weights do not satisfy this criterion may be considered for removal. 
    With these P values, users can also check whether moderating latent variables satisfy validity 
and reliability criteria for formative measurement, if they do not satisfy criteria for reflective 
measurement. This can help users demonstrate validity and reliability in hierarchical analyses 
involving moderating effects, where double, triple etc. moderating effects are tested. For 
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instance, moderating latent variables can be created, added to the model as standardized 
indicators, and then their effects modeled as being moderated by other latent variables; an 
example of double moderation. 
    In addition to P values, variance inflation factors (VIFs) are provided for the indicators of 
all latent variables, including moderating latent variables. These can be used for indicator 
redundancy assessment. In reflective latent variables indicators are expected to be redundant. 
This is not the case with formative latent variables. In formative latent variables indicators are 
expected to measure different facets of the same construct, which means that they should not be 
redundant. 
    The VIF threshold of 3.3 has been recommended in the context of PLS-based SEM in 
discussions of formative latent variable measurement (Cenfetelli & Bassellier, 2009; Petter et al., 
2007). A rule of thumb rooted in the use of this software for many SEM analyses in the past 
suggests an even more conservative approach: that capping VIFs to 2.5 for indicators used in 
formative measurement leads to improved stability of estimates. The multivariate analysis 
literature, however, tends to gravitate toward higher thresholds. Also, capping VIFs at 2.5 or 3.3 
may in some cases severely limit the number of possible indicators available. Given this, it is 
recommended that VIFs be capped at 2.5 or 3.3 if this does not lead to a major reduction in the 
number of indicators available to measure formative latent variables, and if the Cronbach’s alpha 
coefficient associated with the formative latent variable does not fall below 0.6. One example 
would be the removal of only 2 indicators out of 16 by the use of this rule of thumb, with the 
Cronbach’s alpha coefficient remaining equal to or greater than 0.6. Otherwise, the criteria below 
should be employed. 
    Two criteria, one more conservative and one more relaxed, are recommended by the 
multivariate analysis literature in connection with VIFs; criteria that can arguably also be used in 
this type of context. More conservatively, it is recommended that VIFs be lower than 5; a 
more relaxed criterion is that they be lower than 10 (Hair et al., 1987; 2009; Kline, 1998). 
High VIFs usually occur for pairs of indicators in formative latent variables, and suggest that the 
indicators measure the same facet of a formative construct. This calls for the removal of one of 
the indicators from the set of indicators used for the formative latent variable measurement. 
    These criteria are generally consistent with formative latent variable theory (see, e.g., 
Diamantopoulos, 1999; Diamantopoulos & Winklhofer, 2001; Diamantopoulos & Siguaw, 
2006). Among other characteristics, formative latent variables are expected, often by design, to 
have many indicators. Yet, given the nature of multiple regression, indicator weights will 
normally go down as the number of indicators go up, as long as those indicators are somewhat 
correlated, and thus P values will normally go up as well. Moreover, as more indicators are used 
to measure a formative latent variable, the likelihood that one or more will be redundant 
increases. This will be reflected in high VIFs. 
    Indicator weight-loading signs (WLS) are provided for the indicators of all latent variables. 
A negative WLS (i.e., -1) for an indicator means that the indicator in question is making a 
negative contribution to the R-squared of its latent variable. That is, a negative WLS suggests the 
existence of a Simpson’s paradox instance (Pearl, 2009; Wagner, 1982) in the outer model, 
associated with a specific indicator assigned to a latent variable. A Simpson’s paradox instance 
in this context is a possible indication of a causality problem, suggesting that a hypothesized link 
between an indicator and a latent variable is either implausible or reversed. Therefore, it is 
recommended that all indicator WLS values be positive, for both formative and reflective 
latent variables. Indicators associated with negative WLS values may be considered for removal. 
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    Effect sizes are provided in the column indicated as “ES” for the indicators of all latent 
variables. As with the effect sizes for paths, the effect sizes for indicators are calculated as the 
absolute values of the individual contributions of the corresponding indicators to the R-squared 
coefficients of the latent variable to which each indicator is associated. Similarly to the effect 
sizes for paths, with the indicator effect sizes users of this software can ascertain whether the 
indicator effects are small, medium, or large. The values usually recommended are 0.02, 0.15, 
and 0.35; respectively (Cohen, 1988). Values below 0.02 suggest effects that are too weak to be 
considered relevant from a practical point of view, even when the corresponding P values are 
statistically significant. It is recommended that all indicator effect sizes be equal to or 
greater than 0.02, for both formative and reflective latent variables. Indicators with effect sizes 
that do not meet this criterion may be considered for removal.  
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H.6. View latent variable coefficients 

    Several estimates are provided for each latent variable; these can be used in research reports 
for discussions on the measurement instrument’s reliability, discriminant and predictive validity, 
as well as overall collinearity (see Figure H.6). R-squared, adjusted R-squared, and Q-squared 
coefficients are provided only for endogenous latent variables; and reflect the percentages of 
explained variance and predictive validity associated with each of those latent variables, 
respectively. Composite reliability and Cronbach’s alpha coefficients are provided for all latent 
variables. Also provided for all latent variables are: minimum and maximum values, medians, 
modes, skewness and excess kurtosis coefficients, results of unimodality and normality tests, and 
histograms. 
 
Figure H.6. Latent variable coefficients window 
 

 
 
    Composite reliability and Cronbach’s alpha coefficients are measures of reliability. Serious 
questions have been raised regarding Cronbach’s alpha’s (Cronbach, 1951; Kline, 2010) 
psychometric properties. However, while the Cronbach’s alpha coefficient is reported by this 
software, and the Factor-Based PLS algorithms employ it as a basis for the estimation of 
measurement error and composite weights, no assumptions are made about the coefficient’s main 
purported psychometric properties that have been the target of criticism (Sijtsma, 2009). This is 
an important caveat in light of measurement error theory (Nunnally & Bernstein, 1994). Users 
should also keep in mind that an alternative and generally more acceptable reliability measure is 
available, the composite reliability coefficient (Dillon & Goldstein, 1984; Peterson & Yeolib, 
2013). Composite reliability coefficients are also known as Dillon–Goldstein rho coefficients 
(Tenenhaus et al., 2005).  
    Average variances extracted (AVEs) and full collinearity variance inflation factors (VIFs) are 
also provided for all latent variables; and are used in the assessment of discriminant validity and 
overall collinearity, respectively. 
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    Adjusted R-squared coefficients (Theil, 1958; Wooldridge, 1991) are equivalent to R-squared 
coefficients, with the key difference that they correct for spurious increases in R-squared 
coefficients due to predictors that add no explanatory value in each latent variable block. 
Consistently with general recommendations made by Cohen (1988), values of R-squared 
coefficients and adjusted R-squared coefficients below 0.02 suggest combined effects of 
predictors in latent variable blocks that are too weak to be considered relevant from a practical 
point of view. Therefore, models where R-squared coefficients or adjusted R-squared 
coefficients are below 0.02 should be considered for revision, as the explanatory power in 
sub-models (i.e., latent variable blocks) is below reasonable expectations. Revisions in these 
models could involve inner and outer model changes, such as removal or change in location of 
mediating latent variables as well as removal or reassignment of indicators. 
    The following criteria, one more conservative and the other two more relaxed, are suggested in 
the assessment of the reliability of a measurement instrument. These criteria apply only to 
reflective latent variable indicators. Reliability is a measure of the quality of a measurement 
instrument; the instrument itself is typically a set of question-statements. A measurement 
instrument has good reliability if the question-statements (or other measures) associated with 
each latent variable are understood in the same way by different respondents. 
    More conservatively, both the composite reliability and the Cronbach’s alpha coefficients 
should be equal to or greater than 0.7 (Fornell & Larcker, 1981; Nunnaly, 1978; Nunnally & 
Bernstein, 1994). The more relaxed version of this criterion, which is widely used, is that one of 
the two coefficients should be equal to or greater than 0.7. This typically applies to the composite 
reliability coefficient, which is usually the higher of the two (Fornell & Larcker, 1981). An even 
more relaxed version sets this threshold at 0.6 (Nunnally & Bernstein, 1994). If a latent variable 
does not satisfy any of these criteria, the reason will often be one or a few indicators that load 
weakly on the latent variable. These indicators should be considered for removal. 
    AVEs are normally used for discriminant validity assessment and, less commonly, for 
convergent validity assessment. For discriminant validity assessment, AVEs are used in 
conjunction with latent variable correlations. This is discussed in more detail later, together with 
the discussion of the table of correlations among latent variables that includes square roots of 
AVEs. For convergent validity assessment, the AVE threshold frequently recommended for 
acceptable validity is 0.5 (Fornell & Larcker, 1981), and applies only to reflective latent 
variables. 
    Full collinearity VIFs are shown for all latent variables, separately from the VIFs calculated 
for predictor latent variables in individual latent variable blocks. These VIFs are calculated based 
on a full collinearity test (Kock & Lynn, 2012), which enables the identification of not only 
vertical but also lateral collinearity, and allows for a test of collinearity involving all latent 
variables in a model. Vertical, or classic, collinearity is predictor-predictor latent variable 
collinearity in individual latent variable blocks. Lateral collinearity is a term coined by Kock & 
Lynn (2012) that refers to predictor-criterion latent variable collinearity; a type of collinearity 
that can lead to particularly misleading results. Full collinearity VIFs can also be used for 
common method bias tests (Kock & Lynn, 2012; Lindell & Whitney, 2001) that are more 
conservative than, and arguably superior to, the traditionally used tests relying on exploratory 
factor analyses. 
    A rule of thumb rooted in the use of this software for many SEM analyses in the past suggests 
that full collinearity VIFs of 3.3 or lower suggest the existence of no multicollinearity in the 
model and no common method bias. This is also the recommended threshold for VIFs for latent 
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variables in PLS-based SEM (Kock & Lynn, 2012) and also in slightly different contexts 
(Cenfetelli & Bassellier, 2009; Petter et al., 2007). On the other hand, two criteria, one more 
conservative and one more relaxed, are recommended by the multivariate analysis literature in 
connection with VIFs. They may apply in this type of context as well; although they may be 
more adequate in path analyses, where all latent variables are measured through single 
indicators. More conservatively, it is recommended that VIFs be lower than 5; a more 
relaxed criterion is that they be lower than 10 (Hair et al., 1987; 2009; Kline, 1998). 
    Q-squared coefficients are also known as Stone-Geisser Q-squared coefficients, so named 
after their principal original proponents (Geisser, 1974; Stone, 1974). The Q-squared coefficient 
is a nonparametric measure traditionally calculated via blindfolding. It is used for the assessment 
of the predictive validity (or relevance) associated with each latent variable block in the model, 
through the endogenous latent variable that is the criterion variable in the block. The Q-squared 
coefficient is sometimes referred to as a resampling analog of the R-squared coefficient. It is 
often similar in value to that measure; even though the Q-squared coefficient can more easily 
assume negative values. Acceptable predictive validity in connection with an endogenous 
latent variable is suggested by a Q-squared coefficient greater than zero. 
    The unimodality tests for which results are provided are the Rohatgi- Székely test (Rohatgi & 
Székely, 1989) and the Klaassen-Mokveld-van Es test (Klaassen et al., 2000). The normality 
tests for which results are provided are the classic Jarque-Bera test (Jarque & Bera, 1980; Bera 
& Jarque, 1981) and Gel & Gastwirth’s (2008) robust modification of this test. Since these tests 
are applied to latent variables, which are combinations either of indicators or of indicators and 
measurement errors, the outcomes of these tests can be seen as “multivariate” unimodality 
and normality test results. 
    Both unimodality and normality test results take the form of a “Yes” or “No”, meaning that 
the latent variable distributions are or are not, respectively, unimodal or normal. No unimodality 
or normality for at least one latent variable (or indicator) is usually seen as an sign that the 
nonparametric methods used in this software are particularly appropriate. That is, users of this 
software can justify employing it by noting that not all latent variables are unimodal and normal. 
It is noteworthy that the non-normality justification for the use of non-parametric PLS-based 
SEM methods has been widely employed in the past, but typically without any accompanying 
test of normality!  
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H.7. View correlations among latent variables and errors 

    The “View correlations among latent variables and errors” menu options (see Figure H.7.1) 
allow users to view tables containing correlations among latent variables, the P values associated 
with those correlations, square roots of AVEs, correlations among latent variable error terms (or 
residuals), and the VIFs associated with latent variable error terms (see figures H.7.2 and H.7.3). 
 
Figure H.7.1. Correlations among latent variables and errors options 
 

 
 
Figure H.7.2. Correlations among latent variables with square roots of AVEs 
 

 
 
Figure H.7.2. Correlations among latent variable error terms with VIFs 
 

 
 
    In most research reports, users will typically show the table of correlations among latent 
variables, with the square roots of the average variances extracted on the diagonal, to 
demonstrate that their measurement instruments pass widely accepted criteria for discriminant 
validity assessment. A measurement instrument has good discriminant validity if the question-
statements (or other measures) associated with each latent variable are not confused by the 
respondents answering the questionnaire with the question-statements associated with other 
latent variables, particularly in terms of the meaning of the question-statements. 
    The following criterion is recommended for discriminant validity assessment: for each latent 
variable, the square root of the average variance extracted should be higher than any of the 
correlations involving that latent variable (Fornell & Larcker, 1981). That is, the values on the 
diagonal of the table containing correlations among latent variables, which are the square roots 
of the average variances extracted for each latent variable, should be higher than any of the 
values above or below them, in the same column. Or, the values on the diagonal should be higher 
than any of the values to their left or right, in the same row; which means the same as the 
previous statement, given the repeated values of the latent variable correlations table. 
    The above criterion applies to reflective and formative latent variables, as well as product 
latent variables representing moderating effects. If it is not satisfied, the culprit is usually an 
indicator that loads strongly on more than one latent variable. Also, the problem may involve 
more than one indicator. You should check the loadings and cross-loadings tables to see if you 
can identify the offending indicator or indicators, and consider removing them. 
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    Second to latent variables involved in moderating effects, formative latent variables are the 
most likely to lead to discriminant validity problems. This is one of the reasons why formative 
latent variables are not used as often as reflective latent variables in empirical research. In fact, it 
is wise to use formative variables sparingly in models that will serve as the basis for SEM 
analysis. Formative variables can in many cases be decomposed into reflective latent variables, 
which themselves can then be added to the model. Often this provides a better understanding of 
the empirical phenomena under investigation (Edwards, 2011), in addition to helping avoid 
discriminant validity problems. 
    A table with correlations among latent variable error terms containing VIFs associated 
with the error terms on the diagonal is also provided. This table may be useful in identifying 
error terms that are highly correlated, which suggest the existence of confounders. More 
specifically, if a latent variable A points at a latent variable B, and the error terms (e)A and (e)B 
are strongly correlated, then this may be an indication of the existence of a hidden confounder. 
This hidden confounder may be the real cause behind a significant association between A and B, 
suggesting a causality problem; namely one in which a link may in fact not be a “true” causal 
link but rather be due to a third variable, the confounder. Particularly problematic are situations 
in which error terms are so highly correlated that they can be considered redundant, which are 
indicated by high VIFs in the diagonal of this table. To rule out these situations, and consistently 
with recommendations by Kock & Lynn (2012), it is recommended that the VIFs associated 
with the error terms be equal to or lower than 3.3.  
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H.8. View block variance inflation factors 

    Block variance inflation factors (VIFs) are provided in table format (see Figure H.8) for each 
latent variable that has two or more predictors in a latent variable block. Block VIFs cannot be 
calculated for latent variables with only one predictor or no predictor. Here each VIF is 
associated with one of the two or more predictors, and relates to the link between that predictor 
and its latent variable criterion. (When one predictor latent variable points at two or more 
different latent variables in the model, then that latent variable is said to have multiple criteria 
associated with it.) 
 
Figure H.8. Block variance inflation factors window 
 

 
 
    In this context, a VIF is a measure of the degree of “vertical” collinearity (Kock & Lynn, 
2012), or redundancy, among the latent variables that are hypothesized to affect another latent 
variable. This classic type of collinearity refers to predictor-predictor collinearity in a latent 
variable block containing one or more latent variable predictors and one latent variable criterion 
(Kock & Lynn, 2012). For example, let us assume that there is a block of latent variables in a 
model, with three latent variables A, B, and C (predictors) pointing at latent variable D. In this 
case, VIFs are calculated for A, B, and C, and are estimates of the multicollinearity among these 
predictor latent variables.  
    A rule of thumb rooted in the use of this software for many SEM analyses in the past, as well 
as past methodological research, suggests that block VIFs of 3.3 or lower suggest the existence 
of no vertical multicollinearity in a latent variable block (Kock & Lynn, 2012). This is also 
the recommended threshold for VIFs in slightly different contexts (Cenfetelli & Bassellier, 2009; 
Petter et al., 2007). On the other hand, two criteria, one more conservative and one more relaxed, 
are also recommended by the multivariate analysis literature, and can also be seen as applicable 
in connection with VIFs in this context.  
    More conservatively, it is recommended that block VIFs be lower than 5; a more relaxed 
criterion is that they be lower than 10 (Hair et al., 1987; 2009; Kline, 1998). These criteria 
may be particularly relevant in the context of path analyses, where all latent variables are 
measured through single indicators (technically, these are not “true” latent variables). The 
reason why these criteria may be particularly relevant in the context of path analyses is that, 
without multiple indicators per latent variable, the PLS-based SEM algorithms do not have the 
“raw material” that they need to reduce collinearity. PLS-based SEM algorithms are particularly 
effective at reducing collinearity, but chiefly when “true” latent variables are present; that is, 
when latent variables are measured through multiple indicators. 
    High block VIFs usually occur for pairs of predictor latent variables, and suggest that the 
latent variables measure the same construct. If this is not due to indicator assignment problems, it 
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would arguably call for the removal of one of the latent variables from the block, or from the 
model.  
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H.9. View correlations among indicators 

    The software allows users to view the correlations among all indicators included in the model, 
in table format. Only the correlations for indicators included in the model are shown through the 
menu option “View correlations among indicators”, available from the “View and save results” 
window.  
    This option is useful for users who want to run a quick check on the correlations among 
indicators while they are trying to identify possible sources of multicollinearity. This option may 
also be useful in the identification of candidate indicators for latent variables through the anchor 
variable procedure developed by Kock & Verville (2012). 
    The table of correlations among indicators used in the model is usually much larger, with 
many more columns and rows, than that of the correlations among latent variables. For this 
reason, the P values for the correlations are not shown in the screen view option together with the 
correlations, but are saved in the related tab-delimited text file. 
    To save correlations among all indicators and respective P values, including those indicators 
not included in the model, use the menu option “Data”, and the appropriate sub-options therein. 
It should be noted that indicators that are not included in the model are not technically “true” 
indicators. Nevertheless, they do fall under the general term “manifest variables”; as they are 
directly measured, and thus not “latent”, variables. They refer to the columns of the original 
dataset. 
    The menu option for saving correlations among all manifest variables, which refer to all 
columns of the original dataset, is available from the main software window under “Data”, after 
Step 3 is completed. This option is generally more meaningful for users who want to include the 
correlations among manifest variables in their research reports, as part of a descriptive statistics 
table, and for users employing the anchor variable procedure developed by Kock & Verville 
(2012). This option also generates means, standard deviations, and other descriptive statistics for 
each of the manifest variables. Manifest variables that are not used in the model, and that thus 
are not “true” indicators, may simply be deleted prior to the inclusion in a research report.  
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H.10. View/plot linear and nonlinear relationships among latent variables 

    Choosing the menu option “View/plot linear and nonlinear relationships among latent 
variables” causes the software to show a table with the types of relationships, warped or linear, 
between latent variables that are linked in the model (see Figure H.10.1). The term “warped” is 
used for relationships that are clearly nonlinear, and the term “linear” for linear or quasi-linear 
relationships. Quasi-linear relationships are slightly nonlinear relationships, which look linear 
upon visual inspection on plots of the regression curves that best approximate the relationships. 
 
Figure H.10.1. Linear and nonlinear (“warped”) relationships among latent variables window 
 

 
 
Figure H.10.2. Graph options for direct effects including one with points and best-fitting curve 
 

 
 
    Several graphs (a.k.a. plots) for direct effects can be viewed by clicking on a cell containing a 
relationship type description. These cells are the same as those that contain path coefficients, in 
the path coefficients table that was shown earlier. Among the options available are graphs 
showing the points as well as the curves that best approximate the relationships (see Figure 
H.10.2). 
    The “View focused relationship graphs” options allow users to view graphs that focus on the 
best-fitting line or curve and that exclude data points to provide the effect of zooming in on the 
best-fitting line or curve area. The options available are: “View focused multivariate 
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relationship graph (standardized scales)”, “View focused multivariate relationship graph 
(unstandardized scales)”, “View focused bivariate relationship graph (standardized 
scales)”, and “View focused bivariate relationship graph (unstandardized scales)”. 
    The options above, like other direct effects graph options discussed here, combine variations 
in terms of two main aspects: whether the scales are standardized or unstandardized, and 
whether the graphs refer to multivariate or bivariate relationships. 
    By default, latent variable scores are standardized aggregations of indicators. The latter, 
namely the indicators, are originally in unstandardized format. Therefore, to obtain the 
unstandardized equivalents of the latent variable scores, some decisions must be made and extra 
calculations performed. The unstandardized equivalents of latent variable scores are always 
approximations. 
    Unstandardization of scales for latent variable scores, whereby standardized scales are 
converted to their unstandardized equivalents, is based on the unstandardization option chosen 
by the user using the “Settings” menu option. Three unstandardization options are available: 
“Highest loading indicator”, the default option, whereby the mean and standard deviation of the 
highest loading indicator is used in the unstandardization; “Average of indicators”, whereby the 
mean and standard deviation of the average of indicators is used; and “Weighted average of 
indicators”, whereby the mean and standard deviation of the weighted average of indicators is 
used. 
    Through the “Settings” menu option the user can also set the graph title, the X axis label, 
and the Y axis label. The graph title is the text shown at the top of the graph. The X axis label is 
the text shown next to the X axis, or the horizontal axis. The Y axis label is the text shown next 
to the Y axis, or the vertical axis. 
    Multivariate and bivariate relationship graphs usually differ only when two or more 
predictor latent variables point at one criterion latent variable in a latent variable block. The 
addition of predictors will normally reduce the path coefficients in a latent variable block. 
Because of this, typically a multivariate relationship graph will have a lower overall 
inclination (or steepness) than its corresponding bivariate relationship graph. However, this 
is not always the case. In statistical suppression instances (MacKinnon et al., 2000), a 
multivariate relationship graph will have a greater overall inclination than its 
corresponding bivariate relationship graph. In Simpson’s paradox instances (Pearl, 2009; 
Wagner, 1982), multivariate and bivariate relationship graphs will have reversed overall 
inclinations – e.g., one will be positive and the other negative. 
    This software is arguably the first and only, at the time of this writing, to provide both 
multivariate and bivariate representations of nonlinear relationships. The mathematics underlying 
the rendering of these representations is complex and somewhat novel. Therefore, these 
representations should be treated as experimental by users of this software, and any conclusions 
derived from visual inspection of these representations should be treated with caution. 
    The “View focused relationship graphs with segments” options allow users to view graphs 
that focus on the best-fitting line or curve, that exclude data points to provide the effect of 
zooming in on the best-fitting line or curve area, and that show curves as linear segments. The 
segments are shown with their respective beta coefficients and with or without P values. The 
options available are: “View focused multivariate relationship graph with segments 
(standardized scales)”, “View focused multivariate relationship graph with segments 
(standardized scales, P values)”, “View focused multivariate relationship graph with 
segments (unstandardized scales)”, “View focused bivariate relationship graph with 
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segments (standardized scales)”, “View focused bivariate relationship graph with segments 
(standardized scales, P values)”, and “View focused bivariate relationship graph with 
segments (unstandardized scales)”. 
    The number of segments shown in the graphs above depends on the absolute effect 
segmentation delta chosen by the user through the “Settings” menu option. This absolute effect 
segmentation delta is the change (or delta) threshold in the first derivative of the nonlinear 
function depicting the relationship before a new segment is started. For example, a delta of 0.1 
means that in each segment the first derivative of the nonlinear function depicting the 
relationship does not vary more than 0.1. Since the first derivative does not change in linear 
relationships, segmentation only occurs in nonlinear relationships. This graph segmentation 
option allows for the identification of unobserved heterogeneity (Sarstedt & Ringle, 2010) 
without a corresponding reduction in sample size, providing an alternative to data segmentation 
approaches such as FIMIX-PLS (Hahn et al., 2002). 
    The “View relationship graphs with data points” options allow users to view graphs with 
the best-fitting lines or curves and the data points used to produce the best-fitting lines or curves. 
These options show all the data points, and thus do not provide the effect of zooming in on the 
best-fitting line or curve area. The options available are: “View multivariate relationship 
graph with data points (standardized scales)”, “View multivariate relationship graph with 
data points (unstandardized scales)”, “View bivariate relationship graph with data points 
(standardized scales)”, and “View bivariate relationship graph with data points 
(unstandardized scales)”. 
    The “View relationship graphs with data points and legends” options allow users to view 
graphs with the best-fitting lines or curves, the data points used to produce the best-fitting lines 
or curves, and legends associated with data labels. These options show all the data points, and 
thus do not provide the effect of zooming in on the best-fitting line or curve area. They are useful 
in cases where many data points are available, because in these cases showing legends instead of 
data labels next to points avoids graph crowding. The options available are: “View multivariate 
relationship graph with data points and legends (standardized scales)”, “View multivariate 
relationship graphs with data points and legends (unstandardized scales)”, “View bivariate 
relationship graph with data points and legends (standardized scales)”, and “View bivariate 
relationship graphs with data points and legends (unstandardized scales)”. 
    The “View relationship graphs with data points and labels” options allow users to view 
graphs with the best-fitting lines or curves, the data points used to produce the best-fitting lines 
or curves, and data labels next to the data points to which they refer. These options show all the 
data points, and thus do not provide the effect of zooming in on the best-fitting line or curve area. 
They are useful in cases where few data points are available, because in these cases showing data 
labels next to points provides a clear picture of what each data point refers to without graph 
crowding. The options available are: “View multivariate relationship graph with data points 
and labels (standardized scales)”, “View multivariate relationship graphs with data points 
and labels (unstandardized scales)”, “View bivariate relationship graph with data points 
and labels (standardized scales)”, and “View bivariate relationship graphs with data points 
and labels (unstandardized scales)”. 
    As mentioned earlier in this manual, the Warp2 and the Warp2 Basic algorithms try to identify 
a U-curve relationship between each pair of predictor-criterion latent variables, and, if that 
relationship exists, the algorithm used transforms (or “warps”) the scores of the predictor latent 
variables so as to better reflect the U-curve relationship in the estimated path coefficients in the 
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model. The Warp3 and the Warp3 Basic algorithms, the former being the default algorithm used 
by this software, try to identify a relationship defined by a function whose first derivative is a U-
curve. This type of relationship follows a pattern that is more similar to an S-curve (or a 
somewhat distorted S-curve), and can be seen as a combination of two connected U-curves, one 
of which is inverted. 
    Sometimes a Warp3-based analysis will lead to results that tell you that a relationship between 
two latent variables has the form of a U-curve or a line, as opposed to an S-curve. Similarly, 
sometimes a Warp2-based analysis will tell you that a relationship has the form of a line. This is 
because the underlying algorithms find the type of relationship that best fits the distribution of 
points associated with a pair of latent variables, and sometimes those types are not S-curves or 
U-curves. 
    As with direct effects, several graphs (a.k.a. plots) for moderating effects can be viewed 
by clicking on a cell containing a relationship type description. These cells are the same as those 
that contain path coefficients, in the path coefficients table that was shown earlier. Their column 
labels are displayed on the table as product latent variables (e.g., Effi*Proc). In this example, 
namely Effi*Proc, the latent variable Effi is hypothesized to moderate the relationship between 
Proc and another latent variable, where Proc points at the third latent variable. The third latent 
variable is listed in the corresponding row label. Among the options available are 3-dimensional 
(3D) graphs showing the points as well as the surfaces that best approximate the relationships 
(see Figure H.10.3). 
 
Figure H.10.3. Graph options for moderating effects including 3D graph with points and best-fitting surface 
 

 
 
    Moderating relationships involve three latent variables, the moderating variable and the pair of 
variables that are connected through a direct link. The sign and strength of a path coefficient 
for a moderating relationship refer to the effect of the moderating variable on the sign and 
strength of the path for the direct relationship that it moderates. For example, if the path for 
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the direct relationship has its sign going from negative to positive and becomes significantly 
stronger in that direction as one moves from the low to the high range of the moderating variable, 
then the sign of the path coefficient for the corresponding moderating relationship will be 
positive and the path coefficient will be relatively high; possibly high enough to yield a 
statistically significant effect. 
    No moderating relationship graph currently available from this software accurately represents 
the true nature of a moderating relationship. This comment seems to apply to all other publicly 
available SEM software tools; to the best of our knowledge, and at the time of this writing. 
Therefore various graphs are provided so that users can choose the one that in their view best 
illustrates the relationship. An accurate representation of a moderating relationship would be 
that of a multivariate distortion in the surface representing the relationship. The distortion 
refers to a “twisting” of the surface around the moderating variable axis, with a multivariate 
adjustment, and with corresponding changes in the overall inclinations of the sections of the 
surface representing the direct effect being moderated. The mathematical underpinnings of such 
representation were still under development at the time of this writing, and may be available for 
implementation in future versions of this software. 
    The “View moderating relationship in one rocky 3D graph” options allow users to view 3D 
graphs where the surfaces are generated through Delaunay triangulations (Chew, 1989; Lee & 
Schachter, 1980) without smoothing. Surfaces can be viewed with data points excluded or 
included. The displays with data points excluded are analogous to those used in the focused 2D 
graphs. The options to view surfaces with data points excluded are: “View rocky 3D graph for 
moderating effect (standardized scales)” and “View rocky 3D graph for moderating effect 
(unstandardized scales)”. The options to view surfaces with data points included are: “View 
rocky 3D graph for moderating effect with data points (standardized scales)”, and “View 
rocky 3D graph for moderating effect with data points (unstandardized scales)”. 
    The “Rotate” menu option allows the user to rotate a 3D graph up, down, left, and right. 
Through the “Settings” menu option the user can set the following 3D graph options: the 
graph title, the moderating variable (M) axis label, the X axis label, and the Y axis label. 
The graph title is the text shown at the top of the graph. The M axis label is the text shown next 
to the moderating variable axis. The X axis label is the text shown next to the X axis, or the 
predictor variable axis. The Y axis label is the text shown next to the Y axis, or the criterion 
variable axis. 
    The “View moderating relationship in one smooth 3D graph with data points” options 
allow users to view 3D graphs where the surfaces are generated through Delaunay triangulations 
(Chew, 1989; Lee & Schachter, 1980) with smoothing. Because the surfaces are generated with 
smoothing, they sometimes resemble more bed sheets than rocky mountain formations. Surfaces 
can be viewed with data points excluded or included. The options to view surfaces with data 
points excluded are: “View smooth 3D graph for moderating effect (standardized scales)” 
and “View smooth 3D graph for moderating effect (unstandardized scales)”. The options to 
view surfaces with data points included are: “View smooth 3D graph for moderating effect 
with data points (standardized scales)”, and “View smooth 3D graph for moderating effect 
with data points (unstandardized scales)”. 
    In addition to 3D graphs, this software also provides various 2-dimensional (2D) graphs 
of moderating relationships. The 2D graphs shown for moderating relationships refer to low 
and high values of the moderating variable, and display the relationships of the variables 
connected through the moderated direct links in those ranges. 
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    The “View moderating relationship in one focused graph” options allow users to view 2D 
moderating effect graphs that focus on the best-fitting lines or curves for high and low values of 
the moderating variable, and that exclude data points to provide the effect of zooming in on the 
area comprising the best-fitting lines or curves. The options available are: “View focused graph 
with low-high values of moderating variable (standardized scales)”, and “View focused 
graph with low-high values of moderating variable (unstandardized scales)”. 
    Through the “Settings” menu option the user can also set the following 2D moderating 
effect graph options: the graph title, the labels associated with high and low values of the 
moderating variable, and the location of the legend box containing these labels. These 
options allow users to create more informative 2D moderating relationship graphs. For example, 
instead of “Low Exp” and “High Exp”, more informative labels such as “Novices” and 
“Veterans” could be used. Setting the location of the legend box (e.g., from “East” to 
“Northwest”) allows users to move the legend box from more to less crowded areas of the graph, 
giving the graph a more balanced and “cleaner” appearance. 
    The “View moderating relationship in one graph with data points” options allow users to 
view 2D moderating effect graphs with the best-fitting lines or curves for high and low values of 
the moderating variable, and the data points used to produce the best-fitting lines or curves. 
These options show all the data points, and thus do not provide the effect of zooming in on the 
area comprising the best-fitting lines or curves. The options available are: “View graph with 
low-high values of moderating variable and data points (standardized scales)”, and “View 
graph with low-high values of moderating variable and data points (unstandardized 
scales)”. 
    The “View moderating relationship in two graphs with data points” options allow users to 
view 2D moderating effect graphs with the best-fitting lines or curves for high and low values of 
the moderating variable, and the data points used to produce the best-fitting lines or curves, in 
two graphs shown side-by-side. These options show all the data points, and thus do not provide 
the effect of zooming in on the areas comprising the best-fitting lines or curves. The options 
available are: “View two graphs with low-high values of moderating variable and data 
points (standardized scales)”, and “View two graphs with low-high values of moderating 
variable and data points (unstandardized scales)”. 
    The graphs of relationships between pairs of latent variables, and between latent variables and 
links (moderating relationships), provide a much more nuanced view of how latent variables are 
related. However, caution must be taken in the interpretation of these graphs, especially 
when the distribution of data points is very uneven. 
    An extreme example would be a warped graph in which all of the data points would be 
concentrated on the right part of the graph, with only one data point on the far left part of the 
graph. That single data point, called an outlier, could strongly influence the shape of the 
nonlinear relationship. In cases such as this, the researcher must decide whether the outlier is 
“good” data that should be allowed to shape the relationship, or is simply “bad” data resulting 
from a data collection error. 
    If the outlier is found to be “bad” data, it can be removed from the analysis, even as it remains 
in the dataset, by a simple procedure. The user should first add the latent variable score to the set 
of standardized indicators used in a SEM analysis, using the appropriate menu option under the 
option “Modify”, from the main software window, after Step 5 is completed. The user can then 
remove the outlier by restricting the values assumed by the latent variable, using the appropriate 
selections under the “Settings” options, to a range that excludes the outlier. This allows for the 
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exclusion of the outlier without the user having to modify and re-read a dataset. This procedure 
may lead to a visible change in the shape of the nonlinear relationship, and significantly affect 
the results. 
    An outlier that is found to be “bad” data can also be removed from the dataset, and thus from 
the analysis, by a more time-consuming procedure. The user should first save the latent variable 
scores into a file, using the appropriate Save” menu option in the results window, after Step 5 is 
completed. Then the user should add those scores to the original dataset; the rows will be in the 
same order. Next the user should open the modified dataset with a spreadsheet software tool 
(e.g., Excel). The outlier should be easy to identify on the dataset (e.g., a value greater than 4), 
and should be eliminated. Then the user should re-read this modified file as if it was the original 
data file, and run all of the SEM analysis steps again.  
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H.11. View indirect and total effects 

    Through the “View indirect and total effects” options the software allows users to view 
outputs for indirect and total effects (Bollen, 1987; Kock & Gaskins, 2014) associated with all 
latent variables that are linked via one or more paths with more than one segment. The options 
available are “View indirect and total effects (table view)” and “View indirect and total 
effects (classic view)”. The difference between these two options is that the former shows 
indirect and total effects outputs in extendable table format, and the latter in wrapped text format. 
The former option, corresponding to the table view, is recommended in complex models with 
many links among latent variables. Figure H.11 illustrates the latter option, the classic view, 
which is so named because it was the option used in previous versions of the software. 
 
Figure H.11. Indirect and total effects window 
 

 
 
    For each set of indirect and total effects, the following values are provided: the path 
coefficients associated with the effects, the number of paths that make up the effects, the P 
values associated with effects (calculated via resampling, using the selected resampling method), 
the standard errors associated with the effects, and effect sizes associated with the effects. 
    Indirect effects are aggregated for paths with a certain number of segments. As such, the 
software provides separate reports, within the same output window, for paths with 2, 3 etc. 
segments. The software also provides a separate report for sums of indirect effects, as well as for 
total effects. All of these reports include P values, standard errors, and effect sizes. 
    Having access to indirect and total effects can be critical in the evaluation of downstream 
effects of latent variables that are mediated by other latent variables, especially in complex 
models with multiple mediating effects along concurrent paths. Indirect effects also allow for 
direct estimations, via resampling, of the P values associated with mediating effects that have 
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traditionally relied on non-automated and thus time-consuming calculations based on linear 
(Preacher & Hayes, 2004) and nonlinear (Hayes & Preacher, 2010) assumptions.  
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H.12. View causality assessment coefficients 

    The “View causality assessment coefficients” options allow users to view a number of 
coefficients associated with individual paths that can be used in causality assessment. The 
options available are: “View path-correlation signs”, “View R-squared contributions”, “View 
path-correlation ratios”, “View path-correlation differences”, “View Warp2 bivariate 
causal direction ratios”, “View Warp2 bivariate causal direction differences”, “View 
Warp3 bivariate causal direction ratios”, and “View Warp3 bivariate causal direction 
differences”. The topic of causality assessment in the context of SEM is controversial (Pearl, 
2009). Therefore, these causality assessment coefficients should be treated as experimental by 
users of this software, and any conclusions derived from them should be treated with caution. 
 
Figure H.12: Causality assessment coefficients options 
 

 
 
    The “View path-correlation signs” option allows users to identify path-specific Simpson’s 
paradox instances (Pearl, 2009; Wagner, 1982), by inspecting a table with the path-correlation 
signs (shown in the table as the values 1 and -1). A negative path-correlation sign, or the value 
-1, is indicative of a Simpson’s paradox instance. A Simpson’s paradox instance is a possible 
indication of a causality problem, suggesting that a hypothesized path is either implausible or 
reversed. 
    The interpretation of individual Simpson’s paradox instances can be difficult. This may 
be especially the case with demographic variables when these are included in the model as 
control variables, suggesting what may appear to be unlikely or impossible reverse directions of 
causality. For example, let us say that a negative path-correlation sign occurs when we include 
the control variable “Age” (time from birth, measured in years) into a model pointing at the 
variable “Job performance” (self-assessed, measured through multiple indicators on Likert-type 
scales). This may be interpreted as suggesting that “Job performance” causes “Age” in the sense 
that increased job performance causes someone to age, or causes time to pass faster. 
    Alternative explanations frequently exist for Simpson’s paradox instances, as well as for 
other “red flags” suggested by causality assessment coefficients. Taking the example above, 
one possible alternative explanation is that increased job performance causes employment to be 
maintained at more advanced ages, supporting the direction of causality from “Job performance” 
to “Age” instead of the reverse path. It can also mean that, because of sampling problems, those 
with greater job performance included in the sample tended to be older. Yet another alternative 
explanation is that there is no link between “Job performance” and “Age”, and that the inclusion 
of another control variable artificially induces that link; which tends to happen when path 
coefficients are associated with negligible R-squared contributions (i.e., lower than 0.02). 
Whatever the case may be, ideally models should be free from Simpson’s paradox instances, 
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because, as noted below, these instances generally detract from the explanatory power of the 
model. 
    Because an instance of Simpson’s paradox occurs when a path coefficient and a correlation 
associated with a pair of linked variables have different signs, the corresponding contribution to 
the R-squared of the criterion variable in the latent variable block where it occurs is negative (see 
Mueller, 1996; for a discussion of this effect in the context of evolutionary biology, see Kock, 
2011). The “View R-squared contributions” option allows users to view the values of the 
individual contributions to the R-squared of the criterion variable in each latent variable block by 
each of the predictor latent variables in the block. 
    The “View path-correlation ratios” option allows users to identify statistical suppression 
instances (MacKinnon et al., 2000), by inspecting a table with the absolute path-correlation 
ratios. These ratios are calculated by dividing path coefficients by their respective correlation 
coefficients and taking the absolute values of those divisions. An instance of statistical 
suppression occurs when a path coefficient is greater, in absolute terms, than the corresponding 
correlation associated with a pair of linked variables. This leads to a path-correlation ratio that is 
greater than 1. Like a Simpson’s paradox instance, a statistical suppression instance is a possible 
indication of a causality problem (Spirtes et al., 1993), suggesting that a hypothesized path is 
either implausible or reversed. The following interpretations are suggested for absolute path-
correlation ratios: ratio > 1 indicates statistical suppression; 1 < ratio <= 1.3: weak suppression; 
1.3 < ratio <= 1.7: medium; 1.7 < ratio: strong. 
    In the same way that one can distinguish between a statistically significant and non-significant 
direct association, one can also distinguish between statistically significant and non-significant 
suppression instances. The “View path-correlation differences” option allows users to do just 
that, by inspecting a table with the absolute path-correlation differences and their respective P 
values. The absolute path-correlation differences can be used together with the absolute path-
correlation ratios to identify paths that need special attention, because path-correlation ratios 
alone can sometimes provide an inflated perception of problems, especially when paths and 
correlations are both very small. Generally speaking, a path that meets the following criteria 
should be seen as referring to a link that needs special attention in terms of possible elimination 
or careful interpretation: absolute path-correlation ratio greater than 1.3, and P value for 
absolute path-correlation difference equal to a lower than 0.05. However, a path that meets 
these criteria will not necessarily be associated with causality problems; it may in fact suggest a 
particularly interesting and unique finding (see, e.g., MacKinnon et al., 2000). 
    One useful and interesting property of nonlinear algorithms, such as the Warp2 and Warp3 
algorithms, is that often bivariate nonlinear coefficients of association calculated using those 
algorithms vary depending on the hypothesized direction of causality. That is, they tend to be 
stronger in one direction than the other, which means that the residual (or error) is greater when 
the hypothesized direction of causality is in one way or the other. As such, they can be used, 
together with other coefficients, as partial evidence in support or against hypothesized causal 
links. 
    The “View Warp2 bivariate causal direction ratios” option allows users to identify 
instances in which the Warp2 algorithm suggests that causality may be reversed, by inspecting a 
table with the Warp2 bivariate causal direction ratios. These ratios are calculated by dividing the 
path coefficient obtained for the reversed link by the path coefficient obtained for the link with 
the hypothesized direction. The following interpretations are suggested for Warp2 bivariate 



WarpPLS 5.0 User Manual 

 84 

causal direction ratios: ratio > 1 supports reversed link; 1 < ratio <= 1.3: weak support; 1.3 < 
ratio <= 1.7: medium; 1.7 < ratio: strong. 
    In the same way that one can distinguish between a statistically significant and non-significant 
direct association, one can also distinguish between a statistically significant and non-significant 
Warp2 bivariate causal direction reversal instance. The “View Warp2 bivariate causal 
direction differences” option allows users to do just that, by inspecting a table with the absolute 
Warp2 bivariate causal direction differences and their respective P values. The absolute Warp2 
bivariate causal direction differences can be used together with the Warp2 bivariate causal 
direction ratios to identify paths that need special attention, because Warp2 bivariate causal 
direction ratios alone can sometimes provide an inflated perception of problems, especially when 
paths in one direction and the other are both very small. Generally speaking, a path that meets 
the following criteria should be seen as referring to a link that needs special attention in terms of 
possible direction reversal: Warp2 bivariate causal direction ratio greater than 1.3, and P 
value for absolute Warp2 bivariate causal direction difference equal to a lower than 0.05.  
    Since the Warp3 and Warp2 algorithms are different, a similar set of outputs exists in 
connection with Warp3 bivariate causal direction inferences to those available for Warp2. Often 
these different sets outputs will be fairly consistent, but sometimes they will not. 
    The “View Warp3 bivariate causal direction ratios” option allows users to identify 
instances in which the Warp3 algorithm suggests that causality may be reversed, by inspecting a 
table with the Warp3 bivariate causal direction ratios. These ratios are calculated by dividing the 
path coefficient obtained for the reversed link by the path coefficient obtained for the link with 
the hypothesized direction. The following interpretations are suggested for Warp3 bivariate 
causal direction ratios: ratio > 1 supports reversed link; 1 < ratio <= 1.3: weak support; 1.3 < 
ratio <= 1.7: medium; 1.7 < ratio: strong. 
    The “View Warp3 bivariate causal direction differences” option allows users to distinguish 
between a statistically significant and non-significant Warp3 bivariate causal direction reversal 
instance. Users can do that by inspecting a table with the absolute Warp3 bivariate causal 
direction differences and their respective P values. The absolute Warp3 bivariate causal direction 
differences can be used together with the Warp3 bivariate causal direction ratios to identify paths 
that need special attention, because Warp3 bivariate causal direction ratios alone can sometimes 
provide an inflated perception of problems, especially when paths in one direction and the other 
are both very small. Generally speaking, a path that meets the following criteria should be seen 
as referring to a link that needs special attention in terms of possible direction reversal: Warp3 
bivariate causal direction ratio greater than 1.3, and P value for absolute Warp3 bivariate 
causal direction difference equal to a lower than 0.05.  
    Since ratios and P values are generated for the Warp2 and Warp3 algorithms, a more relaxed 
approach would be to consider for special attention in terms of possible direction reversal only 
links that meet both the criteria for Warp2 and Warp3 above. Another approach, also somewhat 
relaxed, would be to consider for special attention only links that meet the criteria that refer to 
the nonlinear algorithm used for the calculation of the path coefficient associated with the link, 
either Warp2 or Warp3 (this includes the “basic” options). Having said that, the above criteria 
arguably apply to paths calculated using the Linear algorithm.  
    The extent to which using more or less relaxed approaches would lead to “false positives” and 
“false negatives” in terms of support and lack of support for hypothesized directions of causality 
is an issue that will require future research, particularly research employing Monte Carlo 
simulations (Robert & Casella, 2010) where the true directions of causality are known. 
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    A path meeting the above criteria for both Warp2 and Warp3 algorithms, in terms of 
support for causal direction reversal, may in some cases appear to lead to an absurd 
conclusion. Upon further consideration, however, reversing the path may not sound as absurd. 
For example, let us say that a path from the variable “Age” (time from birth, measured in years) 
pointing at the variable “Job performance” (self-assessed, measured through multiple indicators 
on Likert-type scales) meets the above criteria, suggesting that it should be reversed. This may 
be interpreted as suggesting that “Job performance” causes “Age” in the sense that increased job 
performance causes someone to age, or causes time to pass faster. These could be seen as absurd 
conclusions, even if we consider work as a possible cause of oxidative stress, and thus 
accelerated decrepitude (note that “Age” is defined as time from birth, measured in years). 
However, a different interpretation is that increased job performance causes employment to be 
maintained at more advanced ages, supporting the direction of causality from “Job performance” 
to “Age” in a more reasonable and intuitively appealing way.   
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I. Concluding remarks and additional issues 

    This software provides users with a wide range of features, including experimental features 
and also other features that are not available from other SEM software. For example, this 
software is the first and only (at the time of this writing) to explicitly identify nonlinear functions 
connecting pairs of latent variables in SEM models and calculate coefficients of association 
accordingly. 
    A wide range of features means that there are many coefficients, graphs and other elements 
that users can choose to include in research reports, and many possible interpretations of those 
elements. This user manual does not cover all possible interpretations. Users are strongly advised 
to keep abreast of the latest developments on methodological issues employing this software, 
particularly those from research published in academic outlets (e.g., academic journals). 
    Multivariate statistical analysis software systems, like this software, are inherently complex; 
sometimes yielding results that are biased and disconnected with the reality of the phenomena 
being modeled. Users are strongly cautioned against accepting the results provided by this 
software as a completely unbiased representation of the underlying reality that the software 
attempts to unveil. 
    No multivariate statistical analysis software yields completely unbiased results. If one such 
“perfect” software tool existed, the percentages of false positives and false negatives based on a 
number of trials with the software using simulated data would all be zero. That is, no false 
positives or false negatives of any kind (e.g., association strength, direction of causality) would 
occur. 
    Achieving this level of perfection is the driving force behind the development of this software, 
even though this level of perfection will never be achieved – simply because it is not achievable. 
Some additional issues regarding this quest for perfection are discussed in the following 
subsections.   
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I.1. Warping from a conceptual perspective 

    What this software does when it “warps” relationships is relatively simple at a conceptual 
level. It identifies a set of functions F1(LVp1), F2(LVp2) … that relate blocks of latent variable 
predictors (LVp1, LVp2 ...) to a criterion latent variable (LVc) in this way: 
 
        LVc = p1*F1(LVp1) + p2*F2(LVp2) + … + E 
 
    In the equation above, p1, p2 ... are path coefficients, and E is the error term of the equation. 
All variables are standardized. Any model can be decomposed into a set of blocks relating latent 
variable predictors and criteria in this way. 
    Typically, the more the functions F1(LVp1), F2(LVp2) ... look like curves, and unlike lines, 
the greater is the difference between the path coefficients p1, p2 ... and those that would have 
been obtained through a strictly linear analysis. 
    What this software does is not unlike what a researcher would do if he or she modified 
predictor latent variable scores prior to the calculation of path coefficients using a function like 
the logarithmic function. An example is provided in the equation below, where a logarithmic 
transformation is applied to LVp1. 
 
        LVc = p1*log(LVp1) + p2*LVp2 + … + E 
 
    This software, however, does that automatically and for a much wider range of functions, with 
modification constants included. For example, in the term A*log(B*LVp1) the constants A and 
B are modification constants; using simply log(LVp1) as a modifier function in an equation like 
the one above assumes that A=1 and B=1, which may be incorrect assumptions that will lead to 
distorted results and mistaken conclusions.  
    As mentioned above, often the path coefficients p1, p2 ... will go up in value due to warped 
analysis, but that may not always be the case. Given the nature of multivariate analysis, an 
increase in a path coefficient may lead to a decrease in a different path coefficient, for predictor 
latent variables associated with the same criterion latent variable, because each path coefficient 
in a block is calculated in a way that controls for the effects of the other predictor latent 
variables. That is, in any given block of latent variables, the predictor latent variables “compete” 
for the explained variance in the criterion latent variable. 
    There is no guarantee that the functions F1(LVp1), F2(LVp2) ... discovered by this software 
will match perfectly that “true” underlying functions. As mentioned earlier, this level of 
perfection is one that should be strived for, but that is essentially impossible to achieve due to 
one key factor – measurement error. 
    The more measurement error exists (i.e., the greater is its magnitude), the more likely it is that 
the functions F1(LVp1), F2(LVp2) ... discovered by this software will be distorted by error. In 
fact, the existence of significant measurement error may lead this software to model relationships 
that are actually linear as nonlinear. 
    With the above caveats in mind, users can check, through simple visual inspection tests, 
whether the functions discovered by this software are at least good approximations of the true 
underlying functions. 
    To do so, users can divide the dataset into a number of quantiles (e.g., 3), and then build 
graphs containing the mean values of each criteria latent variable for each of the quantiles. These 
graphs can be simple bar charts or scatter plots. 
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    This allows users to check whether the shapes of the plots are similar to the shapes of the best-
fitting curves generated by this software. The best-fitting curves are representations of the 
functions F1(LVp1), F2(LVp2) ... discovered by this software.  
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I.2. Interpreting warped relationships 

    Linear relationships between pairs of latent variables, that is, those relationships best described 
by a line, are relatively easy to interpret. They suggest that an increase in one variable either 
leads to an increase (if the slope of the line is positive) or decrease (if the slope is negative) in the 
other variable. 
    Nonlinear relationships provide a much more nuanced view of the data, but at the same time 
are much more difficult to interpret. Figure I.2 shows what could be seen as a distorted S curve 
that is fitted to the data points. The latent variables are “Proc”, the extent to which various teams 
charged with developing new products kept track of their work and costs (i.e., engaged in 
procedural structuring); and “Effe”, the effectiveness of the teams, measured as the market 
success in terms of sales and profits of the new products that the teams developed. 
 
Figure I.2. Example of warped relationship 
 

 
 
    The distorted S can in turn be seen as a combination of two distorted U curves (or J curves), 
one straight and the other inverted, connected at an inflection point. The inflection point is the 
point at the curve where the curvature changes direction; i.e., the second derivative of the S 
curve changes sign. The inflection point is located at around minus 1 standard deviations from 
the “Proc” mean. That mean is at the zero mark on the horizontal axis, since the data shown is 
standardized. 
    Because an S curve is a combination of two distorted U curves, we can interpret each U curve 
section separately. A straight U curve, like the one shown on the left side of the graph, before the 
inflection point, can be interpreted as follows. 
    The first half of the U curve goes from approximately minus 3.4 to minus 2.5 standard 
deviations from the mean, at which point the lowest team effectiveness value is reached for the U 
curve. In that first half of the U curve, an increase in team procedural structuring leads to a 
decrease in team effectiveness. After that first half, an increase in team procedural structuring 
leads to an increase in team effectiveness. 
    One interpretation is that the first half of the U curve refers to novice users of procedural 
structuring techniques. That is, the process of novice users struggling to use procedural 
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structuring techniques more and more intensely, which they may not be familiar with, ends up 
leading to effectiveness losses for their teams. At a certain point, around minus 2.5 standard 
deviations, that situation changes, and the teams start to really benefit from procedural 
structuring, possibly because the second half of the U curve refers to users with more experience 
using procedural structuring techniques. 
    The interpretation of the second U curve on the right, this one an inverted U curve, should be 
done in a similar fashion. Usually there are multiple interpretations that can be plausible 
depending on context and other data. Other data may include qualitative data, which can be very 
useful when combined with quantitative data. 
    As can be inferred from this example, it is not easy to interpret nonlinear relationships. But the 
apparent simplicity of strictly linear modeling, or linear estimations of possibly nonlinear 
relationships, is nothing but a mirage.  
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I.3. Correlation versus collinearity 

    Let us consider a theoretical case in which two predictor variables point at a criterion variable, 
and the predictor variables are uncorrelated. In this case, the value of the R for the criterion 
variable (the positive square root of the R-squared) will be a function of two other correlation 
values, R1 and R2, which are the correlations between each of the predictor variables and the 
criterion. The value of the VIF, which is itself a function of R, will consequently be a function of 
R1 and R2. 
    The values of the VIF for the scenario above are plotted in Figure I.3, generated based on a 
simulation with MATLAB. Three dimensions are needed because three variables are involved. 
As it can be seen, the variable VIF can reach unacceptably high values, clearly suggestive of 
collinearity, and for much lower values of R1 and R2 than in the case when only two variables are 
present. Let us assume that we were to set the threshold of VIF for collinearity at 3.3. In this 
case, a correlation of 0.835 or higher would suggest collinearity in a situation involving only two 
variables (Kock & Lynn, 2012). 
 
Figure I.3. The relationship between the VIF and the Rs for three variables 
 

 
 
    The points at which the VIF values increase steeply are indicated as peaks (including small 
peaks) on the three-dimensional plot. Here a combination of values of R1 and R2 in the range of 
0.6 to 0.8 lead to VIF values that are suggestive of collinearity for a threshold level of 3.3. For 
example, if R1 and R2 are both equal to 0.625, the corresponding VIF will be 4.57. 
    As models become more complex from a structural perspective, with more variables in them, 
the absolute values of the correlations that can lead to significant multicollinearity goes 
progressively down. Even if not in the same block, latent variables may still be redundant and 
cause interpretation problems when correlations are relatively low. This is why it is important 
that users of this software take the various VIFs that are reported into consideration when 
assessing their models. 
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    The example above also illustrates the fact that the concepts of collinearity and correlation are 
distinct concepts, even though they are often confused. Collinearity is a multivariate notion, 
whereas correlation refers to a pair of variables (Kock & Lynn, 2012). Two or more variables are 
said to be collinear when they measure the same attribute of an object; the latter is also called a 
construct. In this sense, the variables “satisfaction with a technology” and “excitement about the 
technology” may be collinear, if the question-statements related to these two variables are seen 
as referring to the same object attribute “affective response to the technology” by the respondents 
of a questionnaire. Two variables are said to be correlated if they vary in concert with each other, 
even though the variables may measure totally different object attributes; e.g., a person’s weight 
from 1 to 20 years of age, and the price of gasoline during those years.  
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I.4. Stable P value calculation methods 

    A Monte Carlo simulation was conducted to assess the performance of three P value 
calculation methods implemented through this software: Bootstrapping, Stable2, and Stable3. 
Performance was assessed in terms of statistical power and closeness to the actual standard errors 
obtained through the analyses of simulated samples. Standard errors are used, together with path 
coefficients, to obtain P values. Table I.4, adapted from Kock (2014b), summarizes the results of 
this simulation. 
 
Table I.4. Summarized Monte Carlo experiment results for P value calculation methods 
 
Method BOOT STBL2 STBL3 BOOT STBL2 STBL3 
Sample size 50 50 50 300 300 300 
CO>GT(TruePath) 0.450 0.450 0.450 0.450 0.450 0.450 
CO>GT(AvgPath) 0.383 0.383 0.383 0.388 0.388 0.388 
CO>GT(Power) 0.905 0.954 0.946 1 1 1 
CO>GT(SEPath) 0.125 0.125 0.125 0.076 0.076 0.076 
CO>GT(EstSEPath) 0.120 0.115 0.122 0.047 0.053 0.054 
CO>EU(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400 
CO>EU(AvgPath) 0.347 0.347 0.347 0.347 0.347 0.347 
CO>EU(Power) 0.781 0.900 0.867 1 1 1 
CO>EU(SEPath) 0.131 0.131 0.131 0.072 0.072 0.072 
CO>EU(EstSEPath) 0.133 0.116 0.124 0.049 0.053 0.055 
CO>AC(TruePath) 0.250 0.250 0.250 0.250 0.250 0.250 
CO>AC(AvgPath) 0.224 0.224 0.224 0.218 0.218 0.218 
CO>AC(Power) 0.419 0.611 0.559 0.985 0.995 0.994 
CO>AC(SEPath) 0.141 0.141 0.141 0.061 0.061 0.061 
CO>AC(EstSEPath) 0.166 0.118 0.129 0.054 0.054 0.056 
GT>SU(TruePath) 0.500 0.500 0.500 0.500 0.500 0.500 
GT>SU(AvgPath) 0.333 0.333 0.333 0.347 0.347 0.347 
GT>SU(Power) 0.711 0.863 0.823 1 1 1 
GT>SU(SEPath) 0.206 0.206 0.206 0.160 0.160 0.160 
GT>SU(EstSEPath) 0.146 0.116 0.125 0.052 0.053 0.055 
EU>SU(TruePath) 0.230 0.230 0.230 0.230 0.230 0.230 
EU>SU(AvgPath) 0.175 0.175 0.175 0.163 0.163 0.163 
EU>SU(Power) 0.254 0.410 0.356 0.917 0.921 0.906 
EU>SU(SEPath) 0.131 0.131 0.131 0.085 0.085 0.085 
EU>SU(EstSEPath) 0.157 0.119 0.132 0.054 0.054 0.056 
AC>SU(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200 
AC>SU(AvgPath) 0.159 0.159 0.159 0.147 0.147 0.147 
AC>SU(Power) 0.240 0.405 0.335 0.866 0.868 0.849 
AC>SU(SEPath) 0.137 0.137 0.137 0.073 0.073 0.073 
AC>SU(EstSEPath) 0.165 0.119 0.132 0.053 0.054 0.056 
 
    The column labels BOOT, STBL2 and STBL3 respectively refer to the Bootstrapping, 
Stable2, and Stable3 methods. The latent variables in the model used as a basis for the simulation 
are: CO = communication flow orientation; GT = usefulness in the development of IT solutions; 
EU = ease of understanding; AC = accuracy; and SU = impact on redesign success (for more 
details, see Kock, 2014b). The meanings of the acronyms within parentheses are the following: 
TruePath = true path coefficient; AvgPath = mean path coefficient estimate; Power = statistical 
power; SEPath = standard error of path coefficient estimate; and EstSEPath = method-specific 
standard error of path coefficient estimate. 
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    To conduct the simulation we created an analyzed 1,000 samples for each of the following 
sample sizes: 50, 100, 200, 300, and 500. The PLS Mode A algorithm was used in the analyses. 
In this summarized set of results we restrict ourselves to sample sizes 50 and 300. Full results, 
for all sample sizes included in the simulation, are available from Kock (2014b). 
    As we can see, the mean path coefficient estimates differ from the true path coefficients across 
different sample sizes, and generally underestimate the true path coefficients. This 
underestimation stems from the use of composites in PLS Mode A, which in turn leads to the 
known composite correlation attenuation (Nunnally & Bernstein, 1994). This attenuation 
“propagates” to the path coefficients (Kock, 2014). This problem is addressed in this software 
through the availability of Factor-Based PLS algorithms. 
    Generally the method-specific standard errors of path coefficient estimates obtained via 
Stable3 were the closest to the actual (or true) standard errors of path coefficient estimates. This 
suggests that standard errors estimated via Stable3 are not only stable when compared with those 
estimated via Bootstrapping, but also more accurate. Moreover, both Stable2 and Stable3 led to 
greater statistical power than Bootstrapping at small sample sizes. This is noteworthy, because 
power tends to be compromised the most with small sample sizes, and to invariably increase as 
sample sizes go up regardless of the standard error and P value calculation method used.  



WarpPLS 5.0 User Manual 

 95 

I.5. Missing data imputation methods 

    A Monte Carlo simulation was conducted to assess the performance of five missing data 
imputation methods implemented through this software: Arithmetic Mean Imputation, Multiple 
Regression Imputation, Hierarchical Regression Imputation, Stochastic Multiple Regression 
Imputation, and Stochastic Hierarchical Regression Imputation. Table I.5, adapted from Kock 
(2014c), summarizes the results of this simulation. 
 
Table I.5. Summarized Monte Carlo experiment results for missing data imputation methods 
 
Missing data imputation 
scheme 

NMD MEAN MREGR HREGR MSREG HSREG 

CO>GT(TruePath) 0.450 0.450 0.450 0.450 0.450 0.450 
CO>GT(AvgPath) 0.390 0.348 0.367 0.354 0.333 0.300 
CO>GT(SEPath) 0.075 0.113 0.110 0.113 0.138 0.162 
CO>EU(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400 
CO>EU(AvgPath) 0.349 0.312 0.321 0.313 0.289 0.262 
CO>EU(SEPath) 0.069 0.101 0.108 0.106 0.133 0.151 
CO>AC(TruePath) 0.250 0.250 0.250 0.250 0.250 0.250 
CO>AC(AvgPath) 0.219 0.198 0.206 0.195 0.188 0.161 
CO>AC(SEPath) 0.062 0.078 0.090 0.083 0.100 0.108 
GT>SU(TruePath) 0.500 0.500 0.500 0.500 0.500 0.500 
GT>SU(AvgPath) 0.381 0.357 0.359 0.352 0.334 0.312 
GT>SU(SEPath) 0.127 0.152 0.156 0.158 0.179 0.195 
EU>SU(TruePath) 0.230 0.230 0.230 0.230 0.230 0.230 
EU>SU(AvgPath) 0.192 0.183 0.199 0.178 0.188 0.163 
EU>SU(SEPath) 0.062 0.072 0.077 0.078 0.082 0.089 
AC>SU(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200 
AC>SU(AvgPath) 0.165 0.157 0.176 0.154 0.166 0.141 
AC>SU(SEPath) 0.058 0.067 0.073 0.072 0.077 0.081 
GT3<GT(TrueLoad) 0.700 0.700 0.700 0.700 0.700 0.700 
GT3<GT(AvgLoad) 0.811 0.691 0.606 0.649 0.623 0.652 
GT3<GT(SELoad) 0.113 0.042 0.120 0.076 0.115 0.090 
 
    The column labels NMD, MEAN, MREGR, HREGR, MSREG and HSREG respectively refer 
to no missing data, Arithmetic Mean Imputation, Multiple Regression Imputation, Hierarchical 
Regression Imputation, Stochastic Multiple Regression Imputation, and Stochastic Hierarchical 
Regression Imputation. The latent variables in the model used as a basis for the simulation are: 
CO = communication flow orientation; GT = usefulness in the development of IT solutions; EU 
= ease of understanding; AC = accuracy; and SU = impact on redesign success (for more details, 
see Kock, 2014c). The meanings of the acronyms within parentheses are the following: TruePath 
= true path coefficient; AvgPath = mean path coefficient estimate; SEPath = standard error of 
path coefficient estimate; TrueLoad = true loading; AvgLoad = mean loading estimate; and 
SELoad = standard error of loading estimate. 
    When creating data for our Monte Carlo simulation we varied the following conditions: 
percentage of missing data (0%, 30%, 40%, and 50%), and sample size (100, 300, and 500). This 
led to a 4 x 3 factorial design, with 12 conditions. We created an analyzed 1,000 samples for 
each of these 12 conditions; a total of 12,000 samples. In this summarized set of results we 
restrict ourselves to 30% missing data and the sample size of 300. Full results, for all percentages 
of missing data and sample sizes included in the simulation, are available from Kock (2014c). 
Since all loadings are the same in the true population model, loading-related estimates for only 
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one indicator of the composites are shown. This avoids crowding and repetition, as the same 
pattern of results repeats itself in connection with all loadings. 
    The mean path coefficient estimates that are shown underlined were obtained through the 
application of the PLS Mode A algorithm to datasets where no data was missing (NMD). Note 
that they generally underestimate the true path coefficients. This underestimation stems from the 
use of composites, discussed earlier, which leads to an attenuation of composite correlations 
(Nunnally & Bernstein, 1994). This correlation attenuation extends to the path coefficients 
(Kock, 2014), leading to the observed underestimation. The opposite effect is observed in 
connection with loadings, which tend to be overestimated in PLS-based SEM analyses 
employing PLS Mode A. As noted earlier, these problems are addressed in this software through 
the availability of Factor-Based PLS algorithms. 
    Multiple Regression Imputation (MREGR) yielded the least biased mean path coefficient 
estimates, followed by Arithmetic Mean Imputation (MEAN). When we look at mean loading 
estimates, Arithmetic Mean Imputation (MEAN) yielded the least biased results, followed by 
Stochastic Hierarchical Regression Imputation (HSREG) and Hierarchical Regression 
Imputation (HREGR. 
    Compared with the no missing data condition (NMD), none of the methods induced a 
reduction in standard errors for path coefficients. This is noteworthy since prior results outside 
the context of PLS-based SEM have tended to show a significant downward bias in standard 
errors, particularly for non-stochastic missing data imputation varieties. Such downward bias in 
standard errors has led to concerns regarding an inflation in type I errors, and warnings against 
the use of single missing data imputation methods in general (Enders, 2010; Newman, 2014). 
Our results suggest that such concerns may not be warranted in the context of PLS-based SEM.  



WarpPLS 5.0 User Manual 

 97 

I.6. Factor-Based PLS algorithms 

    The Factor-Based PLS algorithms available in this software combine the precision of 
covariance-based SEM algorithms, under common factor model assumptions (Kock, 2014), with 
the nonparametric characteristics of classic PLS algorithms. Moreover, the Factor-Based PLS 
algorithms address head-on a problem that has been discussed since the 1920s – the factor 
indeterminacy problem. Classic PLS algorithms yield composites, as linear combinations of 
indicators, which can be seen as factor approximations. The Factor-Based PLS algorithms, on the 
other hand, provide estimates of the true factors, as linear combinations of indicators and 
measurement errors. 
    A Monte Carlo simulation was conducted to comparatively assess the performance of one of 
the Factor-Based PLS algorithms, namely the Factor-Based PLS Type CFM1 algorithm, against 
that of the PLS Mode A algorithm. Like covariance-based SEM algorithms, the Factor-Based 
PLS Type CFM1 algorithm is fully compatible with common factor model assumptions, 
including the assumption that all indicator errors are uncorrelated. Table I.6, adapted from Kock 
(2014), summarizes the results of this simulation. 
 
Table I.6. Summarized Monte Carlo experiment results for composite-based and factor-based algorithms 
 
SEM method PLSA PLSF PLSA PLSF PLSA PLSF 
Sample size 50 50 100 100 300 300 
EU>TE(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400 
EU>TE(AvgPath) 0.339 0.380 0.309 0.385 0.303 0.394 
EU>TE(SEPath) 0.125 0.161 0.128 0.127 0.110 0.070 
EU>TP(TruePath) 0.300 0.300 0.300 0.300 0.300 0.300 
EU>TP(AvgPath) 0.260 0.301 0.248 0.294 0.234 0.297 
EU>TP(SEPath) 0.135 0.157 0.108 0.133 0.085 0.079 
TE>TP(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200 
TE>TP(AvgPath) 0.201 0.234 0.189 0.225 0.174 0.203 
TE>TP(SEPath) 0.144 0.163 0.098 0.132 0.061 0.079 
EU3<EU(TrueLoad) 0.700 0.700 0.700 0.700 0.700 0.700 
EU3<EU(AvgLoad) 0.793 0.692 0.802 0.695 0.808 0.699 
EU3<EU(SELoad) 0.129 0.108 0.113 0.077 0.112 0.049 
 
    The column labels PLSA and PLSF respectively refer to the PLS Mode A and Factor-Based 
PLS Type CFM1 algorithms. The latent variables in the model used as a basis for the simulation 
are: EU = e-collaboration technology use; TE = team efficiency; and TP = team performance (for 
more details, see Kock, 2014). The meanings of the acronyms within parentheses are the 
following: TruePath = true path coefficient; AvgPath = mean path coefficient estimate; SEPath = 
standard error of path coefficient estimate; TrueLoad = true loading; AvgLoad = mean loading 
estimate; and SELoad = standard error of loading estimate. 
    In the Monte Carlo simulation 300 samples were created for each of the following sample 
sizes: 50, 100, and 300. We show results for all of the structural paths in the model, but restrict 
ourselves to loadings for one indicator in one factor since all loadings are the same in the true 
population model used. This is also done to avoid repetition, as the same general pattern of 
results for loadings repeats itself for all indicators in all factors. 
    As we can see from the summarized results, the Factor-Based PLS Type CFM1 algorithm 
yielded virtually unbiased estimates at the sample size of 300, whereas the PLS Mode A 
algorithm yielded significantly biased estimates at that same sample size. One of the reasons for 
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these significantly biased estimates with PLS Mode A are the relatively low loadings in the true 
population model used as a basis for simulation, namely 0.7 for all indicators, which tend to be a 
challenge for algorithms based on Wold’s original PLS design (Kock, 2014). 
    The relatively low loadings in the true population model apparently had little effect on the 
Factor-Based PLS Type CFM1 algorithm’s asymptotic convergence to the true values of the 
model parameters, although those loadings probably slowed down that convergence somewhat as 
sample sizes increased. In other simulations we conducted with higher loadings, convergence 
was achieved at smaller sample sizes. 
    For several of the path coefficients and loadings the Factor-Based PLS Type CFM1 algorithm 
yielded lower standard errors, particularly as sample sizes increased. This is noteworthy because 
the Factor-Based PLS Type CFM1 algorithm is considerably more computationally complex 
than the PLS Mode A algorithm (Kock, 2014), and thus could have been expected to have a 
greater “cost” in terms of standard errors. 
    Nevertheless, standard errors yielded at the sample size of 50 were generally higher for the 
Factor-Based PLS Type CFM1 algorithm. Apparently the difference was enough to have a 
negative effect on power, as the ratios of path coefficients to standard errors indicate. That is, at 
the sample size of 50 one could argue based on the results that the PLS Mode A algorithm has 
greater power than the Factor-Based PLS Type CFM1 algorithm for this particular model, 
although the ratios of path coefficients to standard errors suggest that both algorithms may 
struggle to avoid type II errors at this small sample size, particularly for the paths whose true 
coefficients were lower than 0.400 (the path with the highest strength).  
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J. Glossary 

    Adjusted R-squared coefficient. A measure equivalent to the R-squared coefficient, with the 
key difference that it corrects for spurious increases in the R-squared coefficient due to 
predictors that add no explanatory value in each latent variable block. Like R-squared 
coefficients, adjusted R-squared coefficients can assume negative values. These are rare 
occurrences that normally suggest problems with the model in which they occur; e.g., severe 
collinearity or model misspecification. 
    Average variance extracted (AVE). A measure associated with a latent variable, which is 
used in the assessment of the discriminant validity of a measurement instrument. Less 
commonly, it can also be used for convergent validity assessment. 
    Composite reliability coefficient. This is a measure of reliability associated with a latent 
variable. Another name for it is Dillon–Goldstein rho coefficient. Unlike the Cronbach’s alpha 
coefficient, another measure of reliability, the compositive reliability coefficient takes indicator 
loadings into consideration in its calculation. It often is slightly higher than the Cronbach’s alpha 
coefficient. 
    Construct. A conceptual entity measured through a latent variable. Sometimes it is referred to 
as “latent construct”. The terms “construct” or “latent construct” are often used interchangeably 
with the term “latent variable”. 
    Convergent validity of a measurement instrument. Convergent validity is a measure of the 
quality of a measurement instrument; the instrument itself is typically a set of question-
statements. A measurement instrument has good convergent validity if the question-statements 
(or other measures) associated with each latent variable are understood by the respondents in the 
same way as they were intended by the designers of the question-statements. 
    Cronbach’s alpha coefficient. This is a measure of reliability associated a latent variable. It 
usually increases with the number of indicators used, and is often slightly lower than the 
composite reliability coefficient, another measure of reliability. 
    Discriminant validity of a measurement instrument. Discriminant validity is a measure of 
the quality of a measurement instrument; the instrument itself is typically a set of question-
statements. A measurement instrument has good discriminant validity if the question-statements 
(or other measures) associated with each latent variable are not confused by the respondents, in 
terms of their meaning, with the question-statements associated with other latent variables. 
    Endogenous latent variable. This is a latent variable that is hypothesized to be affected by 
one or more other latent variables. An endogenous latent variable has one or more arrows 
pointing at it in the model graph. 
    Exogenous latent variable. This is a latent variable that does not depend on other latent 
variables, from a SEM analysis perspective. An exogenous latent variable does not have any 
arrow pointing at it in the model graph. 
    Factor score. A factor score is the same as a latent variable score; see the latter for a 
definition. 
    Formative latent variable. A formative latent variable is one in which the indicators are 
expected to measure certain attributes of the latent variable, but the indicators are not expected to 
be highly correlated with the latent variable score, because they (i.e., the indicators) are not 
expected to be correlated with one another. For example, let us assume that the latent variable 
“Satisf” (“satisfaction with a meal”) is measured using the two following question-statements: “I 
am satisfied with the main course” and “I am satisfied with the dessert”. Here, the meal 
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comprises the main course, say, filet mignon; and a dessert, a fruit salad. Both main course and 
dessert make up the meal (i.e., they are part of the same meal) but their satisfaction indicators are 
not expected to be highly correlated with each other. The reason is that some people may like the 
main course very much, and not like the dessert. Conversely, other people may be vegetarians 
and hate the main course, but may like the dessert very much. 
    Indicator. The term indicator is frequently used as synonymous with that of manifest variable; 
a convention that is used here. Thus, see the latter for a definition. More technically though, 
indicators are manifest variables that are actually used in the measurement model as direct 
measures of latent variables. As such, technically speaking, there can be manifest variables that 
are not indicators, if the manifest variables in question are part of the original dataset but not 
included in the measurement model. 
    Inner model. In a structural equation modeling analysis, the inner model is the part of the 
model that describes the relationships among the latent variables that make up the model. In this 
sense, the path coefficients are inner model parameter estimates. 
    Latent variable. A latent variable is a variable that is measured through multiple variables 
called indicators or manifest variables. For example, “satisfaction with a meal” may be a latent 
variable measured through two manifest variables that store the answers on a 1 to 7 scale 
(1=strongly disagree; 7 strongly agree) to the following question-statements: “I am satisfied with 
this meal”, and “After this meal, I feel full”. 
    Latent variable block. A latent variable block is a group of latent variables in which one or 
more predictor latent variables point at one criterion latent variable. In a PLS-based SEM 
analysis, once latent variable scores are calculated, a series of multiple least squares regressions 
are conducted to calculate path coefficients. Each multiple least squares regression is performed 
on a latent variable block, until all blocks are covered. The term “latent variable block” is also 
used in the PLS-based SEM literature to refer to a group of manifest variables linked to their 
assigned latent variable; i.e., a latent variable and its indicators. 
    Latent variable score. Latent variable scores are values calculated based on the indicators 
defined by the user as associated with the latent variable. They are calculated using one of the 
outer model analysis algorithms available. These scores may be understood as new columns in 
the data, with the same number of rows as the original data (unless a range-restricted analysis is 
conducted), and which generally tend to maximize the loadings and minimize the cross-loadings 
of a pattern matrix of loadings after an oblique rotation. 
    Latent variable error. An error variable that accounts for the variance in an endogenous 
latent variable that is not accounted for by the latent variable predictors that point at the 
endogenous latent variable. The terms “error” and “residual” are used interchangeably in this 
document. Nevertheless, they refer to subtly different entities. Technically speaking, the term 
“error” typically refers to the error variable in the true population model, which is assumed to be 
uncorrelated with latent variables other than the endogenous latent variable to which it is 
associated. Conversely, the term “residual” typically refers to the corresponding estimated error, 
the difference between the expected value of the latent variable and its point estimate, which in 
practice is often correlated with latent variables other than the endogenous latent variable to 
which it is associated. This is an example of a broader occurrence in multivariate analyses: more 
often than not sample-specific estimates violate assumptions about the theoretical true values, 
even if slightly. 
    Manifest variable. A manifest variable is one of several variables that are used to indirectly 
measure a latent variable. For example, “satisfaction with a meal” may be a latent variable 
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measured through two manifest variables, which assume as values the answers on a 1 to 7 scale 
(1=strongly disagree; 7 strongly agree) to the following question-statements: “I am satisfied with 
this meal”, and “After this meal, I feel full”. 
    Outer model. In a SEM analysis, the outer model is the part of the model that describes the 
relationships among the latent variables that make up the model and their indicators. In this 
sense, the weights and loadings are outer model parameter estimates. 
    Portable document format (PDF). This is an open standard file format created by Adobe 
Systems, and widely used for exchanging documents. It is the format used for this software’s 
documentation. 
    Q-squared coefficient. This measure is also known after its main proponents as the Stone-
Geisser Q-squared coefficient (Geisser, 1974; Stone, 1974). The Q-squared coefficient is a 
nonparametric measure traditionally calculated via blindfolding. It is used for the assessment of 
the predictive validity (or relevance) associated with each latent variable block in the model, 
through the endogenous latent variable that is the criterion variable in the block. The Q-squared 
coefficient is sometimes referred to as a resampling analog of the R-squared. It is often similar in 
value to that measure. The Q-squared coefficient can assume negative values. 
    Reflective latent variable. A reflective latent variable is one in which all of the indicators are 
expected to be highly correlated with the latent variable score, and also highly correlated with 
one another. For example, the answers to certain question-statements by a group of people, 
measured on a 1 to 7 scale (1=strongly disagree; 7 strongly agree) and answered after a meal, are 
expected to be highly correlated with the latent variable “satisfaction with a meal”. The question-
statements are: “I am satisfied with this meal”, and “After this meal, I feel full”. Therefore, the 
latent variable “satisfaction with a meal”, can be said to be reflectively measured through these 
two indicators. These indicators store answers to the two question-statements. This latent 
variable could be represented in a model graph as “Satisf”, and the indicators as “Satisf1” and 
“Satisf2”. 
    Reliability of a measurement instrument. Reliability is a measure of the quality of a 
measurement instrument; the instrument itself is typically a set of question-statements. A 
measurement instrument has good reliability if the question-statements (or other measures) 
associated with each latent variable are understood in the same way by different respondents. 
    R-squared coefficient. This is a measure calculated only for endogenous latent variables, and 
that reflects the percentage of explained variance for each of those latent variables. The higher 
the R-squared coefficient, the better is the explanatory power of the predictors of the latent 
variable in the model, especially if the number of predictors is small. Contrary to popular belief 
and in spite of what their name implies, R-squared coefficients are not calculated by squaring a 
correlation-like measure. They can assume negative values, although these are rare occurrences 
that normally suggest problems with the model in which they occur; e.g., severe collinearity or 
model misspecification. 
    Structural equation modeling (SEM). A general term used to refer to a class of multivariate 
statistical methods where complex relationships among latent variables and indicators are 
estimated at once. In a SEM analysis, each latent variable is typically measured through multiple 
indicators, although there may be cases in which only one indicator is used to measure a latent 
variable. Key measures of relationships among latent variables are path coefficients (or 
standardized partial regression coefficients) and corresponding P values. Key measures of 
relationships among latent variables and their respective indicators are weights and loadings, and 
corresponding P values. 
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    Variance inflation factor (VIF). This is a measure of the degree of collinearity (or 
multicollinearity) among variables, including both indicators and latent variables. With latent 
variables, collinearity can take two main forms: vertical and lateral collinearity (Kock & Lynn, 
2012). Vertical, or classic, collinearity is predictor-predictor latent variable collinearity in 
individual latent variable blocks. Lateral collinearity is a term coined by Kock & Lynn (2012) 
that refers to predictor-criterion latent variable collinearity; a type of collinearity that can lead to 
particularly misleading results. Full collinearity VIFs allow for the simultaneous assessment of 
both vertical and lateral collinearity in a SEM model.   
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