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Softwar e use agr eement

The use of the software that is the subject of this manual (Sofware) requires avalid license,
which has alimited duration (usually no more than one year). Individual and organizational
licenses may be purchased from ScriptWarp Systems, or any authorized ScriptWarp Systems
reseller.

The Software is provided “as is’, and without any warranty of any kind. Free trial versions of the
Software are made available by ScriptWarp Systems with the goal of allowing users to assess,
for alimited time (usually one to three months), the usefulness of the Software for their data
modeling and analysis purposes. Users are strongly advised to take advantage of those free tria
versions, and ensure that the Software meets their needs before purchasing alicense.

Freetria versions of the Software are full implementations of the software, minus the licenses.
That is, they are not demo versions. Nevertheless, they are provided for assessment purposes
only, and not for “production” purposes, such as to analyze data and subsequently publish it asa
consulting or research report. Users must purchase licenses of the Software before they useit for
“production” purposes.

Multivariate statistical analysis software systems are inherently complex, sometimes yielding
results that are biased and disconnected with the reality of the phenomena being modeled. Users
are strongly cautioned against accepting the results provided by the Software without double-
checking those results against: past empirical results obtained by other means and/or with other
software, applicable theoretical models, and practical commonsense assumptions.

Under no circumstances is ScriptWarp Systems to be held liable for any damages caused by the
use of the Software. ScriptWarp Systems does not guarantee in any way that the Software will
meet the needs of its users.

For moreinformation:

ScriptWarp Systems
P.O. Box 452428
Laredo, Texas, 78045
USA
WWW.SCriptwarp.com
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A. Introduction

Structural equation modeling (SEM) employing the partial least squares (PLS) method, or
PL S-based SEM for short, has been and continue being extensively used in awide variety of
fields. Examples of fieldsin which PLS-based SEM is used are information systems (Guo et al.,
2011; Kock & Lynn, 2012), marketing (Biong & Ulvnes, 2011), international business (Ketkar et
al., 2012), nursing (Kim et a., 2012), medicine (Berglund et al., 2012), and global environmental
change (Brewer et a., 2012).

This software provides users with awide range of features, severa of which are not available
from other SEM software. For example, this software is the first and only (at the time of this
writing) to explicitly identify nonlinear functions connecting pairs of latent variablesin SEM
models and cal culate multivariate coefficients of association accordingly.

Additionaly, this software isthe first and only (at the time of thiswriting) to provide classic
PL S algorithms together with factor-based PL S algorithms for SEM (Kock, 2014). Factor-based
PL S algorithms generate estimates of both true composites and factors, fully accounting for
measurement error. They are equivalent to covariance-based SEM algorithms; but bring together
the “best of both worlds”, so to spesk.

Factor-based PL S algorithms combine the precision of covariance-based SEM algorithms
under common factor model assumptions (Kock, 2014) with the nonparametric characteristics of
classic PLS algorithms. Moreover, factor-based PL S algorithms address head-on a problem that
has been discussed since the 1920s — the factor indeterminacy problem. Classic PLS algorithms
yield composites, as linear combinations of indicators, which can be seen as factor
approximations. Factor-based PL S algorithms, on the other hand, provide estimates of the true
factors, as linear combinations of indicators and measurement errors,

All of the features provided have been extensively tested with both “real” data, collected in
actual empirical studies, aswell as simulated data generated through Monte Carlo procedures
(Robert & Casella, 2010). Future tests, however, may reveal new properties of these features,
and clarify the nature of existing properties.
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A.l. Software installation and uninstallation

The software installs automatically from a self-extracting executable file. There are two
components to the software: the MATLAB Compiler Runtime, and the main software (i.e.,
WarpPLS). Thefirst isaset of free-distribution MATLAB libraries with code that is called by
the main software. Because the MATLAB Compiler Runtime is used, you do not have to have
MATLAB (the main MATLAB program) installed on your computer to run WarpPLS.

Minimal and harmless changes to the operating system registry are made by the MATLAB
Compiler Runtime, which are easily reversed upon uninstallation. To uninstall, go the “Control
Panel”, click on “Add or Remove Programs’ or “Programs and Features’, and uninstall the
MATLAB Compiler Runtime.

The MATLAB Compiler Runtime 7.14 isused in this version of WarpPLS. Thisis the same
MATLAB Compiler Runtime as the one used in versions 2.0 — 4.0. The MATLAB Compiler
Runtime used in version 1.0 is a different one, and thus will not work properly with this version
of WarpPLS.

In most cases, previous versions of WarpPL S and of the MATLAB Compiler Runtime
may beretained on a user’s computer. Different versions of WarpPL S and of the MATLAB
Compiler Runtime generally do not interfere with one other.

To uninstall the main software program, simply delete the main software installation folder.
Thisfolder is usually “C:\Program Files\WarpPLS 5.0” or “C:\Program Files (x86)\WarpPL S
5.0", unless you chose a different folder for the main software program during the installation
process. Then delete the shortcut created by the software from the desktop.

Both programs, the MATLAB Compiler Runtime and the main software, may be retained
without harm to your computer. They will not normally interfere with other programs; not even
with MATLAB (the main MATLAB program), if you have it installed on your computer.



WarpPLS 5.0 User Manual

A.2. Stable version notice

Thisversion wasinitially released as a beta version and was later upgraded to stable. As
you will see below, it incor porates a large number of new featur es, when compared with the
previous version. It has undergone extensive testing in-house prior to its release as a beta
version, and has been in the hands of users for several months prior to its upgrade to stable.
Nevertheless, given the large number of new features, and the inherent inter connectedness
of features, it isvery likely that this stable version will still contain some softwar e bugs,
which we expect to be minor.
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A.3. New features in version 5.0

Factor-Based PL S algorithms. There has been along and in some instances fairly
antagonistic debate among proponents and detractors of the use of Wold s original PLS
algorithmsin the context of SEM. This debate has been fueled by one key issue: Wold’s original
PLS algorithms do not deal with actual factors, as covariance-based SEM algorithms do; but
with composites, which are exact linear combinations of indicators (Kock, 2014d). The new
“factor-based” algorithms provided in this version have been devel oped specifically to address
this perceived limitation of Wold' s original PL S algorithms. These new algorithms are called
Factor-Based PLS Type CFM1, Factor-Based PLS Type REGL1, and Factor-Based PLS Type
PTHL.

New descriptive statistics for indicators and latent variables. An extended set of
descriptive statistics is now provided for both indicators and latent variables. The descriptive
statistics provided include: minimum and maximum values, medians, modes, skewness and
excess kurtosis coefficients, as well as results of unimodality and normality tests. These are now
complemented by histograms, which can be viewed on the screen and saved asfiles.

Unimodality and normality tests. Often the use of PLS-based SEM methodsisjustified
based on them making no data normality assumptions, but typically without any accompanying
test of normality! Thisisaddressed in this version through various outputs of unimodality and
normality tests, which are now provided for al indicators and latent variables. The unimodality
tests performed are the Rohatgi- Székely test and the Klaassen-Mokveld-van Es test. The
normality tests performed are the classic Jarque-Beratest and Gel & Gastwirth’s robust
modification of thistest. Where these tests are applied to individual indicators, they can be seen
as“univariate” or “bivariate” unimodality and normality tests. Where these tests are applied to
latent variables, they can be seen as “multivariate” unimodality and normality tests.

New 3D graphs and graph rotation. Rocky and smooth 3D graphs can now be viewed with
data points excluded. Corresponding graphs with data points included are also available. The 3D
graph displays with data points excluded are analogous to those used in the focused 2D graphs.
Additionally, users can now incrementally rotate 3D graphsin the following directions: up,
down, left, and right.

New “stable” P value calculation methods. An extended set of “stable” P value calculation
methods is now available to users: Stablel, Stable2, and Stable3. The Stablel method was the
software’ s default up until version 4.0, when it was called smply the “stable” method. The
Stable? and Stable3 methods have been developed as aternatives to the Stablel method that rely
on the direct application of exponential smoothing formulas (for the formulas, see: Kock,
2014b), and that can thus be more easily implemented and tested by methodological researchers.
A Monte Carlo experiment shows that the Stable2 and Stable3 methods yield estimates of the
actual standard errors that are consistent with those obtained via bootstrapping, in many cases
yielding more precise estimates of the actual standard errors (Kock, 2014b). The more accurate
of the two methods appears to be the Stable3 method, which is now the software’ s default.

New missing data imputation methods. Several missing data imputation methods are now
available to users: Arithmetic Mean Imputation (the software’ s default), Multiple Regression
Imputation, Hierarchical Regression Imputation, Stochastic Multiple Regression Imputation, and
Stochastic Hierarchical Regression Imputation. The missing data imputation method chosen by
the user will be employed in the execution of Step 3, and also after that when the option “Redo
missing data imputation (via data pre-processing)” is selected. The option is available under the
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“Modify” menu options. Kock (2014c) provides a detailed discussion of these methods, as well
as of aMonte Carlo simulation whereby the methods' relative performances are investigated.

I ncremental code optimization. Thisis conducted in each new version of this software. At
several points the code was optimized for speed, stability, and coefficient estimation precision.
Thisled to incremental gains in speed even as a number of new features were added. Several of
these new features required new and complex calculations, mostly to generate coefficients that
were not available before.
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A.4. Experimental features

Some of the features provided by the softwar e are still at an experimental stage, and may
change in the future as more tests are conducted. Normally thisis indicated in this user manual
whenever it isthe case.

Other novel features of this software may prove useful for applications different from the ones
they were originally intended for. For example, an extensive set of causality assessment
coefficientsis provided by the software. Yet, the topic of causality assessment in the context
of SEM iscontroversial (Pearl, 2009). A causality assessment coefficient that is provided to
inform the user of the possibility of areverse link may prove in the future to be useful to identify
a specific type of bias due to measurement error.

Finally, while this software aims at providing a wide range of features and outputs, the
ubiquity of measurement error in SEM analyses (aswell as data analysesin general) would
tend to make strong and sweeping claims regar ding accuracy and statistical power likely to
be proven exaggerated or even wrong.

Researchers analyzing empirical datatypically do not know the underlying distributions of
their data and of error terms. Data analysis softwar e tools help resear cher s uncover
characteristics of those distributions, with incomplete infor mation. Given this, it seems
reasonable to conclude that all SEM agorithms and software tools that i mplement these
algorithms have limitations in their accuracy, avoidance of false positives, and statistical power
(i.e., avoidance of false negatives).

Accuracy and statistical power seem to suffer particularly when very small samples and
deviations from normality are observed in the context of small effect sizes. Goodhue et a.’s
(2012) extensive analysis of various SEM algorithms illustrates these limitations, although its
negative results may have been exacerbated by the fairly low path coefficients that they used for
small and medium effect sizes. Those path coefficients were based on effect sizes that were
calculated using the stepwise regression procedure proposed by Cohen (1988) for the calculation
of f-squared coefficients, which is generally not compatible with PLS-based SEM algorithms.
Thistheme is further explored later in this user manual.

This software attempts to ameliorate this situation in connection with accuracy and statistical
power by providing an extensive set of features and outputs that can be used by researchersto
reveal as many aspects of the underlying relationships as possible.

Some of the features provided are specifically aimed at increasing accuracy and statistical
power. For example, Jackknifing, one of the resampling methods provided, tends to generate
relatively low standard errors with small samples and medium to high effect sizes. This could
increase statistical power with small samples and medium to high effect sizes, making the use of
Jackknifing more appropriate than Bootstrapping in these cases. The same may be true for the
“stable’” methods, particularly Stable3. In fact, Monte Carlo simulations suggest that the “ stable”
methods perform better than Jackknifing in this respect.

This software’ s extensive range of features may also help further research on SEM methodsin
general.

10
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B. The main window

Prior to displaying the software’s main window, a command prompt window may be shown
and kept open for the duration of the SEM analysis session. Do not try to close this command
prompt window, if it is shown, because it will list warnings and error messages that will likely be
very useful in troubleshooting. Moreover, those warnings and error messages will indicate where
in the source code they are happening, which will help the software developer correct any
possible problems in future versions of the software.

In very slow computers, with l[imited computing power, only the command prompt window
may be displayed for aslong as afew minutes. The reason for thisis that the computer needs to
load alarge runtime module prior to actually running this software. Users should not try to do
anything during this time, as that will only delay the launch of the software’ s main window.

11



WarpPLS 5.0 User Manual

B.1. The SEM analysis steps

The software’ s main window (see Figure B.1.2) is where the SEM analysis starts. The top-left
part of the main window contains a brief description of the five steps through which the SEM
analysis takes place. The steps are executed by pressing each of the push buttons on the top-right
part of the window. Not all menu options and push buttons become available right away. Menu
options and push buttons become available as the analysis progresses.

FigureB.1.2. The main window showing the steps (after a complete analysis was conducted)

WarpPL5 5.0 - Project file: ChUsers\nedkock\Documents\NedDatasets\Research'\20..\Temp.prj 3 T‘ — o o[ e S|

Project Data Modify Settings Help

Welcome to WarpPLS 5.0, a software developed by Ned Kock using
MATLAB, C++ and Java. ‘

Proceed to Step 1 | ‘ Proceed to Step 4 |

This software will help you conduct a structural equation medeling (SEM)
analysis using the method of "warped" partial least squares analysis. The
analysis will be conducted through the following steps: ‘ Proceed to Step 2 | ‘ Proceed to Step § |

Step 1: Open or create a project file to save your work.

Step 2: Read the raw data used in the SEM analysis.

Step 3: Pre-process the data for the SEM analysis. ‘
Step 4: Define the variables and links in the SEM model.

Step 5: Perform the SEM analysis and view the results.

Proceed to Step 3 | ‘ View/save analysis results |

Press a "Proceed to Step ..." button when you are ready to continue.
(Unavailable steps are grayed out; they will be made available as you
progress through the steps.)

For more help, click on the "Help" menu option at the top of this window.

Status of SEM analysis steps (* = completed):

*Step 1: Open/create project file

Project file: Temp.prj

Path: C:\Users'nedkock\Documents\NedDatasets\Researchi20...\

*Step 2: Read raw data

Raw data file: 3-PANEL DATA SUBSET B - DEC 31-09 - SET 369 - ONLY
MATCHED FIRMS xls

Path: C:\Ned\NedWriting\Journals'_InProgress\JJJ_TechAgi...\

*Step 3: Pre-process data

*Step 4: Define variablesflinks in SEM model

*Step 5: Performfview SEM analysis/results

The steps must be carried out in the proper sequence. For example, Step 5, which isto perform
the SEM analysis and view the results, cannot be carried out before Step 1 takes place, whichis
to open or create a project file to save your work. Thisis the main reason why steps have their
push buttons grayed out and deactivated until it istime for the corresponding steps to be carried
out.

The bottom-left part of the main window shows the status of the SEM analysis; after each step
in the SEM analysisis completed, this status window is updated. A miniature version of the SEM
model graph is shown at the bottom-right part of the main window. This miniature version is
displayed without results after Step 4 is completed. After Step 5 is completed, this miniature
version is displayed with results.

The* Project” menu options. There are three project menu options available: “ Save project”,
“Save project as ...”, and “Exit”. Through the “ Save project” option you can save the project
file that has just been created or that has been created before and is currently open. To open an
existing project or create a new project you need to execute Step 1, by pressing the “ Proceed to
Step 17 push button. The* Save project as...” option allows you to save an existing project
with adifferent name and in a different folder from ones for the project that is currently open or
has just been created. This option is useful in the SEM analysis of multiple models where each

12
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model isasmall variation of the previous one. Finally, the “ Exit” option ends the software
session. If your project has not been saved, and you choose the “Exit” option, the software will
ask you if you want to save your project before exiting. In some cases, you will not want to save
your project before exiting, which iswhy a project is not automatically saved after each step is
completed. For example, you may want to open an existing project, change a few things and then
run a SEM analysis, and then discard that project. Y ou can do this by simply not saving the
project before exiting.

After Step 3iscompleted, whereby the data used in the SEM analysisis pre-processed, three
sets of menu options become available from the main window: “ Data”, “ M odify”, and
“Settings’.

The “Data” menu options. These menu options allow you to view or save data and various
statistics, mostly descriptive statistics, into tab-delimited .txt files. The “tab-delimited .txt file” is
the general file format used by the software to save most of the files containing analysis and
summarization results. These files can be opened and edited using Excel, Notepad, and other
similar spreadsheet or text editing software. These menu options are discussed in more detail
later.

The“Modify” menu options. These menu options allow you to add new data labels and raw
data to your dataset, redo missing data imputation, as well as add one or more latent variable
scores (a.k.a. factor scores) to the dataset as new standardized indicators. Also available isthe
option of adding all latent variable scores at once to the dataset as new standardized indicators.
Data labels can be shown on graphs as text next to data points, or as legends for data points using
different markers. These menu options are discussed in more detail later.

The“ Settings” menu options. You can view or change general SEM analysis settings
through the “ Settings” menu options. Here you can select the analysis algorithms used in the
SEM analysis, the resampling method used to calculate standard errors and P values, aswell as
other elements that will define how the SEM analysis will be conducted. These menu options are
discussed in more detail later.

The“Help” menu options. There are several help menu options available on the main
window, as well as on several other windows displayed by the software. The “ Open context-
sensitive User Manual file (PDF)” option opens this document as a PDF file from a Web
location in a context-sensitive manner, in this case at an areathat is specific to the main window.
The “Open User Manual file (PDF)” option opens this document as a PDF file from a Web
location, and is not context-specific. The “Open Web page with video for thiswindow” option
opens a Web page with avideo clip that is context-specific, in this case specific to the main
window. The “ Open Web page with linksto various videos’ option is not context-specific,
and opens a Web page with links to various video clips. The “Open Web page with WarpPL S
blog” option opens a Web page with the WarpPL S blog. Similar help options are available from
several other windows in this software.

13
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B.2. Data

The “Data” menu options alow you to view or save data and various statistics, mostly
descriptive statistics (see Figure B.2). These menu options are discussed individually below.
Some of them are discussed in more detail later in this document.

Figure B.2. Data menu options

Data | Modify Settings Help

View or save correlations and descriptive statistics for indicators
View or save P values for indicator correlations

View or save raw indicator data

View or save unstandardized pre-processed indicator data

View or save unstandardized ranked pre-processed indicator data
View or save standardized pre-processed indicator data

Wiew or save standardized ranked pre-processed indicator data
View or save data labels

Save grouped descriptive statistics

Yiew or save latent vanable (a.k.a. factor) scores

The“View or save correlations and descriptive statistics for indicators’ option allows you
to view or save general descriptive statistics about the data. These include the following, which
are shown at the bottom of the table that is displayed through this option: means, standard
deviations, minimum and maximum values, medians, modes, skewness and excess kurtosis
coefficients, results of unimodality and normality tests, and histograms. The unimodality tests for
which results are provided are the Rohatgi- Székely test (Rohatgi & Székely, 1989) and the
Klaassen-Mokveld-van Estest (Klaassen et a., 2000). The normality tests for which results are
provided are the classic Jarque-Beratest (Jarque & Bera, 1980; Bera & Jarque, 1981) and Gel &
Gastwirth’s (2008) robust modification of this test. Since these tests are applied to individual
indicators, they can be seen as “univariate” or “bivariate” unimodality and normality tests.

These descriptive statistics are complemented by the option “ View or save P valuesfor
indicator correlations’. This option may be useful in the identification of candidate indicators
for latent variables through the anchor variable procedure discussed by Kock & Verville (2012).
This can be done prior to defining the variables and links in amodel. This can aso be done after
the model is defined and an analysisis conducted, particularly in cases where the results suggest
outer model misspecification. Examples of outer model misspecification are instances in which
indicators are mistakenly included in the model by being assigned to certain latent variables, and
instances in which indicators are assigned to the wrong latent variables (Kock & Lynn, 2012;
Kock & Verville, 2012).

The“View of saveraw indicator data” option allows you to view or save the raw data used
in the analysis. Thisisauseful feature for geographically distributed researchers conducting
collaborative analyses. With it, those researchers do not have to share the raw data as a separate
file, asthat datais already part of the project file.

Two menu options allow you to view or save unstandardized pre-processed indicator data.
This pre-processed data is not the same as the raw data, as it has already been through the
automated missing value correction procedure in Step 3. The options that allow you to view or
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save unstandardized pre-processed indicator data are: “View or save unstandar dized pre-
processed indicator data” and “ View or save unstandardized ranked pre-processed
indicator data”. The latter option refersto ranked data.

When datais ranked, typically the value distances that typify outliersin data on ratio scales,
whether standardized or unstandardized, are significantly reduced. This effectively eliminates
outliers from the data, without any decrease in sample size. Often some information is lost due to
ranking — e.g., the distances among data points based on answers on ratio scales.

Two related menu options allow you to view or save standardized pre-processed indicator
data: “ View or save standardized pre-processed indicator data” and “ View or save
standardized ranked pre-processed indicator data”. The latter option ranks the data prior to
standardizing it. Ranking often has little effect on ordinal data (e.g., data on Likert-type scales),
and amajor impact on ratio data (e.g., yearly income).

The options that refer to unstandardized data allow you to view or save pre-processed data
prior to standardization. The options that refer to standardized data allow you to view or save
pre-processed data after standardization; that is, after al indicators have been transformed in
such away that they have a mean of zero and a standard deviation of one.

The“View or save data labels’ option alows you to view or save data labels. These are text
identifiers that are entered by you separately, through one of the “Modify” menu options. Like
the original numeric dataset, the data |abels are stored in atable. Each column of thistable refers
to one data label, and each row to the corresponding row of the original numeric dataset. Data
labels can later be shown on graphs, either next to each data point that they refer to, or as part of
agraph’slegend.

The “ Save grouped descriptive statistics’ option is aspecial option that allows you to save
descriptive statistics (means and standard deviations) organized by groups defined based on
certain parameters; this option is discussed in more detail at the end of this section.

The“View or save latent variable (a.k.a. factor) scores’ option allows you to view or save
the latent variable scores generated by the software. There is another option that allows you to
save latent variable scores, available as a menu option on the window used to view and save
model analysis results; which becomes available later, after Step 5 is completed. These two
options return the same latent variable scores in most cases.

The exception to the general rule above is a situation in which you specified arange restriction
for your analysis. In this case, only the latter option will return the range-restricted latent variable
scores. These latent variable scores will generally have a smaller number of rows than the
original dataset (because they are range-restricted), and thus will not be exactly matched to the
original dataset.
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B.3. Modify

The “M odify” menu options allow you to add new data labels and raw data to your dataset,
redo missing data imputation, as well as add one or more latent variable scores (ak.a. factor
scores) to the dataset as new standardized indicators (see Figure B.3). Also available isthe
option of adding all latent variable scores at once to the dataset as new standardized indicators.
Data labels can be shown on graphs as text next to data points, or as legends for data points using
different markers. These menu options are discussed individually below. Some of them are
discussed in more detail later in this document.

Figure B.3. Modify menu options

Add data labels from clipboard

Add data labels from file

Add raw data from clipboard

Add raw data from file

Redo missing data imputation (via data pre-processing)

Add one or more latent variable (a.k.a. factor) scores as new standardized indicators

Add all latent variable (a.k.a. factor) scores as new standardized indicators

The menu options “Add data labels from clipboard” and “Add data labels from file” allow
you to add data labels into the project file. Data labels are text identifiers that are entered by you
through these options, one column at atime. Like the original numeric dataset, the datalabels are
stored in atable. Each column of this table refers to one data label, and each row to the
corresponding row of the original numeric dataset. Data labels can later be shown on graphs,
either next to each data point that they refer to, or as part of the legend for a graph.

Data labels can be read from the clipboard or from afile, but only one column of labels can
beread at atime. Datalabel cells cannot be empty, contain spaces, or contain only numbers;
they must be combinations of letters, or of lettersand numbers. Valid examples are the
following: “Age>17", “Y2001", “AFR”, and “HighSuccess’. These would normally be entered
without the quotation marks, which are used here only for clarity. Some invalid examples: “123”,
“Age>17",and “Y 2001".

Through the menu options “Add raw data from clipboard” and “Add raw data from file’
users can add new data from the clipboard or from afile. This data then becomes available for
use in models, without users having to go back to Step 2. These options relieve users from
having to go through nearly all of the steps of a SEM analysisif they find out that they need
more data after they complete Step 5 of the analysis. Past experience supporting users suggests
that this is acommon occurrence. These options employ the same data checks and data
correction algorithms asin Step 2; please refer to the section describing that step for more
details.

The option “Redo missing data imputation (via data pre-processing)” allows usersto redo
the missing data imputation process after choosing a method through the “View or change
missing data imputation settings’ option, which is available under the “ Settings’” menu
options. The following missing data imputation methods are available: Arithmetic Mean
Imputation (the software’ s default), Multiple Regression Imputation, Hierarchical Regression
Imputation, Stochastic Multiple Regression Imputation, and Stochastic Hierarchical Regression
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Imputation. Kock (2014c) provides a detailed discussion of these methods and of a Monte Carlo
simulation that assesses the methods' relative performances.

Latent variable scores can be easily added to the dataset via the options “Add one or more
latent variable (a.k.a. factor) scores as new standar dized indicators’ and “Add all latent
variable (a.k.a. factor) scores as new standardized indicators’. These options alow users,
after Step 5 is completed, to add one or more latent variables to the model as new standardized
indicators, and also to add al latent variables as new indicators. Adding one or more latent
variables at atime may be advisable in certain cases; for example, in hierarchical analyses using
selected latent variables as indicators of second, third etc. order latent variables at each level. In
such cases, adding all latent variables at once may soon clutter the set of indicators available to
be used in the SEM model.
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B.4. Settings

The “Settings’” menu options allow you to view or change general SEM analysis settings (see
Figure B.4). Here you can select the analysis algorithm used in the SEM analysis, the resampling
method used to calculate standard errors and P values, as well as other elements that will define
how the SEM analysis will be conducted. These menu options are discussed individually below.
Several of them are discussed in more detail later in this document.

Figure B.4. Settings menu options

View or change missing data imputation settings
View or change general settings
View or change data medification settings

View or change individual inner model analysis algorithm settings

Yiew or change individual latent variable weight and lcading starting value settings

The “View or change missing data imputation settings’ option allows you to set the missing
data imputation method to be used by the software, from among the following methods:
Arithmetic Mean Imputation (the software’ s default), Multiple Regression Imputation,
Hierarchical Regression Imputation, Stochastic Multiple Regression Imputation, and Stochastic
Hierarchical Regression Imputation. The missing data imputation method chosen will be used
prior to execution of Step 3, and also after that when the option “Redo missing data
imputation (via data pre-processing)” under the “Modify” menu option is selected. Kock
(2014c) provides a detailed discussion of these methods, as well as of aMonte Carlo simulation
whereby the methods' relative performances are investigated.

The“View or change general settings’ option allows you to set the outer model analysis
algorithm, default inner model analysis algorithm, resampling method, and number of resamples.
Through these sub-options, users can set outer and default inner model algorithms separately.
Users are aso allowed to set inner model algorithms for individual paths through a different
option. If users choose not to set inner model algorithms for individual pathsin an analysis of a
new model (i.e., amodel that has just been created), their choice of default inner model
algorithm is automatically used for al paths.

The“View or change data modification settings’ option allows you to select arange
restriction variable type, range restriction variable, range (min-max values) for the restriction
variable, and whether to use only ranked data in the analysis. Through these sub-options, users
can run their analyses with subsamples defined by a range restriction variable, which is chosen
from among the indicators available. They can also conduct their analyses with only ranked data,
whereby all of the data is automatically ranked prior to the SEM analysis. When data on aratio
scaleisranked, typically the value distances that typify outliers are significantly reduced,
effectively eliminating outliers without any decrease in sample size.

The“View or change individual inner model analysis algorithm settings’ option allows
you to set inner model algorithms for individual paths. That is, for each path a user can select a
different algorithm from among the following choices: “Linear”, “Warp2”, “Warp2 Basic”,
“Warp3”, and “Warp3 Basic”.

The“View or changeindividual latent variable weight and loading starting value
settings’ option allows you to set the initial values of the weights and loadings for each latent
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variable. The default is 1 for all weights and loadings. With this option, latent variables measured
in areversed way, aswell asformative latent variables with most of their weights and loadings
ending up being negative, can be more easily operationalized.

Several of the options above, and their component elements, are discussed in more detail in
the subsections below, still in this section describing the main window options. These
subsections include further discussions about data labels, general settings, data modification
settings, individual inner model analysis algorithm settings, as well asindividual latent variable
weight and loading starting value settings. A further discussion of grouped descriptive statistics,
which can be saved through a sub-option under the “Data” options, is aso provided.
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B.5. Data labels

Data labels can be added through the menu options “Add data labels from clipboard” and
“Add data labelsfrom file” (see Figure B.5). Data labels are text identifiers that are entered by
you through these options, one column at atime. Like the original numeric dataset, the data
labels are stored in atable. Each column of thistable refers to one datalabel, and each row to the
corresponding row of the original numeric dataset. Data labels can later be shown on graphs,
either next to each data point that they refer to, or as part of the legend for a graph. Once they
have been added, data |abels can be viewed or saved using the “View or save data labels’
option.

Figure B.5. Add data labels from file window

You are about to read data labels.

Data labels can be read from the clipboard or from a file, but only
ONE celumn of labels can be read at a time.
Cells cannot be empty, contain spaces, or contain only humbers;
they must be combinations of letters, or of letters and numbers.
Valid examples: Age>17, Y2001, AFR, HighSuccess. Invalid ‘

examples: 123, Age > 17, Y 2001. Ok ‘
If the source of the labels is a file, its type can be any of the
following: ‘ Go back ‘

xXls or xIsx: An Excel file.
txt: A tab-delimited, or comma-delimited text file.

The file must have the names of the labels in the first row, and the
label values associated with those names in the following rows.

The number of label values should be same as the original sample
size.

Press the "Ok" button to continue.

Press the "Go back" button to go back to the main window.

For more help, elick on the "Help" menu option at the top of this
window.

While data labels can be read from the clipboard or from afile, only one column of labels
can beread at atime. Datalabel cells cannot be empty, contain spaces, or contain only
numbers; they must be combinations of letters, or of lettersand numbers. Valid examples are
thefollowing: “Age>17", “Y2001", “AFR”, and “HighSuccess’. These would normally be
entered without the quotation marks, which are used here only for clarity. Some invalid examples
are: “123",“Age> 17", and “Y 2001".
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B.6. General settings

The“View or change general settings’ option allows usersto set the outer model analysis
algorithm, default inner model analysis algorithm, resampling method, and number of resamples
(see Figure B.6). Through these sub-options, users can set outer and default inner model
algorithms separately. Users are also allowed to set inner model algorithms for individual paths,
but through a different settings option. If users choose not to set inner model algorithms for
individual paths, their choice of default inner model algorithm is automatically used for all paths.

Figure B.6. View or change general settings window

Factor-Based PLS Type CFM1
Factor-Based PLS Type REG1
Factor-Based PLS Type PTH1
PLS Regression

7 PLS Mode M
. . A" |PLS Mode M Basic
Outer model analysis algorithm: S PLS Mode A
PLS regression - PLS Mode A Basic
PLS Mode B

PLS Mode B Basic
Robust Path Analysis

Default inner model analysis algorithm:

Linear Y

., |Warp2
Resampling method: *“{ Warp2 Basic
Stable 73 Warp3

No. of resamples=sample size Warp3 Basic

* | Stable2
Stable3
Bootstrapping
Jackknifing
Blindfolding
Parametric

The settings chosen for each of the options can have a dramatic effect on the results of a
SEM analysis. At the same time, the right combinations of settings can provide major insights
into the data being analyzed. As such, the settings' options should be used with caution, and
normally after a new project file (with a unique name) is created and the previous one saved.
This allows users to compare results and, if necessary, revert back to project files with previously
selected settings.

A key criterion for the calculation of the weights, observed in virtually all classic PL S-based
algorithms, is that the regression equation expressing the relationship between the indicators and
the latent variable scores has an error term that equals zero. In other words, in classic PL S-based
algorithms the latent variable scores are calculated as exact linear combinations of their
indicators. Thisis not the case with the new Factor-Based PL S algorithms provided by this
software, as these new algorithms estimate | atent variable scores fully accounting for
measurement error.

The warping takes place during the estimation of path coefficients, and after the estimation of
all weights, latent variable scores, and loadings in the model. The weights and loadings of a
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model with latent variables make up what is often referred to as the outer model (a.k.a.
measur ement model), whereas the path coefficients among latent variables make up what is
often called the inner model (a.k.a. structural model).

The outer model analysis algorithms available are Factor-Based PL S Type CFM 1, Factor -
Based PLS Type REGL, Factor-Based PLS Type PTH1, PLS Regression, PLSMode M,
PLSModeM Basic, PLSMode A, PLSMode A Basic, PLSMode B, PLS Mode B Basic,
and Robust Path Analysis. All of these outer model algorithms share a common characteristic.
They calculate latent variable scores as exact linear combinations of their indicators, or of their
indicators and measurement errors. With the exception of the Robust Path Analysis algorithm, all
of these algorithms perform iterations until they converge to a solution.

There has been along and in some instances fairly antagonistic debate among proponents and
detractors of the use of Wold's original PLS algorithms (Adelman & Lohmoller, 1994;
Lohmdller, 1989; Wold, 1980) in the context of SEM. This debate has been fueled by one key
issue, which is analogous to the issue underlying the related principal components versus factor
analysis debate. Wold’soriginal PL S algorithms do not deal with actual factors, as
covariance-based SEM algorithms do; but with composites, which are exact linear combinations
of indicators (Kock, 2014d). The Factor-Based PL S algorithms provided by this software have
been developed specifically to addressthis perceived limitation of Wold' s original PLS
algorithms.

Factor-Based PL S Type CFM 1 generates estimates of both true composites and factors, in
two stages, explicitly accounting for measurement error (Kock, 2014). Like covariance-based
SEM algorithms, this algorithm is fully compatible with common factor model assumptions,
including the assumption that all indicator errors are uncorrelated. Initsfirst stage, this algorithm
employs a new “true composite” estimation sub-algorithm, which estimates composites based on
mathematical equations that follow directly from the common factor model. The second stage
employs a new “variation sharing” sub-algorithm, which can be seen as a*“soft” version of the
classic expectation-maximization algorithm (Dempster et a., 1977) used in maximum likelihood
estimation, with apparently faster convergence and nonparametric properties.

Factor-Based PLS Type REG1 and Factor-Based PL S Type PTH1 are also factor-based
PL S algorithms that generate estimates of both composites and factors, in two stages, fully
accounting for measurement error. The Factor-Based PL S Type REG1 algorithm first estimates
composites via PLS Regression (discussed below), and then estimates factors employing
variation sharing (Kock, 2014). Among the factor-based algorithms available in this software,
this Factor-Based PLS Type REGL1 algorithm can be seen asthe closest to Wold' s original PLS
design.

The Factor-Based PL S Type PTH1 algorithm first estimates composites via Robust Path
Analysis (discussed below), and then estimates factors employing variation sharing (K ock,
2014). By doing so, this algorithm addresses several of the concerns about Wold' s original PLS
algorithmsraised in an important critical article by Ronkko & Evermann (2013). This algorithm
can also be seen as addressing the call for simplicity in a thought-provoking article on PLS by
Rigdon (2012). Unlike the Factor-Based PL S Type CFM lalgorithm, the Factor-Based PL S
Type REG1 and Factor-Based PL S Type PTH1 algorithms do not impose certain common
factor model assumptionsthat rarely hold in practice, such as the assumption that all indicator
errors are uncorrel ated.

PL S Regression has been the default outer model algorithm since the software’ s inception,
and is maintained as such as a matter of tradition. This algorithm iterates until the outer model
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weights become stable with the following cal cul ations being performed in successive iterations
for each latent variable in the model: (a) the outer model weights are calculated through aleast
squares regression where the latent variable is the predictor and the indicators are the criteria;
and (b) the latent variable is calculated as an exact linear combination of the indicator scores. In
the PLS Regression algorithm, theinner model does not influence the outer model. That is,
the weights are not influenced by the links connecting latent variables, which are created by the
user in Step 4.

The following outer model algorithms are similar to PLS Regression, but in them the inner
model influencesthe outer model: PLSMode M, PLSMode M Basic, PLSMode A, PLS
Mode A Basic, PLSMode B, and PLS Mode B Basic. These are classic PL S algorithms that
have been historically associated with PLS-based SEM software (Chatelin et al., 2002; Temme et
al., 2006). In them, the iterative process leading to the calculation of latent variable scores
involves the intermediate cal culation of path coefficients, correlations, and signs of correlations.
These are used as inputs in the cal culation of weights in successive iterations, typically leading to
the addition of collinearity among latent variables that are linked.

The above callinearity inflation that occurs when the inner model influences the outer model
often has the effect of strengthening associations among linked latent variables. Thisisareal
phenomenon that has been presented as a weakness of PL S-based SEM, and that has been
referred to as the “ capitalization on error” problem of PLS-based algorithms (see, e.g., Goodhue
et a., 2012). This problem is generally overstated, as PL S-based algorithms in general tend to
also reduce collinearity. That is, when the inner model influences the outer model collinearity is
indeed increased, but often not to the extent that the increase offsets the previous collinearity
decrease that normally results from the use of PL S-based algorithms.

PLSMode M isoften referred asthe “MIMIC” or “mixed” mode. In it, the inner model
influences the outer model through path coefficients and correlations, depending on whether the
links go into or out from each latent variable, respectively. PLS Mode M in fact uses either PLS
Mode A or PLS Mode B, based on whether latent variables are defined as reflective or formative,
respectively. The PLS modes A and B are discussed below.

PLSMode M Basicisavariation of PLS Mode M in which the inner model influences the
outer model through the signs of correlations among latent variables. This corresponds to what
Lohmoller (1989) refersto as a“basic scheme’, also referred to as a“ centroid scheme”
(Tenenhaus et ., 2005).

For the purposes of PLS-based SEM, the schemes known as* centroid” and “factorial” are
lar gely redundant (Tenenhaus et al., 2005), but they share a common property. They tend to
reduce the number of instances of Simpson’s paradox (Wagner, 1982) in the SEM analysis
results. Because of this property and the fact that these two schemes are redundant, this software
implements only one of them, the “centroid” scheme. This schemeisreferred to as“basic”, for
simplicity and consistency with prior seminal publications that set the foundations of PL S-based
SEM (seg, e.g., Lohmdller, 1989).

PLS Mode A isoften referred to as the “reflective” mode, which is arguably incorrect because
both reflective and formative latent variables can be used with this algorithm. In other words,
using PLS Mode A does not make aformative latent variable become areflective latent variable.
Init, the inner model influences the outer model through path coefficients and correlations,
depending on whether the links go into or out from each latent variable, respectively. In this
mode the outer model weights are calculated through aleast squares regression where the latent
variable is the predictor and the indicators are the criteria. PLS M ode A Basic is avariation of
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PLS Mode A in which the inner model influences the outer model through the signs of the
correlations among latent variables.

PLS Mode B is often referred to as the “formative” mode. Thisis arguably incorrect for the
same reason discussed above, namely that both reflective and formative latent variables can be
used with this algorithm. In other words, using PLS Mode B does not turn areflective latent
variable into a formative latent variable. However, PLS Mode B is often less stable than PLS
Mode A, and also tends to cause a significant increase in collinearity among linked latent
variables. Init, the inner model influences the outer model through path coefficients and
correlations, depending on whether the links go into or out from each latent variable,
respectively. In this mode the outer model weights are calculated through aleast squares
regression where the indicators are the predictors and the latent variable the criterion. PLS M ode
B Basicisavariation of PLS Mode B in which the inner model influences the outer model
through the signs of the correlations among latent variables.

The Robust Path Analysis algorithm is a simplified algorithm in which latent variable scores
are calculated by averaging the scores of the indicators associated with the latent variables. That
is, in this agorithm weights are not estimated through PL S Regression. This algorithm is called
“robust” path analysis, because the P values can be calculated through the nonparametric
resampling or stable methods implemented through the software. If al latent variables are
measured with single indicators, the Robust Path Analysis agorithm will yield latent variable
scores and outer model weights that are identical to those generated through the other algorithms.

Many relationships in nature, including relationships involving behavioral variables, are
nonlinear and follow a pattern known as U-curve (or inverted U-curve). In this pattern a variable
affects another in away that leads to a maximum or minimum value, where the effect is either
maximized or minimized, respectively. Thistype of relationship is also referred to as a J-curve
pattern; aterm that is more commonly used in economics and the health sciences.

Theterm “U-curve’ isused here also to refer to nonlinear relationshipsthat can be
represented as sectionsof a U curve. Assuch, it covers all noncyclical nonlinear relationships.
These relationships include the logarithmic, hyperbolic decay, exponential decay,
exponential, and quadr atic relationships, among others. That is, these relationships can be
conceptually modeled as variations of U-curve relationships.

The default inner model analysis algorithms available are the following: Linear, Warp2,
Warp2 Basic, Warp3, and Warp3 Basic. All of theseinner model algorithms share a common
characteristic. They calculate path coefficients through least squares regression algorithms based
on the latent variable scores calculated through one of the outer model analysis algorithms
available.

The Linear agorithm does not perform any warping of relationships. The War p2 algorithm
tries to identify U-curve relationships among linked latent variables, and, if those relationships
exist, the algorithm transforms (or “warps’) the scores of the predictor latent variables so asto
better reflect the U-curve relationships in the estimated path coefficients in the model. Here the
signs of the path coefficients areinitially (i.e. prior to the inner model least squares regressions)
assigned as the signs of the corresponding path coefficients obtained without any warping.
Similarly to the outer model “basic” versions, the War p2 Basic algorithm is a variation of the
Warp2 algorithm that tends to reduce the number of instances of Simpson’s paradox (\Wagner,
1982) in thefinal results. This happens because in this basic version the signs of path coefficients
areinitialy assigned as the signs of the corresponding correlations obtained without any
warping.
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The War p3 algorithm, the default algorithm used by the software, tries to identify
relationships among latent variables defined by functions whose first derivatives are U-curves.
These types of relationships follow a pattern that is more similar to an S-curve (or a somewhat
distorted S-curve). An S-curve can be seen as a combination of two connected U-curves, one of
which isinverted. Examples of S-curve functions are the sigmoid, hyperbolic sine and
hyperbolic tangent. The logistic function is atype of sigmoid function, and thusis also an
example of S-curve function. Similarly to the Warp2 Basic algorithm, the War p3 Basic
algorithm is avariation of the Warp3 algorithm that tends to reduce the number of instances of
Simpson’s paradox (Wagner, 1982) in the final results. Again here this happens because the
signs of path coefficients are initially assigned as the signs of the corresponding correlations
obtained without any warping.

In summary, with the exception of the Linear algorithm, all of the default inner model analysis
algorithms perform nonlinear transformations on the predictor latent variable scores prior to the
calculation of path coefficients. In other words, except for the Linear algorithm, these algorithms
“warp” the predictor latent variable scores by finding best-fitting nonlinear functions that
minimize sums of squared residuals on a bivariate basis. This process can be seen as another
least squares minimization stage that is “in between” those used in the calculation of latent
variable scores and path coefficients.

One of several resampling methods may be selected for the calculation of P values and related
coefficients (e.g., standard errors). In the calculation of P values, a one-tailed test is generally
recommended if the coefficient is assumed to have a sign (positive or negative), which should be
reflected in the hypothesis that refers to the corresponding association (Kock, 2014d). Hence this
software reports one-tailed P values for coefficients used in hypothesis testing (e.g., path
coefficients); from which two-tailed P values can be easily obtained if needed (Kock, 2014d).
The available resampling methods are the following: Stablel, Stable2, and Stable3,
Bootstrapping, Jackknifing, Blindfolding, and Parametric.

With the Stablel method, the software’ s default up until version 4.0 (when it was called
simply the “stable” method), P values are cal culated through nonlinear fitting of standard errors
to empirical standard errors generated with the other resampling methods available. In other
words, the Stablel method could be viewed as a quasi-parametric method that yields P values
that try to approximate the “average” P values generated by the software’ s other resampling
methods.

The Stable2 and Stable3 methods have been devel oped as alternatives to the Stablel method.
Unlike the Stablel method, they rely on the direct application of exponential smoothing formulas
(for details, see: Kock, 2014b), and that can thus be more easily implemented and tested by
methodol ogical researchers. A Monte Carlo experiment shows that the Stable2 and Stable3
methods yield estimates of the actual standard errors that are consistent with those obtained via
bootstrapping, in many cases yielding more precise estimates of the actual standard errors (Kock,
2014b). The more accurate of the two methods appears to be the Stable3 method, which also
appears to be more accurate than the Stablel method. As such, the Stable3 method is set asthe
softwar € sdefault starting in version 5.0.

With the Parametric method, P values are calculated assuming multivariate normality and
also that path coefficient estimates are distributed as expected based on the central limit theorem.
Neither the Parametric method nor the three “ stable” methods (Stablel, Stable2 and Stable3)
actually generates resamples, so calling them resampling methods is done here for simplicity in
the grouping of settings options. Because no resamples are generated, these are the most efficient
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of the methods from a computing load perspective. These methods can be particularly useful in
the analysis of large datasets, as in these cases creating resamples can be computationally very
taxing. With the emergence of the concept of “big data’, the need to analyze large datasetsis
becoming increasingly common.

Bootstrapping employs aresampling algorithm that creates a number of resamples (a number
that can be selected by the user), by a method known as “resampling with replacement”. This
means that each resampl e contains a random arrangement of the rows of the original dataset,
where some rows may be repeated. The commonly used analogy of adeck of cards being
reshuffled, leading to many resample decks, is a good one; but not entirely correct becausein
Bootstrapping the same “card” may appear more than once in each of the resample “decks’.

Jackknifing, on the other hand, creates a number of resamples that equals the original sample
size, and where each resample has one row removed. That is, the sample size of each resampleis
the original sample size minus 1. Thus, when Jackknifing is selected the number of resamples
isautomatically set asthe sample size. Thisrefersto the most common form of jackknifing,
also known as “delete-1" and “classic” jackknifing, which is the one implemented through this
software.

Blindfolding employs a resampling algorithm that creates a number of resamples (a number
that can be selected by the user) by a method whereby each resample has a certain number of
rows replaced with the means of the respective columns. The number of rows modified in this
way in each resample equal s the sample size divided by the number of resamples. For example,
if the sample size is 200 and the number of resamples selected is 100, then each resample will
have 2 rows modified. If auser chooses a number of resamples that is greater than the sample
size, the number of resamplesis automatically set to the sample size (as with Jackknifing).

The default number of resamples for Bootstrapping and Blindfolding is 100. It can be
modified by entering a different number in the appropriate edit box. (Please note that we are
talking about the number of resamples here, not the sample size of the original dataset.) L eaving
the number of resamplesfor Bootstrapping as 100 isrecommended because it has been
shown that higher numbers of resamples lead to negligible improvementsin the reliability of P
values (seeg, e.g., Goodhue et a., 2012). In fact, according to the original developer of the
Bootstrapping method, even setting the number of resamples at 50 is likely to lead to fairly
reliable P value estimates (Efron et a., 2004).

Conversely, increasing the number of resasmples well beyond 100 leads to a higher
computation load on the software, making the software ook like it is having a hard time coming
up with the results. In very complex models, a high number of resamples may make the software
run very slowly. Some researchers have suggested in the past that alarge number of resamples
can address problems with the data, such as the presence of outliers due to errorsin data
collection. This opinion is not shared by the original developer of the Bootstrapping method,
Bradley Efron (see, e.q., Efron et a., 2004).

Not considering the “stable” methods, arguably Jackknifing is particularly good at addressing
problems associated with the presence of outliers due to errorsin data collection. Generally
speaking, Jackknifing tends to generate more stable resampl e path coefficients (and thus more
reliable P values) with small sample sizes (lower than 100), and with samples containing outliers
(see, e.g., Chiquoine & Hjalmarsson, 2009). Monte Carlo simulations suggest that the “ stable”
methods perform better than Jackknifing in this respect.

Again, not considering the “stable’” methods, Bootstrapping tends to generate more stable
resampl e path coefficients (and thus more reliable P values) with larger samples and with
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samples where the data points are evenly distributed on a scatter plot. Monte Carlo simulations
suggest that the “ stable” methods perform better than Bootstrapping in this respect aswell. The
use of Bootstrapping with small sample sizes (lower than 100) has been discouraged (Nevitt &
Hancock, 2001).

Generally speaking, Bootstrapping and Jackknifing can be seen as complementary resampling
methods, in that one tends to perform well in situations where the other does not, and vice-versa.
Nevertheless, the “stable” methods provided by this software seem to be an improvement over
them, as indicated by Monte Carlo simulations (Kock, 2014b).

Blindfolding tends to perform somewhere in between Jackknifing and Bootstrapping. If the
number of resamplesis set as very close to the sample size, particularly with small sample sizes
(lower than 100) and with samples containing outliers, Blindfolding performs similarly to
Jackknifing. With larger samples and with samples where the data points are evenly distributed
on a scatter plot, Blindfolding tends to performs more like Bootstrapping, especialy when the
number of resamplesis set as the same for both algorithms.

Prior to the development of the “ stable” methods, a recommendation was usually madein
connection with Bootstrapping and Jackknifing. Since the warping algorithms are also sensitive
to the presence of outliers, the recommendation was to estimate P values with both
Bootstrapping and Jackknifing, which are complementary resampling methods, and use the P
values associated with the most stable coefficients. An indication of instability isahigh P value
(i.e., statistically non-significant) associated with path coefficients that could be reasonably
expected to yield low P values. For example, with a sample size of 100, a path coefficient of 0.2
could be reasonably expected to yield a P value that is statistically significant at the 0.05 level. If
that is not the case, there may be a stability problem. Another indication of instability isa
marked difference between the P val ues estimated through Bootstrapping and Jackknifing.

The recommendation above was based on the fact that P values can be easily estimated using
two or more resampling methods by following the simple procedure outlined as follows. Run a
SEM analysis of the desired model, using one of the resampling methods, and save the project.
Then save the project again, this time with a different name, change the resampling method, and
run the SEM analysis again. Then save the second project again. Each project file will now have
results that refer to one of the resasmpling methods. The P values can then be compared, and the
most stable ones used in aresearch report on the SEM analysis. While thisis a perfectly valid
approach for the calculation of P values, as the coefficients to which the P values refer do not
change across iterations, it is very important to fully disclose this to the readers of the research
report (or reports) written based on the SEM analyses.

An alternative to the above approach isthe use one of the“ stable’” methods, particularly
the Stable3 method (see, e.g., Kock, 2014b), as these methods can be seen asyielding P values
that are consistent with and often more precise than the P values generated by the software’s
other resampling methods. Using these “stable” methods has the advantage of requiring much
less manual work from the user. Based on various tests in the context of PLS-based SEM, it
seems that the Stable3 method yields fairly reliable results for path coefficients associated with
direct effects (Kock, 2014b). It isless clear if the Stable3 method, or any of the other “stable’
methods, is advisable for the calculation of P values for path coefficients associated with indirect
and total effects, and research in this areais ongoing.
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B.7. Data modification settings

The“View or change data modification settings’ option allows usersto run their analyses
with subsamples defined by arangerestriction variable, which is chosen from among the
indicators available. (After Step 5 is completed, latent variable scores can also be added to the
model as standardized indicators.). This option also allows users to conduct their analyses with
only ranked data (see Figure B.7).

FigureB.7. View or change data modification settings

Range restriction variable type: _.| Unstandardized indicator
None - Standardized indicator

Range restriction variable:
None - ]

Range (min-max) for restriction variable:

Minimum value: Maximum value:

0.000 0.000

Use only ranked data in analysis? __
No R ——————— e B

Two rangerestriction variable types are available: standardized and unstandardized
indicators. This means that the range restriction variable can be either a standardized or
unstandardized indicator. Once a rangerestriction variableis selected, minimum and
maximum values must be set (i.e., arange), which in turn has the effect of restricting the
analysis to the rows in the dataset within that particular range.

The option of selecting arange restriction variable and respective range is useful in multi-
group analyses, whereby separate analyses are conducted for group-specific subsamples, saved
as different project files, and the results then compared against one another. One example would
be a multi-country analysis, with each country being treated as a subsample, but without separate
datasets for each country having to be provided as inputs.

L et us assume that an unstandardized variable called “ Country” storesthe values“1” (for
Brazil), “2” (for New Zealand), and “3” (for the USA). To run the analysis only with data from
Brazil one can set the range restriction variable as “ Country” (after setting its type as
“Unstandardized indicator”), and then set both the minimum and maximum values as“1” for the
range.

Thisrange restriction feature is also useful in situations where outliers are causing instability
in aresample set, which can lead to abnormally high standard errors and thus inflated P values.
Users can remove outliers by restricting the values assumed by a variable to arange that
excludes the outliers, without having to modify and re-read a dataset.

Users can also select an option to conduct their analyses with only ranked data, whereby all
of the datais automatically ranked prior to the SEM analysis (the original dataisretained in
unranked format). When data measured on ratio scales is ranked, typically the value distances
that typify outliers are significantly reduced, effectively eliminating outliers without any
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decrease in sample size. Contrary to popular belief, this cannot be achieved through
standardization only.

Often some information is lost due to ranking — e.g., the distances among data points based on
answers on ratio scales. Thus a concomitant increase in collinearity may be observed, but
typically not to the point of threatening the credibility of the results. The option of using only
ranked datain the analysis can be very useful in assessments of whether the presence of outliers

significantly affects path coefficients and respective P values, especially when outliers are not
believed to be due to measurement error.
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B.8. Individual inner model algorithm settings

The“View or change individual inner model algorithm settings’ option allows users to set
inner model algorithms for individual paths (see Figure B.8). The algorithms available are the
same as those that can be selected as default inner model analysis algorithms: Linear, Warp2,
Warp2 Basic, Warp3, and Warp3 Basic.

Figure B.8. View or changeindividual inner model algorithm settings

Click on a relationship cell to view/change inner model algorithm
Natu Perform Fluency |Fluency*Natu

Warp2
Natu
Perform |y LN | VV2rP2 basic
Fluency [N Warp3
Fluency'Natu | Warp3 basic

Notes: do not forget to save your settings, LN=Linear, W2=Warp2, W2b=Warp2 basic, W3=Warp3, W3b=Warp3 basic.

Individual inner model algorithms can be set for both regular and interaction effect |atent
variables; the latter are associated with moderating effects. If no choice is made for an individua
inner model algorithm, the default inner model analysis algorithm is used. If amodel is changed
after an analysis is conducted, the individual inner model algorithms are set to the default inner
model analysis algorithm.

This option allows users to customize their analyses based on theory and past empirical
research. If theory or results from past empirical research suggest that a specific link between
two latent variablesis linear, then the corresponding path can be set to be analyzed using the
Linear algorithm. Conversely, if theory or results from past empirical research suggest that a
specific link between two latent variables should have the shape of a U curve (or J curve), the
corresponding path can be set to be analyzed using the Warp2 algorithm or the Warp2 Basic
algorithm.
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B.9. Individual latent variable weight and loading starting value settings

The“View or changeindividual latent variable weight and loading starting value
settings’ option alows usersto set the initia values of the weights and loadings for each latent
variable (see Figure B.9). Thisis a specialized option that will only rarely be used. The default
starting value for al latent variablesis 1. While any real number can be used here, normally only
-1 and 1 are used.

FigureB.9. View or changeindividual latent variable weight and loading starting value settings

Matu Perform Fluency  |Fluency*Matu
1.00 1.00 1.00 1.00

Note: do not forget to save your settings.

This option reflects alittle known characteristic of classic PLS-based SEM analyses, which is
that they do not always converge to the same solution. The estimated coefficients depend on the
starting values of weights and loadings, thus leading to different solutions depending on the
initial configurations of those starting values. Even in simple models, often at |east two solutions
exist —aslong as latent variables are used, with multiple indicators. By convention the solution
most often accepted as valid is the one associated with the default starting value for all latent
variables, whichis 1.

With this option, latent variables measured in areversed way can be more easily
operationalized. An example would be alatent variable reflecting boredom being measured
through a set of indicators that individually reflect excitement. In this type of scenario, generaly
the starting value of weights and loadings for the latent variable should be set to - 1.

This option can also be useful with formative latent variables for which most of the weights
and loadings end up being negative after an analysis is conducted. In this case, paths associated
with the latent variable may end up being reversed, leading to conclusions that are the opposite
of what is hypothesized. The solution here would normally be a change in sign for starting value
of weights and loadings, usually from 1 to -1.
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B.10. Grouped descriptive statistics

When the “ Save grouped descriptive statistics’ option is selected, a data entry window is
displayed (see Figure B.10.1). There you can choose a grouping variable, number of groups, and
the variables to be grouped. This option is useful if one wants to conduct a comparison of means
analysis using the software, where one variable (the grouping variable) is the predictor, and one
or more variables are the criteria (the variables to be grouped).

FigureB.10.1. Save grouped descriptive statistics window

Save Close Help
Grouping variable: MNo. of groups:
ECUEmail - 2 -
Variables to be Variables in
grouped: data file:
o ECUEmaillist o
sEmail_Elist :
ECUBoard
ECUFiles
ECULotusMNotes
ECUEnewslet
ECUAutoRout
ECUFTP
il ECUWebPage il
[ Remove | [ Add

Figure B.10.2. Grouped descriptive statistics bar chart

A B c D E E G H J K L M
1
2 | Descriptive statistics for grouping variable: ECU1
3
4] Effe1
5 |Interval: 0.000 to 5.000 ECU(0-5) 4.676
6 | ECU(5-10) 5.903
7 4
8 Effel
9 Mean 4.676
10 [SD 3572
11
12 |Interval: 5.000 to 10.000
13 Effel
14 |
15 | Effe1 ‘
16 [Mean 5.903 [
17 |SD 3.639 :
18 |
19| ;
20 3
21| >
22 |
23| 1
24 0 .
25 ECU{0-5) ECU{5-10}
26

Figure B.10.2 shows the grouped statistics data saved through the window shown in Figure
B.10.1. The tab-delimited .txt file was opened with a spreadsheet program, and contained the

data on the | eft part of the figure.
The data on the left part of Figure B.10.2 was organized as shown above the bar chart; next the
bar chart was created using the spreadsheet program’ s charting feature. If a simple comparison of
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means analysis using this software had been conducted in which the grouping variable (in this
case, an indicator called “ECU1") was the predictor, and the criterion was the indicator called
“Effel”, those two variables would have been connected through a path in a simple path model
with only one path. Assuming that the path coefficient was statistically significant, the bar chart
displayed in Figure B.10.2, or asimilar bar chart, could be added to areport describing the
analysis.

Some may think that it is overkill to conduct a comparison of means analysis using a SEM
software package such as this, but there are advantages in doing so. One of those advantagesis
that this software calculates P values using a nonparametric class of estimation techniques,
namely resampling and “stable” estimation techniques. (Resampling techniques are sometimes
referred to as bootstrapping techniques, which may lead to confusion since bootstrapping is also
the name of atype of resampling technique.) Nonparametric estimation technigues do not require
the data to be normally distributed, which is arequirement of other comparison of means
techniques (e.g., ANOVA).

Another advantage of conducting a comparison of means analysis using this software is that
the analysis can be significantly more elaborate than with traditional comparison of means
methods, even nonparametric ones. For example, the analysis may include control variables (or
covariates), which would make it equivalent to an ANCOVA test. Finally, the comparison of
means analysis may include latent variables, as either predictors or criteria. Thisis not usually
possible with ANOVA or commonly used nonparametric comparison of means tests (e.g., the
Mann-Whitney U test).

An even more extreme situation is that discussed by Kock (2013b) where data on only “one
group and one condition” isavailable. This situation isillustrated through a scenario in which a
researcher obtains empirical data by asking questions to gauge the effect of atechnology on task
performance, but does not obtain data on the extent to which the technology is used. Because of
this, the researcher ends up with only one column of datato analyze.

Two other scenarios are also discussed by Kock (2013b). These two scenarios are discussed to
set the stage for the discussion of the “one group and one condition” scenario. Thefirstisa
typical study scenario in which the researcher measures the degree to which the technology is
used, or the degree to which specific features of the technology are used, as well asteam
performance and/or related variables expected to be influenced by technology use.

In the second scenario the researcher does not have data on the extent to which the technol ogy
Isused, but has datarelated to team performance and/or other variables expected to be influenced
by technology use before and after the technology is introduced. Thisis alongitudinal data
collection scenario for which a comparison of means test could be used. Data analyses for all
three scenarios are discussed by Kock (2013b) based on this software, showing the versatility of
the software. The main reason for this versatility is that most of the data analysis methods used in
behavioral research can be conceptually seen as special cases of SEM.
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C. Step 1: Open or create a project file to save your work

In Step 1 you will open or create a project file to save your work (see Figure C.1). Project
filesare saved with the“.prj” extension, and contain all of the elements needed to perform
a SEM analysis. That is, they contain the origina data used in the analysis, the graphical model,
the inner and outer model structures, and the results.

FigureC.1. Step 1 window

You are now in Step 1: Open or create a project file tc w/
]

work. Wy Nk i e 1 - [

T e o . Cance
When you press the "Open project file” button, you We e =
to provide the path and name of the project file.

Such project file will only exist if you created it before using this ™,
software. Y
Open project file
Project files are saved with the extension ".prj"”. i)
When you press the "Create project file” button, you will be asked " Create project file
to provide the path and name for a new project file.
Press the "Open preject file” button when you are ready to open Go back

an existing project file.
Press the "Create project file" button when you are ready to create
a new project file.

Brace tha "(a hask™ hittan ta an haal fa tha meain winedao

Once an original datafileisread into a project file, the original datafile can be deleted
without effect on the project file. The project file will store the original location and file name of
the data file so that thisinformation is available in case it is needed in the future, but the project
filewill no longer use the datafile.

Project files may be created with one name, and then renamed using Windows Explorer or
another file management tool. Upon reading a project file that has been renamed in this fashion,
the software will detect that the original name is different from the file name, and will adjust
accordingly the name of the project file that it stores internally.

Different users of this software can easily exchange project files electronically if they are
collaborating on a SEM analysis project. Thisway they will have accessto all of the original
data, intermediate data, and SEM analysis resultsin one single file. Project files are relatively
small. For example, a complete project file of amodel containing 5 latent variables, 32 indicators
(columnsin the original dataset), and 300 cases (rows in the original dataset) will typically be
only approximately 200 KB in size. Simpler models may be stored in project files as small as 50
KB.

If a project file created with a previous version of the softwar e is open, the software
automatically recognizesthat and convertsthefileto the new version. Thistakes placed even
with project fileswhere all of the five steps of the SEM analysis were completed. However,
because each new version incorporates new features, with outputs stored within new or modified
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software objects, normally previous versions of the softwar e cannot properly reuse project
files created with more recent versions.
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D. Step 2: Read the raw data used in the SEM analysis

Through Step 2, you will read the raw data used in the SEM analysis (see Figure D.1). While
this should be arelatively trivial step, it isin fact one of the steps where users have the most
problems with other SEM software. Often a SEM software application will abort, or freeze, if the
raw datais not in the exact format required by the SEM software, or if there are any problems
with the data, such as missing values (empty cells).

Figure D.1. Reading theraw data used in the SEM analysis

Viewing and accepting data

File import wizard e -
h Jaut WO _&tq Lottt Tve dih bk ey gt e LT}

You are now m)_ﬁ?p 7 Head the raw data used in the SEM

analysis.

/

Raw data can be read from a file or from the clipboard.
Read from file
If the source of the labels is a file, its type can be any of the
following:
.xls or xlIsx: An Excel file. Read from clipboard
.tat: A tab-delimited, or comma-delimited text file.

For Excel workbooks with multiple sheets, the sheet with the data Go back
must be either the first in the workbook or selected manually.

The file must have the names of the variables (latent construct
indicators) in the first row, and the values associated with those
variables in the following rows.

Press the "Read from file” button or the "Read from clipboard™
butten when you are ready to read the raw data.

Press the "Go back” button to go back to the main window.

For more help, click on the "Help” menu option at the top of this
window.

The buttons “Read from file” and “Read from clipboard” allow you to read raw datainto the
project file from afile or from the clipboard, respectively. This software employs an import
wizard that avoids most data reading problems, even if it does not entirely eliminate the
possibility that a problem will occur. Click only on the“Next” and “Finish” buttons of thefile
import wizard, and let thewizard do the rest. Soon after the raw datais imported, it will be
shown on the screen, and you will be given the opportunity to accept or reject it. If there are
problems with the data, such as missing column names, simply click “No” when asked if the data
looks correct.

Raw data can be read directly from Excel files, with extensions “.xIs” or “.xIsx”, or text files
where the datais tab-delimited or comma-delimited. When reading from an “ .xIs” or “ .xIsx”
filethat contains a workbook with multiple wor ksheets, make surethat the wor ksheet that
containsthe data isthefirst on the workbook. If the workbook has multiple worksheets, the
file import wizard used in Step 2 will typically select the first worksheet as the source or raw
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data. If the desired worksheet is not the first in the workbook, in many cases the user will be able
to select the proper worksheet through the wizard, but this selection can lead to mistakes when
made by novice users. Raw data files, whether Excel or text files, must have indicator names
in thefirst row, and numeric data in the following rows. They may contain empty cells, or
missing values; these will be automatically replaced with values calculated by one of the missing
data imputation algorithms available in a later step.

The“View or change missing data imputation settings’ option under “ Settings’ allowsyou
to set the missing data imputation method to be used by the software in the next step. Users may
want to employ non-automated approaches to deal with missing data, such as deleting the rows
with missing cells, or manually replacing them with the average of nearby values on the same
column. The most widely used approach, and also a reasonably reliable one in the context of
PL S-based SEM, is replacing the missing values with column averages. This missing data
imputation method is called Arithmetic Mean Imputation, and is automated by the software. It is
in fact the software’ s default missing data imputation method. Kock (2014c) provides a detailed
discussion of various missing data imputation methods, as well as of a Monte Carlo simulation
whereby the methods’ relative performances are investigated.

While missing data imputation is done automatically by the software, you should not use
datasets with too many missing values, as thiswill distort the results. A general rule of thumbis
that your dataset should not have any column with more than 10 percent of its values missing; a
more relaxed rule would be to set the threshold to 20 percent (Hair et al., 1987; 2009). On the
other hand, K ock (2014c) shows that even 30 percent of missing data will still not lead to
significant bias (from the per spective of theory testing) with any of the missing data
imputation methods employed by this softwar e. One can reduce the percentage of missing
values per column by deleting rows in the dataset, where the deleted rows are the ones that refer
to the columns with missing val ues.

One simple test can be used to try to find out if there are problems with araw datafile. Try to
open it with a spreadsheet software (e.g., Excel), if itisoriginaly atext file; or try to create a
tab-delimited text filewith it, if it isoriginaly a spreadsheet file. If you try to do either of these
things, and the data looks corrupted (e.g., missing column names, with misplaced columns,
containing unrecognized symbols), then it islikely that the original file has problems, which may
be hidden from view. For example, a spreadsheet file may be corrupted, but that may not be
evident based on asimple visual inspection of the contents of the file.
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E. Step 3: Pre-process the data for the SEM analysis

In Step 3 the raw data will be pre-processed for the SEM analysis. Thisis mostly an automatic
process, requiring only afew button clicks from you. This step will correct problems with the
data, such as: identical column names, columns with zero variance, and missing data.

The “View or change missing data imputation settings’ option allows you to set the missing
data imputation method to be used by the software in this step. Missing data imputation can be
redone after this step, if you later decide to use a different imputation method. To accomplish
that you should use the option “Redo missing dataimputation (via data pre-processing)” under
the “Modify” menu option. Kock (2014c) provides a detailed discussion of missing data
imputation methods, as well as of a Monte Carlo simulation comparing the methods' relative
performances.

This step will also let you know if the data has rank problems, which usually happens when
the sample size is very small relative to the number of existing indicators. A related cause of rank
problemsis a sample with many repeated or linearly dependent values on different rows or
columns, which sometimesis an indication of data fabrication. Please note that the term “rank”
here comes from matrix algebra, and is unrelated to the same term used in the context of ranked
data, as discussed earlier in connection with the software settings.

If there are rank problems, this does not mean that you cannot proceed with the SEM analysis.
However, the results may be unstable and, in some cases, completely unreliable. On the other
hand, it is not uncommon for rank problems to be reported and still the results of the ensuing
SEM analysisturn out to be reliable. Thisis due to the general robustness of PL S-based methods
for SEM analysis.

At the end of this step, awindow will be displayed with the pre-processed data, which will be
standardized. Standar dized data columns have meansthat equal zero and standard
deviationsthat equal one. If you use the Arithmetic Mean Imputation method for dealing with
missing data (the software’ s default), previously missing values will be shown as zero, since they
were replaced with the averages (or means) of the columns. Standar dized data usually ranges
from -4 to 4, with outliersassuming values toward the left or right end of those extremes,
sometimes beyond -4 or 4.

Outliers can significantly change the shape of a nonlinear relationship, but this may also be the
case with linear relationships. For example, one single outlier may change the sign of alinear
association, from positive to negative (i.e., changing the relationship from direct to inverse).
Because of this, there isinvariably the temptation of removing outliers from analyses.

Thisis often a mistake (Giaguinta, 2009; Hair et al., 2009), as outliers can be invaluablein
elucidating the true nature of an association (Kaiser, 2010; Rosenthal & Rosnow, 1991; Wold et
al., 2001). Generally speaking, outliers should only be removed if there are good reasons to
believe that they are due to measurement error.

After the software displays the pre-processed and standardized data, typically you will accept
the data and move on to the next step. If the data looks corrupted, do not accept it; click on the
“No” button when asked if the data looks correct. If there are problems in this step, they will
usually be related to problems with the raw data file. Check that file, and seeif you can correct
those problems.

As mentioned before in this manual, one simple test can be used to try to find out if there are
problems with araw datafile. Try to open it with a spreadsheet program, if it isoriginally atext
file; or to try to create atab-delimited text file with it, if it is originally a spreadsheet file. If you
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try to do either of these things, and the data looks “messed up” (e.g., corrupted, or missing
column names), then it islikely that the original file has problems, which may be hidden from
view. For example, a spreadsheet file may be corrupted, but that may not be evident based on a
simple visua inspection of the contents of the file using spreadsheet software.
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F. Step 4: Define the variables and links in the SEM model

In Step 4 you will define the latent variables and links in the SEM model. The sub-steps that

make up this step are discussed in more detail in the subsections below. This software employs a
graphical interface that allows usersto create and edit model elements visually and directly; i.e.,

without the need of a scripting language.

Y ou will define the latent variables by selecting the indicators that are associated with them,
and the measurement method used — either formative or reflective. The process of defining the
latent variablesin a SEM model in thisfashion is often called “ defining the outer model”, in
SEM lingo.

Model links can be of two types, direct and moderating links. Direct links connect pairs of
latent variables. Moderating links connect latent variables and direct links; that is, they refer to
effects in which alatent variable moderates the relationship between a pair of latent variables.
The process of defining model linksis often referred to as “ defining the inner model”.
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F.1. Create or edit the SEM model

The window used to create or edit amodel is shown in Figure F.1. A model can be edited if it
has been created and saved before as part of a project. While editing or creating a model you can

choose from a number of menu options related to overall model functions, latent variable
functions, direct link functions, and moderating link functions. As with other windowsin this
software, there is a help menu option that provides access to this manual in a generic and

context-specific manner; both displayed as PDF files. The help menu option also provides links

to Web resources.

FigureF.1. Create or edit the SEM model window
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Create moderating link

Delete moderating link

Modeinptions latcntvaliablc{options Dlrcctlinkopf-l.mns Moderating Ilnkuﬁium Help

Choose one of the menu options above to perform a task.

links among them.)

(You should start by creating latent variables, using the latent variable menu options. You can then drag and dr

A guiding text box is shown at the top of the model editing and creation window. The content
of this guiding text box changes depending on the menu option you choose, guiding you through

the sub-steps related to each option. For example, if you choose the option “ Create |atent
variable”, the guiding text box will change color, and tell you to select alocation for the latent

variable on the model graph.

Direct links are displayed as full arrows in the model graph, and moder ating links as
dashed arrows. Each latent variable is displayed in the model graph within an oval symbol,
where its name is shown above a combination of aphanumerical characters with this general
format: “(F)16i”. The “F” refersto the measurement model; where “F’ means formative, and
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“R” reflective. The “16i” reflects the number of indicators of the latent variable, which in this
caseis 16.

Save model and close. This option saves the model within the project, and closes the model
editing and creation window. This option does not, however, save the project file. That is, the
project file hasto be saved for amodel to be saved as part of it. This allows you to open a project
file, change its model, run a SEM analysis, and discard all that you have done, if you wish to do
so, reverting back to the previous project file.

Centralize model graph. This option centralizes the model graph, and is useful when you are
building complex models and, in the process of doing so, end up making the model visually
unbalanced. For example, you may move variables around so that they are al accidentally
concentrated on the left part of the screen. This option corrects that by automatically redrawing
all symbolsin the model graph so that the center of the model graph coincides with the center of
the model screen.

Show/hide indicators. This option shows or hides the list of indicators for each latent
variable. The indicators are shown on avertical list next to each latent variable, and without the
little boxes that are usually shown in other SEM software. This display option is used to give the
model graph a cleaner look. It also has the advantage that it saves space in the model graph for
latent variables. Normally you will want to keep the indicators hidden, except when you are
checking whether the right indicators were selected for the right latent variables. That is,
normally you will show the indicators to perform a check, and then hide them during most of the
model building process.

Clear model (deletesall latent variables). This option deletes al latent variables, essentially
clearing the model. Given that choosing this option by mistake can potentially cause some
serious loss of work (not to mention some major user aggravation), the software shows adialog
box asking you to confirm that you want to clear the model before it goes ahead and deletes all
latent variables. Even if you choose this option by mistake, and confirm your choice also by
mistake (a double mistake), you can still undo it by choosing the option “ Cancel model
creation/editing (all editing islost)” immediately after clearing the model.

Cancel modd creation/editing (all editing islost). This option cancels the model creation or
editing, essentially undoing all of the model changes you have made.

Save model into .jpg file. This option alows you to save the model graph into a.jpg file. You
will be asked to select the file name and the folder where the file will be saved. After saved, this
file can then be viewed and edited with standard picture viewers, aswell asincluded as a picture
into reportsin other files (e.g., aWord file). Users can also generate model graph files by
copying the model screen into a picture-editing application (e.g., Paint), cropping it to leave out
unnecessary or unneeded areas, saving it into a picturefile (e.g., .jpg or .png), and then importing
that file into reports.

Create latent variable. This option allows you to create alatent variable, and is discussed in
more detail below. Once alatent variable is created it can be dragged and dropped anywhere
within the window that contains the model.

Edit latent variable. This option allows you to edit a latent variable that has already been
created, and thus that is visible on the model graph.

Delete latent variable. This option alows you to delete an existing latent variable. All links
associated with the latent variable are also deleted.

Move latent variable. Thisoption israrely used since, once alatent variable is created, it can
be easily dragged and dropped with the pointing device (e.g., mouse) anywhere within the
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window that contains the model. This option is a carryover from a previous version, maintained
for consistency and for those users who still want to useit. It allows a user to move a latent
variable across the model by first clicking on the variable and then on the destination position.

Createdirect link. This option allows you to create a direct link between one latent variable
and another. The arrow representing the link points from the predictor latent variable to the
criterion latent variable. Direct links are usually associated with direct cause-effect hypotheses,
testing a direct link’ s strength (through the calculation of a path coefficient) and statistical
significance (through the calculation of a P value) is equivalent to testing a direct cause-effect
hypothesis.

Delete direct link. This option allows you to delete an existing direct link. Y ou will click on
the direct link that you want to delete, after which the link will be deleted.

Create moder ating link. This option allows you to create alink between alatent variable and
adirect link. When the underlying algorithm used for outer model estimation is PLS Regression
or one of the Factor-Based PL S agorithms, both formative and reflective latent variables can be
part of moderating links. Arguably thisis not possible with the PLS modes M, A and B (see
Lohmdller, 1989), which are usually the ones implemented through other PL S-based SEM
software tools. Moderating links are typically associated with moderating cause-effect
hypotheses, or interaction effect hypotheses. Testing a moderating link’ s strength (through the
calculation of a path coefficient) and statistical significance (through the calculation of a P value)
is equivalent to testing a moderating cause-effect or interaction effect hypothesis. M oder ating
links should be used with moder ation (no pun intended), because they may introduce
multicollinearity into the model, and also because they tend to add nonlinearity to the model. By
introducing multicollinearity into the model they may make some model parameter estimates
unstable and biased.

Delete moder ating link. This option allows you to delete an existing moderating link. Y ou
will click on the moderating link that you want to delete, after which the link will be deleted.

After you create amodel and choose the option “ Save model and close” a wait bar will be
displayed on the screen telling you that the SEM model structureisbeing created. Thisisan
important sub-step where a number of checks are made. In this sub-step, if there are any
moderating links in the model, new latent variables are created to store information about those
moderating effects using a product-indicator procedure described and validated by Chin et al.
(2003). The more moderating links amodel has, the longer this sub-step will take. In models
where only reflective variables are involved in amoderating link, typically this sub-step will not
take longer than afew seconds. Moderating links with formative variables may lead to longer
wait times, because formative variables are usually more complex, frequently with significantly
more indicators than reflective variables.

Instead of the product-indicator approach described by Chin et al. (2003), one can use an
alternative two-stage approach. In the first stage of this alternative approach, the latent variables
that are part of a moderating relationship will be added to the model as new indicators. This can
be done viathe options “ Add one or more latent variable (a.k.a. factor) scores as new
standardized indicators’ or “Add all latent variable (a.k.a. factor) scores as new
standardized indicators’, which are available under the “M odify” menu options. In the second
stage, the new one-indicator latent variables will be used in the definition of a moderating
relationship.
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F.2. Create or edit latent variable

The latent variable creation window is show in Figure F.2, and it is virtually identical to the
latent variable editing window. The latent variable will appear in the model graph as soon as you
click on the menu option under “Save”, which saves the latent variable and closes the latent
variable creation or editing window. A latent variable is not saved as part of a project until the
model is saved as part of the project and the project fileis saved.

Figure F.2. Createlatent variable window

Save Close Help

Latent variable name: nolvname
(max 8 characters)

Viewiremove Add
indicators: indicators:

[ Remove |

Measurement model:

@ Reflective Formative

Y ou create alatent variable by entering a name for it, which must have no more than 8
characters, but to which not many other restrictions apply. The latent variable name may contain
letters, numbers, and even specia characterssuch as“@” or “$”. It cannot contain the special
character “*”, however, because this character is used later by this software in selected outputs to
indicate that alatent variable is associated with a moderating effect. After entering a name for a
latent variable, you then select the indicators that make up the latent variable, and define the
measurement model as reflective or formative.

A reflective latent variable is onein which all the indicators are expected to be highly
correlated with one another, and with the latent variable itself. For example, the answers to
certain question-statements by a group of people, measured on a1 to 7 scale (1=strongly
disagree; 7=strongly agree) and answered after ameal, are expected to be highly correlated with
the latent variable “ satisfaction with ameal”. Among question-statements that would arguably fit
this definition are the following two: “I am satisfied with thismeal”, and “ After thismeal, | feel
full”. Therefore, the latent variable “ satisfaction with ameal”, can be said to be reflectively
measured through two indicators. Those indicators store answers to the two question-statements.
This latent variable could be represented in amodel graph as“ Satisf”, and the indicators as
“Satisf1” and “ Satisf2”. Notwithstanding this simplified example, users should strive to have
more than two indicators be latent variable; the more indicators, the better, since the number of
indicatorsisinversely related to the amount of measurement error (Kock, 2014; Nunnally, 1978;
Nunnally & Bernstein, 1994).

A formative latent variableis one in which the indicators are expected to measure certain
attributes of the latent variable, but the indicators are not expected to be highly correlated with
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the latent variable itself, because they (i.e., the indicators) are not expected to be highly
correlated with one another. For example, let us assume that the latent variable “ Satisf”
(“satisfaction with ameal”) is now measured using the two following gquestion-statements: “1 am
satisfied with the main course” and “| am satisfied with the dessert”. Here, the meal comprises
the main course, say, filet mignon; and a dessert, such as afruit salad. Both main course and
dessert make up the meal (i.e., they are part of the same meal) but their satisfaction indicators are
not expected to be highly correlated with each other. The reason is that some people may like the
main course very much, and not like the dessert. Conversely, other people may be vegetarians
and hate the main course, but may like the dessert very much.

If the indicators are not expected to be highly correlated with one another, they cannot be
expected to be highly correlated with their latent variable’ s score. Here is a general rule of thumb
that can be used to decide if alatent variable isreflectively or formatively measured. If the
indicators are expected to be highly correlated, and are redundant in their meaning, then the
measurement model should be set as reflective. If the indicators are not expected to be highly
correlated, and are clearly not redundant in meaning (they measure different facets of the same
construct), even though they clearly refer to the same latent variable, then the measurement
model should be set as formative.

Setting alatent variable as formative or reflective affects the calculation of model parameters
only with the PLS Mode B algorithm, or with algorithms that employ the PLS Mode B algorithm
or variations of it (e.g., PLS Mode B Basic, PLS Mode M). With other algorithms, setting a
latent variable as formative or reflective is still recommended, as it hel ps the user interpret
outputs and conduct certain assessments (e.g., validity assessments, discussed later in this
manual).

Formative measurement has been facing increasing criticism, particularly since the late 1990s,
see Edwards (2011) for a particularly critical and cogent discussion. Given this growing
criticism, it is recommended that the Cronbach’ s alpha coefficients associated with formative
latent variables be equal to or greater than 0.6, for reasons related to measurement error theory
(Kock, 2014; Nunnally, 1978; Nunnally & Bernstein, 1994). Since loadings tend to be relatively
low with formative latent variables (and weights relatively high), reliability measures (such as
the Cronbach’ s alpha coefficient) tend to also be relatively low. Nevertheless, Cronbach’s apha
coefficients equal to or greater than 0.6 can be achieved by increasing the number of indicators
used in formative measurement.
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G. Step 5: Perform the SEM analysis and view the results

Step 5 performs the SEM analysis based on the model created in Step 4. After you click on the
button to perform the SEM analysis, the software will show await bar. Thiswait bar will update
you on the progress of the SEM analysis, which usually will take only afew seconds or less for
simple to moderately complex models. As soon as the SEM analysisis completed, the software
will show the results in graphical format on awindow. That window also has menu options that
allow you to view more details about the results, including some that are not shown on the graph
(e.g., reliability measures), and also save the results into tab-delimited text files.

Coallinearity is estimated before the SEM analysisisrun. If collinearity appears to be too
high, users are warned about it. A table with estimated latent variable correlations is shown,
allowing usersto identify the possible offending latent variables. If users so choose, they can
proceed with the analysis anyway, but in most (not all) cases the full collinearity (ak.a.
multicollinearity) measures will confirm that collinearity istoo high in their models for the
analysis results to be considered credible.

M easurement error and composite weights are estimated before the SEM analysisis run,
whenever Factor-Based PL S algorithms are used. Measurement error and composite weights
play akey rolein these algorithms. If at least one measurement error weight is greater than the
corresponding composite weight, the user is warned about possible unreliability of results. This
happens usually when at least one of the Cronbach’ s al pha coefficients associated with the latent
variablesislower than 0.5. Foundational aspects of the Factor-Based PL S algorithms are
discussed by Kock (2014), who lays out the mathematical basis of these algorithms, from which
the importance of measurement error and composite weights can be gleaned.

New options become available from the main window after Step 5 is completed, under the
“Modify” menu option. These options allow users to add one or more latent variable scores to
the model as new standardized indicators, and also to add all latent variable scores as new
indicators. Adding one or more latent variable scores at atime may be advisable in certain cases,
such asin hierarchical analyses using selected latent variable scores as indicators at each level. In
these cases, adding all latent variable scores at once may soon clutter the set of indicators
available to be used in the SEM model.

The option of adding latent variable scores to the model as new standardized indicatorsis
useful in the removal of outliers, through the use of restricted ranges for latent variable scores,
particularly for outliers that are clearly visible on the plots depicting associations among | atent
variables. As briefly mentioned earlier, this option is also useful in hierarchical analyses, where
users define second-order (and higher order) latent variables, and then conduct analyses with
different models including latent variables of different orders.

This software uses algorithms that are fairly computing intensive, in some cases employing
multiple checks and optimization sub-algorithms in each sub-step. Therefore the speed with
which the analysisis conducted may be alittle slower than that of some other publicly available
SEM software. The differences in speed are not significant though, and normally the results
generated by this software are more complete, and in many cases more reliable. For example,
this software calculates model fit and quality indices, as well as P values for most of its
parameter estimates. Publicly available PLS-based SEM software usually do not provide those
measures.

Some model elements may reduce the speed of the SEM analysis more than others. These
are: formative latent variables with many indicators and, more generaly, latent variables with
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many indicators (even if they are reflective); moderating effects, particularly if they associate
latent variables with many indicators; setting the number of resamples for Bootstrapping or
Blindfolding as 200 or higher; and using Jackknifing as the resampling method, if the sample
sizeislarger than 200.

In Jackknifing, the number of resamples equals the sample size, which iswhy using
Jackknifing as the resample method may reduce the speed of the SEM analysis with relatively
large samples. Generating resamples and running cal culations on them is one of the most
computing intensive sub-steps of the SEM analysis. However, Jackknifing often produces more
stable parameter estimates with warped analysis. So there is atradeoff between speed and
reliability when warping algorithms are being used. This tradeoff may tip the balance in favor of
using Jackknifing, alone or in addition to Bootstrapping or Blindfolding, even if the user has to
wait longer for the results.

An dternative is the use of the “stable” quasi-parametric methods: Stablel, Stable2, and
Stable3. This alternative is highly recommended, particularly with the Stable3 method, the
software’ s default. Astheir name implies, these methods yield stable coefficients. They also
provide fairly accurate estimates of standard errors, which are used in the calculation of P values.
These methods do not actually generates resamples, so calling them resampling methods is done
here for simplicity in the grouping of settings options. Because no resamples are generated, these
are rather efficient methods from a computing load perspective. These methods can be
particularly useful in the analysis of large datasets, as in these cases creating resamples can be
computationally very taxing. With the emergence of the concept of “big data”, the need to
analyze large datasets is becoming increasingly common.
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H. View and save results

As soon as the SEM analysis is completed, the software shows the results in graphical format
on awindow, which also contains a number of menu options that allow you to view and save
more detailed results (see Figure H.1.1). The graph with the results shows path coefficients,
respective P values, and R-squared coefficients.

The “ Save” menu options allow usersto save all of the results that they can view, with the
majority of those results saved under the option to save all model estimates into a tab-delimited
text file. Additionally, users can save the factor scores calculated for each latent variable. These
can be useful in some specialized applications; e.g., users may want to generate customized
graphs based on those scores.

FigureH.1.1. View and save resultswindow
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Just to be clear, the “factor” scores are the latent variable scores; even though classic PLS
algorithms approximate latent variables though composites, not factors. Thisis generally
perceived as alimitation of classic PLS algorithms (Kock, 2014; 2014d), which is addressed
through the Factor-Based PL S algorithms. The latter, Factor-Based PL S algorithms, estimate
latent variables through the estimation of the true factors. The term “factor” is often used when
we refer to latent variables, in the broader context of SEM analysesin general. The reason isthat
factor analysis, from which the term “factor” originates, can be seen as a specia case of SEM
analysis.

The path coefficients are noted as beta coefficients. “Beta coefficient” is another term often
used to refer to path coefficientsin PLS-based SEM analyses; this term is commonly used in
multiple regression analyses. The P values are displayed below the path coefficients, within
parentheses. The R-squared coefficients are shown below each endogenous latent variable (i.e., a
latent variable that is hypothesized to be affected by one or more other latent variables), and
reflect the percentage of the variance in the latent variable that is explained by the latent
variables that are hypothesized to affect it. To facilitate the visualization of the results, the path
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coefficients and P values for moderating effects are shown in away similar to the corresponding
values for direct effects, namely next to the arrows representing the effects.
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H.1. View general results

General SEM analysis results include: the version of WarpPL S used in the SEM analysis;
project file details, such as the project file name and when the file was last saved; model fit and
quality indices (shown in Figure H.1.2), which are discussed in more detail below; and general
model elements, such as the algorithm and resampling method used in the SEM analysis.

Figure H.1.2. General resultswindow

Medel fit and quality indices

Average path coefficient (APC)=0.196, P<0.001

Average R-squared (ARS)=0.169, P<0.001

Average adjusted R-squared (AARS)=0.164, P<0.001

Average block VIF (AVIF)=1.361, acceptable if <= §, ideally <= 3.3

Average full collinearity VIF (AFVIF)=1.571, acceptable if <= 5, ideally <= 3.3
Tenenhaus GoF (GoF)=0.292, small >= 0.1, medium >= 0.25, large >= 0.36
Sympson's paradox ratio (SPR)=1.000, acceptable if >= 0.7, ideally =1

R-squared contribution ratio (RSCR)=1.000, acceptable if >= 0.9, ideally =1
Statistical suppression ratio (SSR)=1.000, acceptable if >= 0.7

Nonlinear bivariate causality direction ratio (NLBCDR)=0.861, acceptable if >=0.7

Under the project file details, both the raw data path and file are provided. Those are provided
for compl eteness, because once the raw dataisimported into a project file, it is no longer needed
for the analysis. Once araw datafileisread, it can even be deleted without any effect on the
project file, or the SEM analysis.

Ten global model fit and quality indices are provided: aver age path coefficient (APC),
average R-squared (ARYS), average adjusted R-squared (AARS), aver age block variance
inflation factor (AVIF), average full collinearity VIF (AFVIF), Tenenhaus GoF (GoF),
Simpson's paradox ratio (SPR), R-squared contribution ratio (RSCR), statistical
suppression ratio (SSR), and nonlinear bivariate causality direction ratio (NLBCDR).

For the APC, ARS, and AARS, P values are also provided. These P values are calcul ated
through a process that involves resampling estimations coupled with corrections to counter the
standard error compression effect associated with adding random variables, in a way analogous
to Bonferroni corrections (Rosenthal & Rosnow, 1991). Thisis necessary since the model fit and
quality indices are calculated as averages of other parameters.

The interpretation of the model fit and quality indices depends on the goal of the SEM
analysis. If the goal isto only test hypotheses, where each arrow represents a hypothesis, then the
model fit and quality indices are, as awhole, of less importance. However, if the goal isto find
out whether one model has a better fit with the original data than another, then the model fit and
quality indices are a useful set of measures related to model quality. When assessing the model
fit with the data, several criteria are recommended. These criteria are discussed below, together
with the discussion of the model fit and quality indices.

APC, ARS and AARS. Typically the addition of new latent variables into a model will
increase the ARS, even if those latent variables are weakly associated with the existing latent
variablesin the model. However, that will generally lead to a decrease in the APC, since the path
coefficients associated with the new latent variables will be low. Thus, the APC and ARS will
counterbalance each other, and will only increase together if the latent variables that are added to
the model enhance the overall predictive and explanatory quality of the model. The AARS s
generally lower than the ARS for agiven model. The reason is that it averages adjusted R-
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squared coefficients (Theil, 1958; Wooldridge, 1991), which themselves correct for spurious
increases in R-squared coefficients due to predictors that add no explanatory value in each latent
variable block. It is recommended that the P values for the APC, ARS and AARS all be equal
to or lower than 0.05; that is, significant at the 0.05 level. A more relaxed rule would be that the
P valuesfor the APC and ARS only be equal to or lower than 0.05.

AVIF and AFVIF. The AVIF index will increase if new latent variables are added to the
model in such away asto add vertical collinearity in the model’ s latent variable blocks. The
AFVIF index will increase if new latent variables are added to the model in such away asto add
full collinearity into the model (i.e., either vertical or lateral collinearity; see Kock & Lynn,
2012). Full collinearity is often referred to as “muticollinearity”. High AVIF and AFVIF values
may result from the inclusion of new latent variables that overlap in meaning with existing latent
variables. It is generally undesirable to have different latent variables in the same model that
measure the same underlying construct; those should be combined into one single latent variable.
Thus, the AVIF and AFVIF indices bring in new dimensions that add to a comprehensive
assessment of amodel’s overall predictive and explanatory quality. Because of the way in which
these indices are calculated (for more details, see: Kock & Lynn, 2012), the AFVIF is not
sensitive to variations in collinearity due to the use of nonlinear algorithms. The AVIF, on the
other hand, is sensitive to the use of nonlinear agorithms. Therefore it is recommended that
both indices, AVIF and AFVIF, bereported in studies, asthey are not redundant indices. It is
recommended (ideally) that both the AVIF and AFVIF be equal to or lower than 3.3,
particularly in models where most of the variables are measured through two or more
indicators. A more relaxed (acceptable) criterion isthat both indices be equal to or lower than
5, particularly in models where most variables ar e single-indicator variables (and thus not
“true’ latent variables). The reason for these differencesin criteriain different contextsis that
PLS-based SEM algorithmsin general tend to be particularly effective at reducing collinearity
(Kock & Lynn, 2012), but only if multiple indicators are available to be aggregated in the
calculation of latent variable scores.

GoF. Similarly to the ARS, the GoF index, referred to as “ Tenenhaus GoF” in honor of
Michel Tenenhaus, is ameasure of amodel’ s explanatory power. Tenenhaus et al. (2005)
defined the GoF as the square root of the product between what they refer to as the average
communality index and the ARS. The communality index for a given latent variable is defined as
the sum of the squared loadings for that latent variable, each |oading associated with an
indicator, divided by the number of indicators. The average communality index for amodel is
defined similarly, and takes all latent variables into account in its calculation. The loadings
referred to here are the unrotated |oadings, which are available from the structure loadings and
cross-loadings table. It is also worth noting that the definition of the communality index used by
Tenenhaus et al. (2005) does not match the typical definition of communality, at least asitis
normally stated in the context of factor analysis. As noted by Wetzels et al. (2009), the average
variance extracted (AVE) for each latent variable equals the corresponding communality index.
Wetzels et al. (2009) also proposed the following thresholds for the GoF: small if equal to or
greater than 0.1, medium if equal to or greater than 0.25, and large if equal to or greater
than 0.36. They did so by assuming a minimum acceptable average AVE of 0.5, and using
Cohen’ s (1988) thresholds for small, medium, and large effect sizes. A value lower than 0.1 for
the GoF suggests that the explanatory power of a model may be too low to be considered
acceptable.
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SPR. The SPR index is ameasure of the extent to which amodel is free from Simpson’s
paradox instances (Pearl, 2009; Wagner, 1982). An instance of Simpson’s paradox occurs when
a path coefficient and a correlation associated with a pair of linked variables have different signs.
A Simpson’s paradox instance is a possible indication of a causality problem, suggesting that a
hypothesized path is either implausible or reversed. The SPR index is calculated by dividing the
number of pathsin amodel that are not associated with Simpson’ s paradox instances by the total
number of pathsin the model. At the time of this writing the SPR was an experimental index,
and thus the following recommendations should also be treated as experimental. I deally the SPR
should equal 1, meaning that there are no instances of Simpson’s paradox in a model;
acceptable values of SPR are equal to or greater than 0.7, meaning that at least 70 percent of
the pathsin amodel are free from Simpson’ s paradox.

RSCR. The RSCR index is a measure of the extent to which amodel is free from negative R-
squared contributions, which occur together with Simpson’ s paradox instances (Pearl, 2009;
Wagner, 1982). When a predictor |latent variable makes a negative contribution to the R-squared
of acriterion latent variable (note: the predictor points at the criterion), this means that the
predictor is actually reducing the percentage of variance explained in the criterion. Such a
reduction takes into consideration the contributions of al predictors plusthat of the residual.
Thisindex issimilar to the SPR. The key differenceisthat it is calculated based on the actual
values of the R-sguared contributions, not on the number of paths where these contributions have
specific signs. The RSCR index is calculated by dividing the sum of positive R-squared
contributions in a model by the sum of the absolute R-squared contributions (be they negative or
positive) in the model. At the time of this writing the RSCR was an experimental index, and thus
the following recommendations should also be treated as experimental. I deally the RSCR
should equal 1, meaning that there are no negative R-squared contributions in a model;
acceptable values of RSCR areequal to or greater than 0.9, meaning that the sum of positive
R-squared contributions in amodel makes up at least 90 percent of the total sum of the absolute
R-sguared contributions in the model.

SSR. The SSR index is a measure of the extent to which amodel is free from statistical
suppression instances (MacKinnon et al., 2000). An instance of statistical suppression occurs
when a path coefficient is greater, in absolute terms, than the corresponding correlation
associated with apair of linked variables. Like a Simpson’s paradox instance, a statistical
suppression instance is a possible indication of a causality problem (Spirteset al., 1993),
suggesting that a hypothesized path may be either implausible or reversed. The SSR index is
calculated by dividing the number of pathsin a model that are not associated with medium or
greater statistical suppression instances by the total number of paths in the model. A medium or
greater statistical suppression instance is characterized by an absolute path-correlation ratio that
is greater than 1.3. At the time of this writing the SSR was an experimental index, and thus the
following recommendation should also be treated as experimental. Acceptable values of SSR
are equal to or greater than 0.7, meaning that at least 70 percent of the pathsin amodel are
free from statistical suppression.

NL BCDR. One interesting property of nonlinear algorithms is that bivariate nonlinear
coefficients of association vary depending on the hypothesized direction of causality. That is,
they tend to be stronger in one direction than the other, which means that the residual (or error) is
greater when the hypothesized direction of causality isin one way or another. As such, they can
be used, together with other coefficients, as partial evidence in support or against hypothesized
causal links. The NLBCDR index is a measure of the extent to which bivariate nonlinear
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coefficients of association provide support for the hypothesized directions of the causal linksin a
model. The NLBCDR index is calculated by dividing the number of path-related instancesin a
model where the support for the reversed hypothesized direction of causality is more than weak
by the total number of path-related instances involved in thistest (thisis discussed in more detail
later). All of the available nonlinear algorithms are used in thistest. Therefore the total number
of path-related instances involved in thistest is greater than the total number of paths. At the
time of this writing the NLBCDR was an experimental index, and thus the following
recommendation should also be treated as experimental. Acceptable values of NLBCDR are
equal to or greater than 0.7, meaning that in at least 70 percent of path-related instancesin a
model the support for the reversed hypothesized direction of causality isweak or less. Here
“less” may mean that the support for reversed hypothesized direction of causality is less than
weak (e.g., neutral), or that the hypothesized direction of causality is supported.

53



WarpPLS 5.0 User Manual

H.2. View path coefficients and P values

Path coefficients and respective P values are shown together, as can be seen in Figure H.2.
Each path coefficient is displayed in one cell, where the column refers to the predictor latent
variable and the row to the criterion. For example, let us consider the case in which the cell
shows 0.225, the column refersto the latent variable “ECUVar”, and the row to the latent
variable “Proc”. This means that the path coefficient associated with the arrow that points from
“ECUVar” to “Proc” is 0.225.

Figure H.2. Path coefficientsand P values window

Close  Help

Path coefficients
ECUVar Proc Effi Effe Effi*Proc

ECUVar
Proc 0.225
Effi 0.059 0.459
Effe 0291 -0.186
Effi*Proc

P values

ECUVar Proc Effi Effe Effi*Proc
ECUVar
Proc <0.001
Effi 0.406 =0.001
Effe =0.001 0.016
Effi*Proc

Since the results refer to standardized variables, a path coefficient of 0.225 meansthat, in a
linear analysis, a1 standard deviation variation in “ECUVar” leads to a0.225 standard deviation
variation in “Proc”. In anonlinear analysis, the meaning is generally the same, except that it
appliesto the overal linear trend of the transformed (or warped) relationship. However, it is
important to note that, in nonlinear relationships the path coefficient at each point of acurve
varies. In nonlinear relationships, the path coefficient is given by the first derivative of the
nonlinear function that describes the relationship.

The P values shown are calculated through one of several methods available, and are thus
method-specific; i.e., they change based on the P value cal culation method chosen. In the
calculation of P values, aone-tailed test is generally recommended if the coefficient is assumed
to have asign (positive or negative), which should be reflected in the hypothesis that refersto the
corresponding association (Kock, 2014d). Hence this software reports one-tailed P values for
path coefficients; from which two-tailed P values can be easily obtained if needed (Kock,
2014d).

One puzzling aspect of many publicly available PLS-based SEM software systemsis that they
have historically avoided providing P values, instead providing standard errors and T values, and
leaving the users to figure out what the corresponding P values are. Often users have to resort to
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tablesrelating T to P values, or other software (e.g., Excel), to calculate P valuesbased on T
values.

Thisis puzzling because typically research reports will provide P values associated with path
coefficients, which are more meaningful than T values for hypothesis testing purposes. Thisis
due to the fact that P values reflect not only the strength of the relationship (which is already
provided by the path coefficient itself) but also the power of the test, which increases with
sample size. The larger the sample size, the lower a path coefficient hasto beto yield a
statistically significant P value.
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H.3. View standard errors and effect sizes for path coefficients

Standard errors and effect sizes for path coefficients are provided in two tables where one
standard error and effect size is provided for each path coefficient (see Figure H.3). The effect
sizes provided are similar to Cohen’ s (1988) f-squared coefficients. Standard errors and effect
sizes are provided in the same order as the path coefficients, so that users can easily visualize
them; and, in certain cases, use them to perform additional analyses.

FigureH.3. Standard errorsand effect sizesfor path coefficients window

Close  Help

Standard errors for path coefficients
ECU Effi Effe Proc Proc*Effi

ECU

Effi 0.109

Effe 0.056 0.055 0.043

Proc
Proc*Effi

Effect sizes for path coefficients
ECU Effi Effe Proc Proc*Effi

ECU

Effi 0.030

Effe 0.015 0.284 0.001

Proc
Proc*Effi

Even though the effect sizes provided are similar to Cohen’s (1988) f-squared coefficients,
they are calculated using a different procedure. The reason for thisis that the stepwise regression
procedure proposed by Cohen (1988) for the calculation of f-squared coefficients is generally not
compatible with PLS-based SEM algorithms. The removal of predictor latent variablesin latent
variable blocks, used in the stepwise regression procedure proposed by Cohen (1988), tendsto
cause changes in the weights linking latent variable scores and indicators, thus biasing the effect
Size measures.

The effect sizes are calculated by this software as the absolute values of the individual
contributions of the corresponding predictor latent variables to the R-squared coefficients of the
criterion latent variable in each latent variable block. With the effect sizes users can ascertain
whether the effectsindicated by path coefficients are small, medium, or large. The values
usually recommended are 0.02, 0.15, and 0.35; respectively (Cohen, 1988). Values below 0.02
suggest effectsthat aretoo weak to be considered relevant from a practical point of view,
even when the corresponding P values ar e statistically significant; a situation that may occur
with large sample sizes.

Additional types of analyses that may be conducted with standard errors are tests of the
significance of any mediating effects using the approach discussed by Kock (2013). This
approach consolidates the approaches discussed by Preacher & Hayes (2004), for linear
relationships, and Hayes & Preacher (2010), for nonlinear relationships. The latter, discussed by
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Hayes & Preacher (2010), assumes that nonlinear relationships are force-modeled as linear;
which means that the equivalent test using this software would use warped coefficients with the
earlier linear approach discussed by Preacher & Hayes (2004). Again, for the consolidated
version of these approaches, see Kock (2013). The classic approach used for testing mediating
effectsis discussed by Kock (2011b). This approach is a concise version of Baron & Kenny’s
(1986) classic approach, which does not rely on standard errors.

An aternative approach to the analysis of mediating effects, which is arguably much less
time-consuming and prone to error than the approaches mentioned above, would be to rely on the
estimation of indirect effects. These indirect effects and related P values are automatically
calculated by the software, and allow for the test of multiple mediating effects at once, including
effects with more than one mediating variable. Kock & Gaskins (2014) provide an empirical
illustration of the use of this approach. Indirect and total effects are discussed in more detail
later.

Another type of analysis that can employ standard errors for path coefficientsis what is often
referred to as a multi-group analysis, where path and measurement model coefficients (usually
weights) can be compared. One of the main goals of thistype of analysisisto compare pairs of
path coefficients for identical models but based on different samples. An example would be the
analysis of the same model but with data collected in two different countries. See Kock (2013)
for amore detailed discussion on the use of effect sizes and other coefficients generated by this
software on advanced mediating effects tests, comprehensive multi-group analyses, and
measurement model assessments.
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H.4. View indicator loadings and cross-loadings

The “View indicator loadings and cross-loadings’ menu options (see Figure H.4.1) allow users
to view combined loadings and cross-loadings, normalized combined loadings and cross-
loadings, pattern loadings and cross-loadings, normalized pattern loadings and cross-loadings,
structure loadings and cross-loadings, and normalized structure loadings and cross-loadings.

FigureH.4.1. Indicator loadings and cross-loadings options

View indicator loadings and cross-loadings » View combined loadings and cross-loadings

View indicator weights View normalized combined loadings and cross-loadings
View latent variable coefficients View pattern loadings and cross-loadings

View correlations among latent vanables and errors k View normalized pattern loadings and cross-loadings
View block variance inflation factors Wiew structure loadings and cross-loadings

View correlations among indicators View normalized structure loadings and cross-loadings

Combined loadings and cross-loadings are shown in awindow, asillustrated in Figure
H.4.2. The sameistrue for other combinations of loadings and cross-loadings, which are shown
in similar windows. Combined loadings and cross-loadings are provided in atable with each cell
referring to an indicator-latent variable link. Latent variable names are listed at the top of each
column, and indicator names at the beginning of each row. In thistable, the loadings are from a
structure matrix (i.e., unrotated), and the cross-loadings from a pattern matrix (i.e., rotated).
Indicator types, as defined, are also provided — reflective or formative.

Figure H.4.2. Combined loadings and cr oss-loadings window

ECUVar Proc Effi Effe Type (as defined) SE P wvalue
ECUVari |(1.000) 0.000 0.000 0.000 Reflective 0.050 =0.001
Procl 0.000 (0.844) 0.039 -0.030 Reflective 0.051 <0.001
Proc2 -0.040 (0.885) -0.081 0.130 Reflective 0.051 <0.001
Proc3 0.044 (0.814) 0.047 -0111 Reflective 0.052 <0.001
Effil -0.006 -0.014 (0.896) -0.019 Reflective 0.051 <0.001
Effi2 -0.065 0.035 (0.884) -0.126 Reflactive 0.051 <0.001
Effi3 0.005 0.052 (0.821) -0.026 Reflective 0.052 <0.001
Effid 0.079 0.117 (0.813) -0.01 Reflective 0.052 <0.001
Effi5 -0.008 0.043 (0.796) 0.200 Reflactive 0.052 <0.001
Effel -0.041 0.060 -0.050 (0.931) Reflective 0.051 <0.001
Effe? 0.032 -0.007 -0.051 (0.947) Reflective 0.050 <0.001
Effe3 0.006 0.024 0.080 (0.831) Reflective 0.051 <0.001
Effed 0.007 0.018 -0.038 (0.952) Reflective 0.050 <0.001
Effed 0.036 -0.075 0.006 (0.917) Reflactive 0.051 <0.001
Effed 0.032 -0.026 -0.066 (0.906) Reflective 0.051 <0.001
Effe? -0.074 0.00v 0.132 (0.894) Reflective 0.051 <0.001

In the combined loadings and cross-loadings window, since loadings are from a structure
matrix, and unrotated, they are always within the-1to 1 range. With some exceptions,
which are discussed below, this obviates the need for a normalization procedure to avoid the
presence of |oadings whose absolute values are greater than 1. The expectation here is that for
reflective latent variables |oadings, which are shown within parentheses, will be high; and cross-
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loadings will be low. Thetype of the latent variable as defined by the user, namely r eflective
or formative, isalso provided in this window to facilitate the application of validity and
reliability tests. The criteria used in these tests are typically different for formative and reflective
latent variables.

P values are provided for indicators associated with all latent variables. These P values
are often referred to as validation parameters of a confirmatory factor analysis (Kline, 1998;
Schumacker & Lomax, 2004), since they result from atest of a model where the relationships
between indicators and latent variables are defined beforehand. Conversely, in an exploratory
factor analysis (Ehremberg & Goodhart, 1976), relationships between indicators and latent
variables are not defined beforehand, but inferred based on the results of a factor extraction
algorithm. The principal components analysis algorithm is one of the most popular of these
algorithms, even though it is often classified as outside the scope of classic factor analysis.
Confirmatory factor analyses, instead of exploratory factor analyses, are usually conducted in
conjunction with SEM analyses.

For research reports, users will typically use the table of combined |oadings and cross-loadings
provided by this software when describing the convergent validity of their measurement
instrument. A measurement instrument has good convergent validity if the question-statements
(or other measures) associated with each latent variable are understood by the respondentsin the
same way as they were intended by the designers of the question-statements. In this respect, two
criteria are recommended as the basis for concluding that a measurement model has acceptable
convergent validity: that the P values associated with the loadings be equal to or lower than
0.05; and that the loadings be equal to or greater than 0.5 (Hair et a., 1987; 2009).

Indicators for which these criteria are not satisfied may be removed. This does not apply to
formative latent variableindicators, which are assessed in part based on P values
associated with indicator weights. If the offending indicators are part of a moderating effect,
then you should consider removing the moderating effect if it does not meet the requirements for
formative measurement. Moderating effect latent variable names are displayed on the table as
product latent variables (e.g., Effi* Proc).

Moderating effect indicator names are displayed on the table as product indicators (e.g.,
“Effil*Procl”). Long names are reduced to avoid a “ crowded” look. High P values for
moderating effects, to the point of being non-significant at the 0.05 level, may suggest
multicollinearity problems; which can be further checked based on the latent variable
coefficients generated by the software, more specifically, the full collinearity VIFs. Some degree
of collinearity isto be expected with moderating effects, since the corresponding product
variables are likely to be correlated with at least their component latent variables. Moreover,
moderating effects add nonlinearity to models, which can in some cases compound
multicollinearity problems. Because of these and other related issues, moderating effects should
be included in models with caution.

Standard errorsarealso provided for the loadings, in the column indicated as “ SE”, for
indicators associated with all latent variables. They can be used in specialized tests. Among other
purposes, these standard errors can be used in multi-group analyses, with the same model but
different subsamples. In these cases, users may want to compare the measurement models to
ascertain equivalence based on loadings and weights, using a multi-group comparison technigue
such as the one documented by Kock (2013) and Keil et al. (2000), and thus ensure that any
observed between-group differencesin structural model coefficients are not due to measurement
model differences. Keil et a.’s (2000) discussion on multi-group analyses includes an equation
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that contains an error; the correct form of the equation is used in Kock’ s (2013) discussion. The
equation in question is for the calculation of a pooled standard error, and is one of the two
equations discussed by Kock (2013) in the context of multi-group analyses; the other implements
the aternative Satterthwaite method. According to Keil et al. (2000), the original proponent of
the pooled standard error equation is Wynne Chin, one of the world’ s foremost authorities on
PLS-based SEM.

Normalized loadings and cr oss-loadings. Normalized versions of the combined, pattern, and
structure loadings and cross-loadings tables are also provided. In windows showing normalized
loadings and cross-loadings, a Kaiser normalization is employed to calculate them (Ferguson,
1981; Kaiser, 1958; Ogasawara, 1999). Through a Kaiser normalization, each row of atable of
loadings and cross-loadings is divided by the square root of its communality. This has the effect
of making the sum of squared valuesin each row add up to 1.

Using aKaiser normalization is reasonably standard practice (Ferguson, 1981; Ogasawara,
1999). Sometimes the normalization is followed by a de-normalization, which is not the case
with this software. The normalized values ar e useful in situations where the PL S Regression
algorithm isused and some of the latent variables have only 2 indicators, particularly with
respect to options displaying unrotated loadings. In such cases the unrotated loadings in the
combined loadings and cross-loadings window that are associated with each of the 2 indicators
are the same, because with the PL S Regression algorithm the inner model does not influence the
outer model. A Kaiser normalization will usually make indicator loadings diverge in valuein
these cases, in away that is consistent with standard practice and that, some researchers argue,
frequently leads to more conservative estimates of loadings and cross-loadings. For amore
detailed discussion, and areview of different perspectives on this topic, see Ogasawara (1999).

Pattern loadings and cross-loadings are provided in atable with each cell referring to an
indicator-latent variable link. Latent variable names are listed at the top of each column, and
indicator names at the beginning of each row. In thistable, both the loadings and cross-loadings
are from a pattern matrix (i.e., rotated).

Since these loadings and cross-loadings are from a pattern matrix, they are obtained after the
transformation of a structure matrix through awidely used oblique rotation frequently referred to
as Promax. The structure matrix contains the Pearson correlations between indicators and | atent
variables, which are not particularly meaningful prior to rotation in the context of measurement
instrument validation. Because an obliquerotation is employed, in some cases |oadings may
be higher than 1 (Rencher, 1998). This could be a hint that two or more latent variables are
collinear, although this may not necessarily be the case; better measures of collinearity among
latent variables are the full collinearity VIFs reported with other latent variable coefficients. In
the normalized version of thistable, typically therewill be no loadings higher than 1.

The main difference between oblique and orthogonal rotation methodsis that the former
assume that there are correlations, some of which may be strong, among latent variables.
Arguably obliquerotation methods are the most appropriatein a SEM analysis, because by
definition latent variables are expected to be correlated. Otherwise, no path coefficient would be
significant. Technically speaking, it is possible that a research study will hypothesize only
neutral relationships between latent variables, which could call for an orthogonal rotation.
However, thisisrardly, if ever, the case.

Structureloadings and cross-loadings are provided in atable with each cell referring to an
indicator-latent variable link. Latent variable names are listed at the top of each column, and
indicator names at the beginning of each row. In thistable, both the loadings and cross-loadings
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are from a structure matrix (i.e., unrotated). Often these are the only loadings and cross-loadings
provided by other PLS-based SEM software systems.

As the structure matrix contains the Pearson correl ations between indicators and | atent
variables, this matrix is not particularly meaningful or useful prior to rotation in the context of
collinearity or measurement instrument validation. Here the unrotated cross-loadings tend to be
fairly high, even when the measurement instrument passes widely used validity and reliability
tests. Thisis generaly true for the normalized version of this matrix.

Still, some researchers recommend using the structure loadings and cross-loadings table as
well to assess convergent validity, by following two criteria: that the cr oss-loadings be lower
than 0.5; and that the loadings be equal to or greater than 0.5 (Hair et al., 1987; 2009). Note
that the loadings here are the same as those provided in the combined |oadings and cross-
loadings table. The cross-loadings, however, are different. Also, these two criteria generaly
apply to the version of this table that is not normalized.

61



WarpPLS 5.0 User Manual

H.5. View indicator weights

Indicator weights are provided in atable, much in the same way as indicator loadings are (see
Figure H.5). All cross-weights are zero, because of the way they are calculated through PLS-
based alrgorithms. Each latent variable score is calculated as an exactly linear combination of its
indicators, or of itsindicators and measurement error, where the weights are multiple regression
coefficients linking the indicators to the latent variable.

FigureH.5. Indicator weights window

Proc Effi Effe ECU Type (as defined) SE P value VIF WLS ES

Procl (0.393) 0.000 0.000 0.000 Reflective 0.031 <0.001 1.781 1 0333 -

Proc2 (0.421) 0.000 0.000 0.000 Reflective 0.030 <0.001 2.051 1 0.375

Proc3 (0.362) 0.000 0.000 0.000 Reflective 0.035 <0.001 1.583 1 0.292

Effil 0.000 (0.245) 0.000 0.000 Reflective 0.014 <0.001 3.800 1 0.218
Effi2 0.000 (0.222) 0.000 0.000 Reflective 0.016 <0.001 4.036 1 0.194 L
Effi3 0.000 (0.238) 0.000 0.000 Reflective 0.019 <0.001 2414 1 0.194 [

Effid 0.000 (0.206) 0.000 0.000 Reflective 0.019 <0.001 2522 1 0.168

EFfi5 0.000 (0.278) 0.000 0.000 Reflective 0.020 <0.001 2494 1 0.227

Effel 0.000 0.000 (0.157) 0.000 Reflective 0.013 <0.001 7.843 1 0.147

Effe2 0.000 0.000 (0.152) 0.000 Reflective 0.012 <0.001 9.430 1 0.143

Effe3 0.000 0.000 (0.160) 0.000 Reflective 0.013 <0.001 2628 1 0134

Effed 0.000 0.000 (0.158) 0.000 Reflective 0.012 <0.001 8.708 1 0.150

EffeS 0.000 0.000 (0.149) 0.000 Reflective 0.011 <0.001 6.612 1 0.136

Effed 0.000 0.000 (0.139) 0.000 Reflective 0.010 <0.001 5548 1 0125

Effe? 0.000 0.000 (0.183) 0.000 Reflective 0.013 <0.001 4.209 1 0.165

ECUEmail 0.000 0.000 0.000 (-0.321) Formative 0.266 0.114 4.434 -1 0.068
EC|IEpmaillict 1000 {1 000 {1 000 (0 405} Formative 1 297 1 087 4 93 1 {1 15h =

Notes: P values < 0.05 and VIFs < 2.5 are desirable for formative indicators; VIF = indicator variance inflation factor; WLS = indicator weight-loading sign (-1 =
Simpson's paradox in L.v.); ES = indicator effect size.

Aswith indicator loadings, standard errorsare also provided here for the weights, in the
column indicated as “ SE”, for indicators associated with all latent variables. These standard
errors can be used in specialized tests. Among other purposes, they can be used in multi-group
analyses, with the same model but different subsamples. Here users may want to compare the
measurement models to ascertain equivalence, using a multi-group comparison technique such as
the one documented by Kock (2013), and thus ensure that any observed between-group
differencesin structural model coefficients, particularly in path coefficients, are not due to
measurement model differences.

P values are provided for weights associated with all latent variables. These values can
also be seen, together with the P values for loadings, as the result of a confirmatory factor
analysis. In research reports, users may want to report these P values as an indication that
formative latent variable measurement items were properly constructed. This also appliesto
moderating latent variables that pass criteria for formative measurement, when those variables do
not pass criteriafor reflective measurement.

Asin multiple regression analysis (Miller & Wichern, 1977; Mueller, 1996), itis
recommended that weightswith P valuesthat are equal to or lower than 0.05 be considered
valid itemsin aformative latent variable measurement item subset. Formative latent variable
indicators whose weights do not satisfy this criterion may be considered for removal.

With these P values, users can also check whether moderating latent variables satisfy validity
and reliability criteriafor formative measurement, if they do not satisfy criteriafor reflective
measurement. This can help users demonstrate validity and reliability in hierarchical analyses
involving moderating effects, where double, triple etc. moderating effects are tested. For
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instance, moderating latent variables can be created, added to the model as standardized
indicators, and then their effects model ed as being moderated by other latent variables; an
example of double moderation.

In addition to P values, variance inflation factors (VIFs) are provided for the indicators of
all latent variables, including moderating latent variables. These can be used for indicator
redundancy assessment. In reflective latent variables indicators are expected to be redundant.
Thisis not the case with formative latent variables. In formative latent variables indicators are
expected to measure different facets of the same construct, which means that they should not be
redundant.

The VIF threshold of 3.3 has been recommended in the context of PLS-based SEM in
discussions of formative latent variable measurement (Cenfetelli & Bassellier, 2009; Petter et al.,
2007). A rule of thumb rooted in the use of this software for many SEM analysesin the past
suggests an even more conservative approach: that capping VIFsto 2.5 for indicatorsused in
formative measurement leadsto improved stability of estimates. The multivariate analysis
literature, however, tends to gravitate toward higher thresholds. Also, capping VIFsat 2.5 or 3.3
may in some cases severely limit the number of possible indicators available. Given this, itis
recommended that VIFs be capped at 2.5 or 3.3 if this does not lead to a major reduction in the
number of indicators available to measure formative latent variables, and if the Cronbach’s alpha
coefficient associated with the formative latent variable does not fall below 0.6. One example
would be the removal of only 2 indicators out of 16 by the use of this rule of thumb, with the
Cronbach’ s alpha coefficient remaining equal to or greater than 0.6. Otherwise, the criteria below
should be employed.

Two criteria, one more conservative and one more relaxed, are recommended by the
multivariate analysis literature in connection with VIFs; criteriathat can arguably also be used in
thistype of context. More conservatively, it isrecommended that VIFsbelower than 5; a
morerelaxed criterion isthat they be lower than 10 (Hair et al., 1987; 2009; Kline, 1998).
High VIFs usually occur for pairs of indicators in formative latent variables, and suggest that the
indicators measure the same facet of aformative construct. This calls for the removal of one of
the indicators from the set of indicators used for the formative latent variable measurement.

These criteria are generally consistent with formative latent variable theory (see, eg.,
Diamantopoul os, 1999; Diamantopoul os & Winklhofer, 2001; Diamantopoulos & Siguaw,
2006). Among other characteristics, formative latent variables are expected, often by design, to
have many indicators. Y et, given the nature of multiple regression, indicator weights will
normally go down as the number of indicators go up, as long as those indicators are somewhat
correlated, and thus P values will normally go up as well. Moreover, as more indicators are used
to measure aformative latent variable, the likelihood that one or more will be redundant
increases. Thiswill bereflected in high VIFs.

Indicator weight-loading signs (WL S) are provided for the indicators of all latent variables.
A negative WLS (i.e, -1) for an indicator means that the indicator in question ismaking a
negative contribution to the R-squared of its latent variable. That is, a negative WL S suggests the
existence of a Simpson’ s paradox instance (Pearl, 2009; Wagner, 1982) in the outer model,
associated with a specific indicator assigned to a latent variable. A Simpson’ s paradox instance
in this context is a possible indication of a causality problem, suggesting that a hypothesized link
between an indicator and a latent variable is either implausible or reversed. Therefore, it is
recommended that all indicator WL Svalues be positive, for both formative and reflective
latent variables. Indicators associated with negative WL S values may be considered for removal.
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Effect sizesare provided in the column indicated as“ES’ for the indicators of al latent
variables. As with the effect sizes for paths, the effect sizes for indicators are calculated as the
absolute values of the individual contributions of the corresponding indicators to the R-squared
coefficients of the latent variable to which each indicator is associated. Similarly to the effect
sizesfor paths, with the indicator effect sizes users of this software can ascertain whether the
indicator effects are small, medium, or large. The values usually recommended are 0.02, 0.15,
and 0.35; respectively (Cohen, 1988). Values below 0.02 suggest effects that are too weak to be
considered relevant from a practical point of view, even when the corresponding P values are
statistically significant. It isrecommended that all indicator effect sizes be equal to or
greater than 0.02, for both formative and reflective latent variables. Indicators with effect sizes
that do not meet this criterion may be considered for removal.
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H.6. View latent variable coefficients

Several estimates are provided for each latent variable; these can be used in research reports
for discussions on the measurement instrument’ sreliability, discriminant and predictive validity,
aswell as overall collinearity (see Figure H.6). R-squared, adjusted R-squared, and Q-squared
coefficients are provided only for endogenous latent variables; and reflect the percentages of
explained variance and predictive validity associated with each of those latent variables,
respectively. Composite reliability and Cronbach’s alpha coefficients are provided for al latent
variables. Also provided for al latent variables are: minimum and maximum values, medians,
modes, skewness and excess kurtosis coefficients, results of unimodality and normality tests, and
histograms.

FigureH.6. Latent variable coefficientswindow

Commor Easgen Easund Complet
R-squared 0.003 04463 0.003
Adj. R-squared 0.002 0.446 -0.003
Composite reliab. 1.000 0.926 0.897 0.860
Cronbach's alpha 1.000 0.881 0.828 0.755
Avg. var. extrac. 1.000 0.807 0.744 0672
Full collin. VIF 1.430 1.761 221 1.178
Q-squared 0.010 0454 0.006
Min -0.997 -2.871 -2.982 -2.329
Max 0.997 1.850 1.931 2.815
Median 0.000 -0.039 -0.034 -0.033
Mode -0.997 -0.039 -0.034 -0.614
Skewness -0.000 -0.765 -0.537 011
Exc. kurtosis -2.000 0.561 -0.002 -0.206
Unimodal-RS Mo Yes Yes Yes
Unimodal-KMV Mo Yes Yes Yes
Mormal-18 Na Mo Mo Yes
Mormal-RIB MNa Mo Mo Yes
Histogram View View View WView

Composite reliability and Cronbach’ s al pha coefficients are measures of reliability. Serious
questions have been raised regarding Cronbach’ s apha’ s (Cronbach, 1951; Kline, 2010)
psychometric properties. However, while the Cronbach’ s alpha coefficient is reported by this
software, and the Factor-Based PL S algorithms employ it as a basis for the estimation of
measurement error and composite weights, no assumptions are made about the coefficient’s main
purported psychometric properties that have been the target of criticism (Sijtsma, 2009). Thisis
an important caveat in light of measurement error theory (Nunnally & Bernstein, 1994). Users
should also keep in mind that an alternative and generally more acceptable reliability measureis
available, the composite reliability coefficient (Dillon & Goldstein, 1984; Peterson & Y eolib,
2013). Composite reliability coefficients are aso known as Dillon—-Goldstein rho coefficients
(Tenenhaus et al., 2005).

Average variances extracted (AVEs) and full collinearity variance inflation factors (VIFs) are
also provided for all latent variables; and are used in the assessment of discriminant validity and
overall collinearity, respectively.
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Adjusted R-sguared coefficients (Theil, 1958; Wooldridge, 1991) are equivalent to R-squared
coefficients, with the key difference that they correct for spurious increases in R-squared
coefficients due to predictors that add no explanatory value in each latent variable block.
Consistently with general recommendations made by Cohen (1988), values of R-squared
coefficients and adjusted R-squared coefficients below 0.02 suggest combined effects of
predictorsin latent variable blocks that are too weak to be considered relevant from a practical
point of view. Therefore, models wher e R-squar ed coefficients or adjusted R-squared
coefficients are below 0.02 should be considered for revision, as the explanatory power in
sub-models (i.e., latent variable blocks) is below reasonable expectations. Revisionsin these
models could involve inner and outer model changes, such as removal or change in location of
mediating latent variables as well asremoval or reassignment of indicators.

The following criteria, one more conservative and the other two more relaxed, are suggested in
the assessment of the reliability of a measurement instrument. These criteria apply only to
reflective latent variable indicators. Reliability is a measure of the quality of a measurement
instrument; the instrument itself istypically a set of question-statements. A measurement
instrument has good reliability if the question-statements (or other measures) associated with
each latent variable are understood in the same way by different respondents.

More conservatively, both the composite reliability and the Cronbach’s alpha coefficients
should be equal to or greater than 0.7 (Fornell & Larcker, 1981; Nunnaly, 1978; Nunnally &
Bernstein, 1994). The more relaxed version of this criterion, which iswidely used, is that one of
the two coefficients should be equal to or greater than 0.7. This typically applies to the composite
reliability coefficient, which is usually the higher of the two (Fornell & Larcker, 1981). An even
more relaxed version sets this threshold at 0.6 (Nunnally & Bernstein, 1994). If alatent variable
does not satisfy any of these criteria, the reason will often be one or afew indicators that |oad
weakly on the latent variable. These indicators should be considered for removal.

AVEsarenormally used for discriminant validity assessment and, less commonly, for
convergent validity assessment. For discriminant validity assessment, AVEsareused in
conjunction with latent variable correlations. Thisis discussed in more detail |ater, together with
the discussion of the table of correlations among latent variables that includes square roots of
AVEs. For convergent validity assessment, the AV E threshold frequently recommended for
acceptable validity is 0.5 (Fornell & Larcker, 1981), and applies only to reflective latent
variables.

Full collinearity VIFs are shown for al latent variables, separately from the VIFs calculated
for predictor latent variablesin individual latent variable blocks. These VIFs are calculated based
on afull collinearity test (Kock & Lynn, 2012), which enables the identification of not only
vertical but also lateral collinearity, and allows for atest of collinearity involving all latent
variablesin amodel. Vertical, or classic, collinearity is predictor-predictor latent variable
collinearity in individual latent variable blocks. Lateral collinearity isaterm coined by Kock &
Lynn (2012) that refers to predictor-criterion latent variable collinearity; atype of collinearity
that can lead to particularly misleading results. Full collinearity VIFs can also be used for
common method biastests (Kock & Lynn, 2012; Lindell & Whitney, 2001) that are more
conservative than, and arguably superior to, the traditionally used tests relying on exploratory
factor analyses.

A rule of thumb rooted in the use of this software for many SEM analyses in the past suggests
that full collinearity VIFs of 3.3 or lower suggest the existence of no multicollinearity in the
model and no common method bias. Thisis aso the recommended threshold for VIFs for latent
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variablesin PLS-based SEM (Kock & Lynn, 2012) and also in slightly different contexts
(Cenfetelli & Bassdllier, 2009; Petter et a., 2007). On the other hand, two criteria, one more
conservative and one more relaxed, are recommended by the multivariate analysis literature in
connection with VIFs. They may apply in thistype of context aswell; although they may be
more adequate in path analyses, where all latent variables are measured through single
indicators. More conservatively, it isrecommended that VIFsbelower than 5; amore
relaxed criterion isthat they be lower than 10 (Hair et al., 1987; 2009; Kline, 1998).

Q-squared coefficients are also known as Stone-Geisser Q-squared coefficients, so named
after their principal original proponents (Geisser, 1974; Stone, 1974). The Q-squared coefficient
is a nonparametric measure traditionally calculated via blindfolding. It is used for the assessment
of the predictive validity (or relevance) associated with each latent variable block in the model,
through the endogenous latent variable that is the criterion variable in the block. The Q-squared
coefficient is sometimes referred to as aresampling analog of the R-squared coefficient. Itis
often similar in value to that measure; even though the Q-squared coefficient can more easily
assume negative values. Acceptable predictive validity in connection with an endogenous
latent variableis suggested by a Q-squar ed coefficient greater than zero.

The unimodality tests for which results are provided are the Rohatgi- Székely test (Rohatgi &
Székely, 1989) and the Klaassen-Mokveld-van Es test (Klaassen et a., 2000). The nor mality
tests for which results are provided are the classic Jarque-Beratest (Jarque & Bera, 1980; Bera
& Jarque, 1981) and Gel & Gastwirth’s (2008) robust modification of thistest. Since these tests
are applied to latent variables, which are combinations either of indicators or of indicators and
measurement errors, the outcomes of thesetests can be seen as“ multivariate’” unimodality
and normality test results.

Both unimodality and normality test results take the form of a“Yes’ or “No”, meaning that
the latent variable distributions are or are not, respectively, unimodal or normal. No unimodality
or normality for at least one latent variable (or indicator) is usually seen as an sign that the
nonparametric methods used in this software are particularly appropriate. That is, users of this
software can justify employing it by noting that not all latent variables are unimodal and normal.
It is noteworthy that the non-nor mality justification for the use of non-parametric PL S-based
SEM methods has been widely employed in the past, but typically without any accompanying
test of normality!
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H.7. View correlations among latent variables and errors

The “View correlations among latent variables and errors” menu options (see Figure H.7.1)
allow usersto view tables containing correlations among latent variables, the P values associated
with those correlations, square roots of AV ES, correlations among latent variable error terms (or
residuals), and the VIFs associated with latent variable error terms (see figures H.7.2 and H.7.3).

FigureH.7.1. Correlationsamong latent variables and errors options

View correlations among latent variables and errors 4 View correlations among latent variables with sq. rts. of AVEs

View block variance inflation factors View correlations among latent variable error terms with VIFs

FigureH.7.2. Correlations among latent variables with squareroots of AVEs

Correlations among l.vs. with sq. rts. of AVEs
Proc Effi Effe ECU
Proc |(0.848) 0.460 0.348 0.3M
Effi  |0.460 (0.842) 0.540 0101
Effe [0.348 0.540 (0.912) 0187
ECu (0371 0.101 0.157 (0.335)

Figure H.7.2. Correlations among latent variable error termswith VIFs

Correlations among l.v. error terms with VIFs

(e]Proc (e)Effi (e)Effe
(e)Proc  |(1.001) 0.025 -0.028
(e)Effi 0.025 (1.001) -0.002
(e)Effe -0.028 -0.002 (1.001)

In most research reports, users will typically show the table of correlations among latent
variables, with the square roots of the average variances extracted on the diagonal, to
demonstrate that their measurement instruments pass widely accepted criteria for discriminant
validity assessment. A measurement instrument has good discriminant validity if the question-
statements (or other measures) associated with each latent variable are not confused by the
respondents answering the questionnaire with the question-statements associated with other
latent variables, particularly in terms of the meaning of the question-statements.

The following criterion is recommended for discriminant validity assessment: for each latent
variable, the squareroot of the aver age variance extracted should be higher than any of the
correlationsinvolving that latent variable (Fornell & Larcker, 1981). That is, the values on the
diagonal of the table containing correlations among latent variables, which are the square roots
of the average variances extracted for each latent variable, should be higher than any of the
values above or below them, in the same column. Or, the values on the diagonal should be higher
than any of the valuesto their left or right, in the same row; which means the same as the
previous statement, given the repeated values of the latent variable correlations table.

The above criterion appliesto reflective and for mative latent variables, aswell as product
latent variables representing moder ating effects. If it is not satisfied, the culprit isusually an
indicator that loads strongly on more than one latent variable. Also, the problem may involve
more than one indicator. Y ou should check the loadings and cross-loadings tables to seeif you
can identify the offending indicator or indicators, and consider removing them.
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Second to latent variables involved in moderating effects, formative latent variables are the
most likely to lead to discriminant validity problems. Thisis one of the reasons why formative
latent variables are not used as often as reflective latent variables in empirical research. In fact, it
iswiseto use formative variables sparingly in models that will serve as the basis for SEM
analysis. Formative variables can in many cases be decomposed into reflective latent variables,
which themselves can then be added to the model. Often this provides a better understanding of
the empirical phenomena under investigation (Edwards, 2011), in addition to helping avoid
discriminant validity problems.

A table with correlations among latent variable error terms containing VIFs associated
with the error termson the diagonal is also provided. Thistable may be useful in identifying
error terms that are highly correlated, which suggest the existence of confounders. More
specificaly, if alatent variable A points at alatent variable B, and the error terms (e)A and (€)B
are strongly correlated, then this may be an indication of the existence of a hidden confounder.
This hidden confounder may be the real cause behind a significant association between A and B,
suggesting a causality problem; namely one in which alink may in fact not be a“true” causal
link but rather be due to athird variable, the confounder. Particularly problematic are situations
in which error terms are so highly correlated that they can be considered redundant, which are
indicated by high VIFsin the diagonal of thistable. To rule out these situations, and consistently
with recommendations by Kock & Lynn (2012), it isrecommended that the VIFs associated
with the error terms be equal to or lower than 3.3.
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H.8. View block variance inflation factors

Block variance inflation factors (VIFs) are provided in table format (see Figure H.8) for each
latent variable that has two or more predictors in alatent variable block. Block VIFs cannot be
calculated for latent variables with only one predictor or no predictor. Here each VIF is
associated with one of the two or more predictors, and relates to the link between that predictor
and its latent variable criterion. (When one predictor latent variable points at two or more
different latent variables in the model, then that latent variable is said to have multiple criteria
associated with it.)

FigureH.8. Block varianceinflation factors window

Close Help

ECUVar Proc Effi Effe Effi*Proc
ECUVar
Proc
Effi 1.007 1.007
Effe 1231 123
Effi*Proc

In this context, a VIF is a measure of the degree of “vertical” collinearity (Kock & Lynn,
2012), or redundancy, among the latent variables that are hypothesized to affect another latent
variable. This classic type of collinearity refers to predictor-predictor collinearity in alatent
variable block containing one or more latent variable predictors and one latent variable criterion
(Kock & Lynn, 2012). For example, let us assume that there is ablock of latent variablesin a
model, with three |atent variables A, B, and C (predictors) pointing at latent variable D. In this
case, VIFs are calculated for A, B, and C, and are estimates of the multicollinearity among these
predictor latent variables.

A rule of thumb rooted in the use of this software for many SEM analysesin the past, as well
as past methodological research, suggests that block VIFs of 3.3 or lower suggest the existence
of no vertical multicollinearity in alatent variable block (Kock & Lynn, 2012). Thisisaso
the recommended threshold for VIFsin slightly different contexts (Cenfetelli & Bassdllier, 2009;
Petter et a., 2007). On the other hand, two criteria, one more conservative and one more relaxed,
are aso recommended by the multivariate analysis literature, and can also be seen as applicable
in connection with VIFs in this context.

More conservatively, it isrecommended that block VIFsbelower than 5; a morerelaxed
criterion isthat they belower than 10 (Hair et a., 1987; 2009; Kline, 1998). These criteria
may be particularly relevant in the context of path analyses, whereall latent variables are
measur ed through single indicator s (technically, these are not “true” latent variables). The
reason why these criteria may be particularly relevant in the context of path analysesis that,
without multiple indicators per latent variable, the PLS-based SEM agorithms do not have the
“raw material” that they need to reduce collinearity. PLS-based SEM algorithms are particularly
effective at reducing collinearity, but chiefly when “true” latent variables are present; that is,
when |atent variables are measured through multiple indicators.

High block VIFs usually occur for pairs of predictor latent variables, and suggest that the
latent variables measure the same construct. If thisis not due to indicator assignment problems, it
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would arguably call for the removal of one of the latent variables from the block, or from the
model.
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H.9. View correlations among indicators

The software allows users to view the correlations among all indicators included in the model,
in table format. Only the correlations for indicators included in the model are shown through the
menu option “View correlations among indicators’, available from the “View and save results’
window.

This option is useful for users who want to run a quick check on the correlations among
indicators while they are trying to identify possible sources of multicollinearity. This option may
also be useful in the identification of candidate indicators for latent variables through the anchor
variable procedure developed by Kock & Verville (2012).

The table of correlations among indicators used in the model is usually much larger, with
many more columns and rows, than that of the correlations among latent variables. For this
reason, the P values for the correlations are not shown in the screen view option together with the
correlations, but are saved in the related tab-delimited text file.

To save correlations among all indicators and respective P values, including those indicators
not included in the model, use the menu option “Data’, and the appropriate sub-options therein.
It should be noted that indicators that are not included in the model are not technically “true’
indicators. Nevertheless, they do fall under the general term “manifest variables’; asthey are
directly measured, and thus not “latent”, variables. They refer to the columns of the original
dataset.

The menu option for saving correlations among all manifest variables, which refer to all
columns of the original dataset, is available from the main software window under “Data’”, after
Step 3 is completed. This option is generally more meaningful for users who want to include the
correlations among manifest variables in their research reports, as part of a descriptive statistics
table, and for users employing the anchor variable procedure developed by Kock & Verville
(2012). This option also generates means, standard deviations, and other descriptive statistics for
each of the manifest variables. Manifest variables that are not used in the model, and that thus
are not “true” indicators, may ssimply be deleted prior to the inclusion in aresearch report.
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H.10. View/plot linear and nonlinear relationships among latent variables

Choosing the menu option “View/plot linear and nonlinear rel ationships among |atent
variables’ causes the software to show atable with the types of relationships, warped or linear,
between latent variables that are linked in the model (see Figure H.10.1). The term “warped” is
used for relationships that are clearly nonlinear, and the term “linear” for linear or quasi-linear
relationships. Quasi-linear relationships are dightly nonlinear relationships, which look linear
upon visual inspection on plots of the regression curves that best approximate the relationships.

FigureH.10.1. Linear and nonlinear (“warped”) relationships among latent variables window

Close  Help

Click on a "Linear" or "Warped" relationship cell to view plot

ECUVar Proc Effi Effe Effi*Proc
ECUVar
Prac Warped
Effi Warped Warped
Effe Warped Warped
Effi*Proc

Figure H.10.2. Graph optionsfor direct effectsincluding one with points and best-fitting curve

View | Save Settings Close Help

View focused relationship graphs 3
e e s i s > st-fitting curve and data points for multivaniate relationship (standardized scalels} ‘
View relationship graphs with data points 4 View multivariate relationship graph with data points (standardized scales) ) o -
View relationship graphs with data points and legends ¥ View multivariate relationship graph with data points (unstandardized scales) o} OO QE)
View relationship graphs with data points and labels  » View bivariate relationship graph with data points (standardized scales) g oo ® o]
View bivariate relationship graph with data points (unstandardized scales) WO o 8
Il 083 o] = 3 oo oo@ c8" O O, 0 § oo g _|
o g e 8 “ e
[5)
[#5)
0.07 - -
=
w
-0.68 - —
143 - —
218 — —

Several graphs (a.k.a. plots) for direct effects can be viewed by clicking on a cell containing a
relationship type description. These cells are the same as those that contain path coefficients, in
the path coefficients table that was shown earlier. Among the options available are graphs
showing the points as well as the curves that best approximate the relationships (see Figure
H.10.2).

The*“View focused relationship graphs’ options allow users to view graphs that focus on the
best-fitting line or curve and that exclude data points to provide the effect of zooming in on the
best-fitting line or curve area. The options available are: “View focused multivariate
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relationship graph (standardized scales)”, “View focused multivariate relationship graph
(unstandar dized scales)”, “View focused bivariate relationship graph (standar dized
scales)”, and “View focused bivariate relationship graph (unstandar dized scales)”.

The options above, like other direct effects graph options discussed here, combine variations
in terms of two main aspects: whether the scales are standar dized or unstandar dized, and
whether the graphs refer to multivariate or bivariate relationships.

By default, latent variable scores ar e standar dized aggr egations of indicators. The latter,
namely the indicators, are originally in unstandardized format. Therefore, to obtain the
unstandardized equivalents of the latent variable scores, some decisions must be made and extra
calculations performed. The unstandardized equivalents of latent variable scores are always
approximations.

Unstandar dization of scalesfor latent variable scores, whereby standardized scales are
converted to their unstandardized equivalents, is based on the unstandardization option chosen
by the user using the “ Settings” menu option. Three unstandardization options are available:
“Highest loading indicator”, the default option, whereby the mean and standard deviation of the
highest loading indicator is used in the unstandardization; “ Aver age of indicators’, whereby the
mean and standard deviation of the average of indicators is used; and “Weighted aver age of
indicators’, whereby the mean and standard deviation of the weighted average of indicatorsis
used.

Through the “ Settings’ menu option the user can also set the graph title, the X axislabel,
and the Y axislabel. The graph title is the text shown at the top of the graph. The X axislabel is
the text shown next to the X axis, or the horizontal axis. The'Y axislabel isthe text shown next
totheY axis, or the vertical axis.

Multivariate and bivariate relationship graphs usually differ only when two or more
predictor latent variables point at one criterion latent variable in a latent variable block. The
addition of predictors will normally reduce the path coefficientsin alatent variable block.
Because of this, typically a multivariate relationship graph will have a lower overall
inclination (or steepness) than its corresponding bivariaterelationship graph. However, this
isnot always the case. In statistical suppression instances (MacKinnon et al., 2000), a
multivariate relationship graph will have a greater overall inclination than its
corresponding bivariate relationship graph. In Simpson’s par adox instances (Pear |, 2009;
Wagner, 1982), multivariate and bivariate relationship graphswill have rever sed overall
inclinations— e.g., one will be positive and the other negative.

This software is arguably the first and only, at the time of thiswriting, to provide both
multivariate and bivariate representations of nonlinear relationships. The mathematics underlying
the rendering of these representations is complex and somewhat novel. Therefore, these
representations should be treated as experimental by users of this software, and any conclusions
derived from visual inspection of these representations should be treated with caution.

The “View focused relationship graphswith segments’ options alow usersto view graphs
that focus on the best-fitting line or curve, that exclude data points to provide the effect of
zooming in on the best-fitting line or curve area, and that show curves as linear segments. The
segments are shown with their respective beta coefficients and with or without P values. The
options available are: “View focused multivariate relationship graph with segments
(standar dized scales)”, “View focused multivariate relationship graph with segments
(standardized scales, P values)”, “View focused multivariate relationship graph with
segments (unstandar dized scales)”, “View focused bivariaterelationship graph with
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segments (standar dized scales)”, “View focused bivariate relationship graph with segments
(standar dized scales, P values)”, and “View focused bivariate relationship graph with
segments (unstandar dized scales)”.

The number of segments shown in the graphs above depends on the absolute effect
segmentation delta chosen by the user through the “ Settings’ menu option. This absolute effect
segmentation deltais the change (or delta) threshold in the first derivative of the nonlinear
function depicting the relationship before a new segment is started. For example, adeltaof 0.1
means that in each segment the first derivative of the nonlinear function depicting the
relationship does not vary more than 0.1. Since the first derivative does not change in linear
relationships, segmentation only occursin nonlinear relationships. This graph segmentation
option alows for the identification of unobserved heterogeneity (Sarstedt & Ringle, 2010)
without a corresponding reduction in sample size, providing an alternative to data segmentation
approaches such as FIMIX-PLS (Hahn et al., 2002).

The “View relationship graphswith data points’ options allow usersto view graphs with
the best-fitting lines or curves and the data points used to produce the best-fitting lines or curves.
These options show all the data points, and thus do not provide the effect of zooming in on the
best-fitting line or curve area. The options available are: “View multivariate relationship
graph with data points (standar dized scales)”, “View multivariate relationship graph with
data points (unstandar dized scales)”, “View bivariaterelationship graph with data points
(standardized scales)”, and “View bivariate relationship graph with data points
(unstandar dized scales)”.

The “View relationship graphswith data points and legends’ options allow usersto view
graphs with the best-fitting lines or curves, the data points used to produce the best-fitting lines
or curves, and legends associated with data labels. These options show all the data points, and
thus do not provide the effect of zooming in on the best-fitting line or curve area. They are useful
in cases where many data points are available, because in these cases showing legends instead of
datalabels next to points avoids graph crowding. The options available are: “View multivariate
relationship graph with data points and legends (standar dized scales)”, “View multivariate
relationship graphswith data points and legends (unstandar dized scales)”, “View bivariate
relationship graph with data points and legends (standar dized scales)”, and “View bivariate
relationship graphswith data points and legends (unstandar dized scales)”.

The*View relationship graphswith data points and labels’” options allow usersto view
graphs with the best-fitting lines or curves, the data points used to produce the best-fitting lines
or curves, and data labels next to the data points to which they refer. These options show all the
data points, and thus do not provide the effect of zooming in on the best-fitting line or curve area.
They are useful in cases where few data points are available, because in these cases showing data
labels next to points provides a clear picture of what each data point refers to without graph
crowding. The options available are: “View multivariate relationship graph with data points
and labels (standar dized scales)”, “View multivariate relationship graphswith data points
and labels (unstandar dized scales)”, “View bivariaterelationship graph with data points
and labels (standar dized scales)”, and “View bivariate relationship graphswith data points
and labels (unstandar dized scales)”.

As mentioned earlier in this manual, the Warp2 and the Warp2 Basic agorithms try to identify
a U-curve relationship between each pair of predictor-criterion latent variables, and, if that
relationship exists, the algorithm used transforms (or “warps’) the scores of the predictor latent
variables so as to better reflect the U-curve relationship in the estimated path coefficientsin the
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model. The Warp3 and the Warp3 Basic algorithms, the former being the default algorithm used
by this software, try to identify arelationship defined by afunction whose first derivativeis a U-
curve. Thistype of relationship follows a pattern that is more similar to an S-curve (or a
somewhat distorted S-curve), and can be seen as a combination of two connected U-curves, one
of which isinverted.

Sometimes a Warp3-based analysis will lead to results that tell you that a relationship between
two latent variables has the form of a U-curve or aline, as opposed to an S-curve. Similarly,
sometimes a Warp2-based analysis will tell you that arelationship has the form of aline. Thisis
because the underlying algorithms find the type of relationship that best fits the distribution of
points associated with a pair of latent variables, and sometimes those types are not S-curves or
U-curves.

Aswith direct effects, several graphs (a.k.a. plots) for moder ating effects can be viewed
by clicking on a cell containing a relationship type description. These cells are the same as those
that contain path coefficients, in the path coefficients table that was shown earlier. Their column
labels are displayed on the table as product latent variables (e.g., Effi* Proc). In this example,
namely Effi* Proc, the latent variable Effi is hypothesized to moderate the relationship between
Proc and another latent variable, where Proc points at the third latent variable. The third latent
variableis listed in the corresponding row label. Among the options available are 3-dimensional
(3D) graphs showing the points as well as the surfaces that best approximate the relationships
(see Figure H.10.3).

Figure H.10.3. Graph optionsfor moder ating effectsincluding 3D graph with points and best-fitting surface

View | Rotate Save Settings Close Help

View moderating relationship in one rocky 30 graph 4 View rocky 30 graph for moderating effect (standardized scales)
View moderating relationship in one smooth 3D graph 3 View rocky 3D graph for moderating effect (unstandardized scales)
View moderating relationship in one focused graph 3 View rocky 3D graph for moderating effect with data points (standardized scales)

View moderating relationship in one graph with data points  » View rocky 3D graph for moderating effect with data points (unstandardized scales)

View moderating relationship in two graphs with data points » | '
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M oderating relationships involve three latent variables, the moderating variable and the pair of
variables that are connected through adirect link. The sign and strength of a path coefficient
for a moderating relationship refer to the effect of the moder ating variable on the sign and
strength of the path for the direct relationship that it moderates. For example, if the path for
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the direct relationship has its sign going from negative to positive and becomes significantly
stronger in that direction as one moves from the low to the high range of the moderating variable,
then the sign of the path coefficient for the corresponding moderating relationship will be
positive and the path coefficient will be relatively high; possibly high enough to yield a
statistically significant effect.

No moderating relationship graph currently available from this software accurately represents
the true nature of a moderating relationship. This comment seemsto apply to al other publicly
available SEM software tools; to the best of our knowledge, and at the time of this writing.
Therefore various graphs are provided so that users can choose the one that in their view best
illustrates the relationship. An accur ate r epr esentation of a moder ating relationship would be
that of a multivariate distortion in the surface representing the relationship. The distortion
refersto a“twisting” of the surface around the moder ating variable axis, with amultivariate
adjustment, and with corresponding changes in the overall inclinations of the sections of the
surface representing the direct effect being moderated. The mathematical underpinnings of such
representation were still under development at the time of this writing, and may be available for
implementation in future versions of this software.

The “View moder ating relationship in onerocky 3D graph” options allow usersto view 3D
graphs where the surfaces are generated through Delaunay triangulations (Chew, 1989; Lee &
Schachter, 1980) without smoothing. Surfaces can be viewed with data points excluded or
included. The displays with data points excluded are analogous to those used in the focused 2D
graphs. The optionsto view surfaces with data points excluded are: “View rocky 3D graph for
moder ating effect (standardized scales)” and “View rocky 3D graph for moder ating effect
(unstandar dized scales)”. The options to view surfaces with data pointsincluded are: “View
rocky 3D graph for moder ating effect with data points (standardized scales)”, and “View
rocky 3D graph for moder ating effect with data points (unstandar dized scales)”.

The “Rotate” menu option allows the user to rotate a 3D graph up, down, left, and right.
Through the “ Settings’ menu option the user can set the following 3D graph options: the
graph title, the moderating variable (M) axislabel, the X axislabel, and the Y axislabel.
The graph title is the text shown at the top of the graph. The M axis label is the text shown next
to the moderating variable axis. The X axislabel is the text shown next to the X axis, or the
predictor variable axis. The Y axislabel isthe text shown next to the Y axis, or the criterion
variable axis.

The “View moder ating relationship in one smooth 3D graph with data points’ options
allow usersto view 3D graphs where the surfaces are generated through Delaunay triangulations
(Chew, 1989; Lee & Schachter, 1980) with smoothing. Because the surfaces are generated with
smoothing, they sometimes resemble more bed sheets than rocky mountain formations. Surfaces
can be viewed with data points excluded or included. The optionsto view surfaces with data
points excluded are: “View smooth 3D graph for moder ating effect (standar dized scales)”
and “View smooth 3D graph for moder ating effect (unstandar dized scales)”. The optionsto
view surfaces with data points included are: “View smooth 3D graph for moder ating effect
with data points (standar dized scales)”, and “View smooth 3D graph for moder ating effect
with data points (unstandar dized scales)”.

In addition to 3D graphs, this softwar e also providesvarious 2-dimensional (2D) graphs
of moder ating relationships. The 2D graphs shown for moderating relationships refer to low
and high values of the moderating variable, and display the relationships of the variables
connected through the moderated direct links in those ranges.
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The “View moder ating relationship in one focused graph” options allow usersto view 2D
moderating effect graphs that focus on the best-fitting lines or curves for high and low values of
the moderating variable, and that exclude data points to provide the effect of zooming in on the
area comprising the best-fitting lines or curves. The options available are: “View focused graph
with low-high values of moder ating variable (standardized scales)”, and “View focused
graph with low-high values of moderating variable (unstandar dized scales)”.

Through the “ Settings” menu option the user can also set the following 2D moder ating
effect graph options: the graph title, the labels associated with high and low values of the
moder ating variable, and the location of the legend box containing these labels. These
options allow users to create more informative 2D moderating relationship graphs. For example,
instead of “Low Exp” and “High Exp”, more informative labels such as “Novices’ and
“Veterans’ could be used. Setting the location of the legend box (e.g., from “East” to
“Northwest”) allows users to move the legend box from more to less crowded areas of the graph,
giving the graph a more balanced and “ cleaner” appearance.

The “View moder ating relationship in one graph with data points’ options allow usersto
view 2D moderating effect graphs with the best-fitting lines or curves for high and low values of
the moderating variable, and the data points used to produce the best-fitting lines or curves.
These options show all the data points, and thus do not provide the effect of zooming in on the
area comprising the best-fitting lines or curves. The options available are: “View graph with
low-high values of moder ating variable and data points (standardized scales)”, and “View
graph with low-high values of moder ating variable and data points (unstandar dized
scales)”.

The “View moder ating relationship in two graphswith data points’ options allow usersto
view 2D moderating effect graphs with the best-fitting lines or curves for high and low values of
the moderating variable, and the data points used to produce the best-fitting lines or curves, in
two graphs shown side-by-side. These options show all the data points, and thus do not provide
the effect of zooming in on the areas comprising the best-fitting lines or curves. The options
available are: “View two graphswith low-high values of moder ating variable and data
points (standardized scales)”, and “View two graphswith low-high values of moderating
variable and data points (unstandar dized scales)”.

The graphs of relationships between pairs of latent variables, and between latent variables and
links (moderating relationships), provide a much more nuanced view of how latent variables are
related. However, caution must be taken in theinter pretation of these graphs, especially
when the distribution of data pointsisvery uneven.

An extreme example would be awarped graph in which al of the data points would be
concentrated on the right part of the graph, with only one data point on the far left part of the
graph. That single data point, called an outlier, could strongly influence the shape of the
nonlinear relationship. In cases such as this, the researcher must decide whether the outlier is
“good” datathat should be allowed to shape the relationship, or is simply “bad” data resulting
from a data collection error.

If the outlier isfound to be “bad” data, it can be removed from the analysis, even asit remains
in the dataset, by a simple procedure. The user should first add the latent variable score to the set
of standardized indicators used in a SEM analysis, using the appropriate menu option under the
option “Modify”, from the main software window, after Step 5 is completed. The user can then
remove the outlier by restricting the values assumed by the latent variable, using the appropriate
selections under the “ Settings’ options, to a range that excludes the outlier. This allows for the
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exclusion of the outlier without the user having to modify and re-read a dataset. This procedure
may lead to avisible change in the shape of the nonlinear relationship, and significantly affect
the results.

An outlier that isfound to be “bad” data can also be removed from the dataset, and thus from
the analysis, by a more time-consuming procedure. The user should first save the latent variable
scoresinto afile, using the appropriate Save” menu option in the results window, after Step 5is
completed. Then the user should add those scores to the original dataset; the rows will bein the
same order. Next the user should open the modified dataset with a spreadsheet software tool
(e.g., Excel). The outlier should be easy to identify on the dataset (e.g., avalue greater than 4),
and should be eliminated. Then the user should re-read this modified file asif it was the original
datafile, and run all of the SEM analysis steps again.
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H.11. View indirect and total effects

Through the “View indirect and total effects’ options the software allows usersto view
outputs for indirect and total effects (Bollen, 1987; Kock & Gaskins, 2014) associated with all
latent variables that are linked via one or more paths with more than one segment. The options
available are “View indirect and total effects (table view)” and “View indirect and total
effects (classic view)”. The difference between these two options is that the former shows
indirect and total effects outputs in extendable table format, and the latter in wrapped text format.
The former option, corresponding to the table view, is recommended in complex models with
many links among latent variables. Figure H.11 illustrates the latter option, the classic view,
which is so named because it was the option used in previous versions of the software.

FigureH.11. Indirect and total effects window
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For each set of indirect and total effects, the following values are provided: the path
coefficients associated with the effects, the number of paths that make up the effects, the P
values associated with effects (calculated via resampling, using the selected resampling method),
the standard errors associated with the effects, and effect sizes associated with the effects.

Indirect effects are aggregated for paths with a certain number of segments. As such, the
software provides separate reports, within the same output window, for paths with 2, 3 etc.
segments. The software also provides a separate report for sums of indirect effects, aswell asfor
total effects. All of these reportsinclude P values, standard errors, and effect sizes.

Having accessto indirect and total effects can be critical in the evaluation of downstream
effects of latent variables that are mediated by other latent variables, especially in complex
models with multiple mediating effects along concurrent paths. Indirect effects also allow for
direct estimations, via resampling, of the P values associated with mediating effects that have
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traditionally relied on non-automated and thus time-consuming cal cul ations based on linear
(Preacher & Hayes, 2004) and nonlinear (Hayes & Preacher, 2010) assumptions.
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H.12. View causality assessment coefficients

The “View causality assessment coefficients’ options allow usersto view a number of
coefficients associated with individual paths that can be used in causality assessment. The
options available are: “View path-correlation signs’, “View R-squared contributions’, “View
path-correlation ratios’, “View path-correlation differences’, “View War p2 bivariate
causal direction ratios’, “View Warp2 bivariate causal direction differences’, “View
Warp3 bivariate causal direction ratios’, and “View Warp3 bivariate causal direction
differences’. The topic of causality assessment in the context of SEM is controversial (Pearl,
2009). Therefore, these causality assessment coefficients should be treated as experimental by
users of this software, and any conclusions derived from them should be treated with caution.

Figure H.12; Causality assessment coefficients options

View causality assessment coefficients * View path-correlation signs
View R-squared contributions

View path-correlation ratios
View path-correlation differences
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View Warp2 bivaniate causal direction differences
View Warp3 bivariate causal direction ratios

View Warp3 bivariate causal direction differences

The “View path-correlation signs’ option allows usersto identify path-specific Simpson’s
paradox instances (Pearl, 2009; Wagner, 1982), by inspecting a table with the path-correlation
signs (shown in the table as the values 1 and -1). A negative path-correlation sign, or the value
-1, isindicative of a Simpson’s paradox instance. A Simpson’ s paradox instance is a possible
indication of acausality problem, suggesting that a hypothesized path is either implausible or
reversed.

Theinterpretation of individual Simpson’s paradox instances can be difficult. This may
be especially the case with demographic variables when these are included in the model as
control variables, suggesting what may appear to be unlikely or impossible reverse directions of
causality. For example, let us say that a negative path-correlation sign occurs when we include
the control variable “Age” (time from birth, measured in years) into amodel pointing at the
variable " Job performance” (self-assessed, measured through multiple indicators on Likert-type
scales). Thismay be interpreted as suggesting that “Job performance”’ causes “Age” in the sense
that increased job performance causes someone to age, or causes time to pass faster.

Alternative explanations frequently exist for Simpson’s paradox instances, aswell as for
other “red flags’ suggested by causality assessment coefficients. Taking the example above,
one possible alternative explanation is that increased job performance causes employment to be
maintained at more advanced ages, supporting the direction of causality from “Job performance”
to “Age” instead of the reverse path. It can also mean that, because of sampling problems, those
with greater job performance included in the sample tended to be older. Y et another alternative
explanation is that thereis no link between “Job performance” and “Age”, and that the inclusion
of another control variable artificially induces that link; which tends to happen when path
coefficients are associated with negligible R-squared contributions (i.e., lower than 0.02).
Whatever the case may be, ideally models should be free from Simpson’ s paradox instances,
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because, as noted below, these instances generally detract from the explanatory power of the
model.

Because an instance of Simpson’s paradox occurs when a path coefficient and a correlation
associated with a pair of linked variables have different signs, the corresponding contribution to
the R-squared of the criterion variable in the latent variable block where it occursis negative (see
Mueller, 1996; for a discussion of this effect in the context of evolutionary biology, see Kock,
2011). The“View R-squared contributions’ option allows usersto view the values of the
individual contributionsto the R-squared of the criterion variable in each latent variable block by
each of the predictor latent variablesin the block.

The “View path-correlation ratios’ option allows users to identify statistical suppression
instances (MacKinnon et a., 2000), by inspecting a table with the absol ute path-correlation
ratios. These ratios are calculated by dividing path coefficients by their respective correlation
coefficients and taking the absolute values of those divisions. An instance of statistical
suppression occurs when a path coefficient is greater, in absolute terms, than the corresponding
correlation associated with apair of linked variables. This |eads to a path-correlation ratio that is
greater than 1. Like a Simpson’s paradox instance, a statistical suppression instance is a possible
indication of acausality problem (Spirtes et al., 1993), suggesting that a hypothesized path is
either implausible or reversed. The following interpretations are suggested for absol ute path-
correlation ratios: ratio > 1 indicates statistical suppression; 1 < ratio <= 1.3: weak suppression;
1.3 <ratio <= 1.7: medium; 1.7 < ratio: strong.

In the same way that one can distinguish between a statistically significant and non-significant
direct association, one can also distinguish between statistically significant and non-significant
suppression instances. The “View path-correlation differences’ option allows users to do just
that, by inspecting a table with the absolute path-correl ation differences and their respective P
values. The absolute path-correlation differences can be used together with the absol ute path-
correlation ratios to identify paths that need special attention, because path-correlation ratios
alone can sometimes provide an inflated perception of problems, especially when paths and
correlations are both very small. Generally speaking, a path that meets the following criteria
should be seen as referring to alink that needs specia attention in terms of possible elimination
or careful interpretation: absolute path-correlation ratio greater than 1.3, and P value for
absolute path-correlation difference equal to alower than 0.05. However, a path that meets
these criteriawill not necessarily be associated with causality problems; it may in fact suggest a
particularly interesting and unique finding (see, e.g., MacKinnon et a., 2000).

One useful and interesting property of nonlinear algorithms, such as the Warp2 and Warp3
algorithms, is that often bivariate nonlinear coefficients of association calculated using those
algorithms vary depending on the hypothesized direction of causality. That is, they tend to be
stronger in one direction than the other, which means that the residual (or error) is greater when
the hypothesized direction of causality isin one way or the other. As such, they can be used,
together with other coefficients, as partial evidence in support or against hypothesized causal
links.

The“View Warp2 bivariate causal direction ratios’ option allows users to identify
instances in which the Warp2 algorithm suggests that causality may be reversed, by inspecting a
table with the Warp2 bivariate causal direction ratios. These ratios are calculated by dividing the
path coefficient obtained for the reversed link by the path coefficient obtained for the link with
the hypothesized direction. The following interpretations are suggested for Warp?2 bivariate
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causal direction ratios: ratio > 1 supports reversed link; 1 < ratio <= 1.3: weak support; 1.3 <
ratio <= 1.7: medium; 1.7 < ratio: strong.

In the same way that one can distinguish between a statistically significant and non-significant
direct association, one can also distinguish between a statistically significant and non-significant
Warp2 bivariate causal direction reversal instance. The “View Warp2 bivariate causal
direction differences’ option allows usersto do just that, by inspecting a table with the absolute
Warp2 bivariate causal direction differences and their respective P values. The absolute Warp2
bivariate causal direction differences can be used together with the Warp2 bivariate causal
direction ratios to identify paths that need special attention, because Warp2 bivariate causal
direction ratios alone can sometimes provide an inflated perception of problems, especially when
paths in one direction and the other are both very small. Generally speaking, a path that meets
the following criteria should be seen as referring to a link that needs special attention in terms of
possible direction reversal: War p2 bivariate causal direction ratio greater than 1.3, and P
value for absolute War p2 bivariate causal direction difference equal to alower than 0.05.

Since the Warp3 and Warp2 algorithms are different, asimilar set of outputs existsin
connection with Warp3 bivariate causal direction inferences to those available for Warp2. Often
these different sets outputs will be fairly consistent, but sometimes they will not.

The“View Warp3 bivariate causal direction ratios’ option alows users to identify
instances in which the Warp3 algorithm suggests that causality may be reversed, by inspecting a
table with the Warp3 bivariate causal direction ratios. These ratios are calculated by dividing the
path coefficient obtained for the reversed link by the path coefficient obtained for the link with
the hypothesized direction. The following interpretations are suggested for Warp3 bivariate
causal direction ratios: ratio > 1 supports reversed link; 1 < ratio <= 1.3: weak support; 1.3 <
ratio <= 1.7: medium; 1.7 < ratio: strong.

The“View War p3 bivariate causal direction differences’ option allows usersto distinguish
between a statistically significant and non-significant Warp3 bivariate causal direction reversal
instance. Users can do that by inspecting a table with the absolute Warp3 bivariate causal
direction differences and their respective P values. The absolute Warp3 bivariate causal direction
differences can be used together with the Warp3 bivariate causal direction ratios to identify paths
that need special attention, because Warp3 bivariate causal direction ratios alone can sometimes
provide an inflated perception of problems, especialy when pathsin one direction and the other
are both very small. Generally speaking, a path that meets the following criteria should be seen
as referring to alink that needs specia attention in terms of possible direction reversal: Warp3
bivariate causal direction ratio greater than 1.3, and P value for absolute Warp3 bivariate
causal direction difference equal to alower than 0.05.

Since ratios and P values are generated for the Warp2 and Warp3 agorithms, a more relaxed
approach would be to consider for special attention in terms of possible direction reversal only
links that meet both the criteria for Warp2 and Warp3 above. Another approach, also somewhat
relaxed, would be to consider for special attention only links that meet the criteriathat refer to
the nonlinear algorithm used for the calculation of the path coefficient associated with the link,
either Warp2 or Warp3 (thisincludes the “basic” options). Having said that, the above criteria
arguably apply to paths calculated using the Linear algorithm.

The extent to which using more or less relaxed approaches would lead to “false positives’ and
“false negatives’ in terms of support and lack of support for hypothesized directions of causality
is an issue that will require future research, particularly research employing Monte Carlo
simulations (Robert & Casella, 2010) where the true directions of causality are known.
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A path meeting the above criteria for both Warp2 and War p3 algorithms, in ter ms of
support for causal direction reversal, may in some cases appear to lead to an absurd
conclusion. Upon further consideration, however, reversing the path may not sound as absurd.
For example, let us say that a path from the variable “Age’ (time from birth, measured in years)
pointing at the variable “ Job performance” (self-assessed, measured through multiple indicators
on Likert-type scales) meets the above criteria, suggesting that it should be reversed. This may
be interpreted as suggesting that “ Job performance” causes“Age” in the sense that increased job
performance causes someone to age, or causes time to pass faster. These could be seen as absurd
conclusions, even if we consider work as a possible cause of oxidative stress, and thus
accelerated decrepitude (note that “Age” is defined as time from birth, measured in years).
However, adifferent interpretation is that increased job performance causes employment to be
maintained at more advanced ages, supporting the direction of causality from “Job performance”
to “Age’ in amore reasonable and intuitively appealing way.
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I. Concluding remarks and additional issues

This software provides users with awide range of features, including experimental features
and also other features that are not available from other SEM software. For example, this
software is the first and only (at the time of thiswriting) to explicitly identify nonlinear functions
connecting pairs of latent variablesin SEM models and cal culate coefficients of association
accordingly.

A wide range of features means that there are many coefficients, graphs and other elements
that users can choose to include in research reports, and many possible interpretations of those
elements. This user manual does not cover all possible interpretations. Users are strongly advised
to keep abreast of the latest developments on methodol ogical issues employing this software,
particularly those from research published in academic outlets (e.g., academic journals).

Multivariate statistical analysis software systems, like this software, are inherently complex;
sometimes yielding results that are biased and disconnected with the reality of the phenomena
being modeled. Users are strongly cautioned against accepting the results provided by this
software as a completely unbiased representation of the underlying reality that the software
attemptsto unveil.

No multivariate statistical analysis software yields completely unbiased results. If one such
“perfect” software tool existed, the percentages of false positives and false negatives based on a
number of trials with the software using simulated data would all be zero. That is, no false
positives or false negatives of any kind (e.g., association strength, direction of causality) would
occur.

Achieving thislevel of perfection isthe driving force behind the development of this software,
even though this level of perfection will never be achieved — simply because it is not achievable.
Some additional issues regarding this quest for perfection are discussed in the following
subsections.
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I.1. Warping from a conceptual perspective

What this software does when it “warps’ relationships is relatively ssmple at a conceptual
level. It identifies a set of functions F1(LVpl), F2(LVp2) ... that relate blocks of latent variable
predictors (LVpl, LVp2...) to acriterion latent variable (LVc) in thisway:

LVc = pI*FL(LVpL) + p2*F2(LVp2) + ... + E

In the equation above, pl, p2 ... are path coefficients, and E is the error term of the equation.
All variables are standardized. Any model can be decomposed into a set of blocks relating latent
variable predictors and criteriain thisway.

Typically, the more the functions F1(LVpl), F2(LVp2) ... look like curves, and unlike lines,
the greater is the difference between the path coefficients p1, p2 ... and those that would have
been obtained through a strictly linear analysis.

What this software does is not unlike what a researcher would do if he or she modified
predictor latent variable scores prior to the calculation of path coefficients using afunction like
the logarithmic function. An example is provided in the equation below, where alogarithmic
transformation is applied to LV pl.

LVc=pl*log(LVpl) + p2*LVp2 + ... + E

This software, however, does that automatically and for a much wider range of functions, with
maodification constants included. For example, in the term A*log(B* LV p1l) the constants A and
B are modification constants; using simply log(LV pl) as a modifier function in an equation like
the one above assumes that A=1 and B=1, which may be incorrect assumptions that will lead to
distorted results and mistaken conclusions.

As mentioned above, often the path coefficients p1, p2 ... will go up in value due to warped
anaysis, but that may not always be the case. Given the nature of multivariate analysis, an
increase in a path coefficient may lead to a decrease in a different path coefficient, for predictor
latent variables associated with the same criterion latent variable, because each path coefficient
in ablock is calculated in away that controls for the effects of the other predictor latent
variables. That is, in any given block of latent variables, the predictor latent variables “ compete’
for the explained variance in the criterion latent variable.

There is no guarantee that the functions F1(LVpl), F2(LVp2) ... discovered by this software
will match perfectly that “true” underlying functions. As mentioned earlier, thislevel of
perfection is one that should be strived for, but that is essentially impossible to achieve due to
one key factor — measurement error.

The more measurement error exists (i.e., the greater isits magnitude), the more likely it is that
the functions F1(LVpl), F2(LVp2) ... discovered by this software will be distorted by error. In
fact, the existence of significant measurement error may lead this software to model relationships
that are actually linear as nonlinear.

With the above caveats in mind, users can check, through simple visual inspection tests,
whether the functions discovered by this software are at |east good approximations of the true
underlying functions.

To do s, users can divide the dataset into a number of quantiles (e.g., 3), and then build
graphs containing the mean values of each criterialatent variable for each of the quantiles. These
graphs can be simple bar charts or scatter plots.
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This alows users to check whether the shapes of the plots are similar to the shapes of the best-
fitting curves generated by this software. The best-fitting curves are representations of the
functions F1(LVpl), F2(LVp2) ... discovered by this software.
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[.2. Interpreting warped relationships

Linear relationships between pairs of latent variables, that is, those relationships best described
by aline, are relatively easy to interpret. They suggest that an increase in one variable either
leads to an increase (if the slope of the line is positive) or decrease (if the slope is negative) in the
other variable.

Nonlinear relationships provide a much more nuanced view of the data, but at the same time
are much more difficult to interpret. Figure 1.2 shows what could be seen as a distorted S curve
that is fitted to the data points. The latent variables are “Proc”, the extent to which various teams
charged with devel oping new products kept track of their work and costs (i.e., engaged in
procedural structuring); and “Effe”, the effectiveness of the teams, measured as the market
success in terms of sales and profits of the new products that the teams devel oped.

Figurel.2. Example of warped relationship
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The distorted S can in turn be seen as a combination of two distorted U curves (or J curves),
one straight and the other inverted, connected at an inflection point. The inflection point is the
point at the curve where the curvature changes direction; i.e., the second derivative of the S
curve changes sign. The inflection point islocated at around minus 1 standard deviations from
the “Proc” mean. That mean is at the zero mark on the horizontal axis, since the data shown is
standardized.

Because an S curve is a combination of two distorted U curves, we can interpret each U curve
section separately. A straight U curve, like the one shown on the |eft side of the graph, before the
inflection point, can be interpreted as follows.

Thefirst half of the U curve goes from approximately minus 3.4 to minus 2.5 standard
deviations from the mean, at which point the lowest team effectiveness value is reached for the U
curve. Inthat first half of the U curve, an increase in team procedural structuring leadsto a
decrease in team effectiveness. After that first half, an increase in team procedural structuring
leads to an increase in team effectiveness.

Oneinterpretation is that the first half of the U curve refersto novice users of procedural
structuring techniques. That is, the process of novice users struggling to use procedural
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structuring techniques more and more intensely, which they may not be familiar with, ends up
leading to effectiveness losses for their teams. At a certain point, around minus 2.5 standard
deviations, that situation changes, and the teams start to really benefit from procedural
structuring, possibly because the second half of the U curve refers to users with more experience
using procedural structuring techniques.

The interpretation of the second U curve on the right, this one an inverted U curve, should be
donein asimilar fashion. Usually there are multiple interpretations that can be plausible
depending on context and other data. Other data may include qualitative data, which can be very
useful when combined with quantitative data.

As can beinferred from this example, it is not easy to interpret nonlinear relationships. But the
apparent simplicity of strictly linear modeling, or linear estimations of possibly nonlinear
relationships, is nothing but a mirage.
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[.3. Correlation versus collinearity

Let us consider atheoretical case in which two predictor variables point at a criterion variable,
and the predictor variables are uncorrelated. In this case, the value of the R for the criterion
variable (the positive square root of the R-squared) will be afunction of two other correlation
values, R; and R, which are the correlations between each of the predictor variables and the
criterion. The value of the VIF, which isitself afunction of R, will consequently be a function of
R, and Ro.

The values of the VIF for the scenario above are plotted in Figure 1.3, generated based on a
simulation with MATLAB. Three dimensions are needed because three variables are involved.
As it can be seen, the variable VIF can reach unacceptably high values, clearly suggestive of
collinearity, and for much lower values of R; and R, than in the case when only two variables are
present. Let us assume that we were to set the threshold of VIF for collinearity at 3.3. In this
case, a correlation of 0.835 or higher would suggest collinearity in a situation involving only two
variables (Kock & Lynn, 2012).

Figurel.3. Therelationship between the VIF and the Rsfor threevariables
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The points at which the VIF values increase steeply are indicated as peaks (including small
peaks) on the three-dimensional plot. Here a combination of values of R; and R, in the range of
0.6t0 0.8 lead to VIF values that are suggestive of collinearity for athreshold level of 3.3. For
example, if Ry and R are both equal to 0.625, the corresponding VIF will be 4.57.

As models become more complex from a structural perspective, with more variablesin them,
the absolute values of the correlations that can lead to significant multicollinearity goes
progressively down. Even if not in the same block, latent variables may still be redundant and
cause interpretation problems when correlations are relatively low. Thisiswhy it isimportant
that users of this software take the various VIFs that are reported into consideration when
ng their models.
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The example above aso illustrates the fact that the concepts of collinearity and correlation are
distinct concepts, even though they are often confused. Collinearity is amultivariate notion,
whereas correlation refers to apair of variables (Kock & Lynn, 2012). Two or more variables are
said to be collinear when they measure the same attribute of an object; the latter isalso called a
construct. In this sense, the variables “ satisfaction with atechnology” and “excitement about the
technology” may be collinear, if the question-statements related to these two variables are seen
asreferring to the same object attribute “affective response to the technology” by the respondents
of aquestionnaire. Two variables are said to be correlated if they vary in concert with each other,
even though the variables may measure totally different object attributes; e.g., a person’s weight
from 1 to 20 years of age, and the price of gasoline during those years.
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|.4. Stable P value calculation methods

A Monte Carlo simulation was conducted to assess the performance of three P value
cal culation methods implemented through this software: Bootstrapping, Stable2, and Stable3.
Performance was assessed in terms of statistical power and closeness to the actual standard errors
obtained through the analyses of simulated samples. Standard errors are used, together with path
coefficients, to obtain P values. Table |.4, adapted from Kock (2014b), summarizes the results of
this simulation.

Tablel.4. Summarized Monte Carlo experiment resultsfor P value calculation methods

Method BOOT STBL2 STBL3 BOOT STBL2 STBL3
Samplesize 50 50 50 300 300 300
CO>GT(TruePath) 0.450 0.450 0.450 0.450 0.450 0.450
CO>GT (AvgPath) 0.383 0.383 0.383 0.388 0.388 0.388
CO>GT (Power) 0.905 0.954 0.946 1 1 1
CO>GT(SEPath) 0.125 0.125 0.125 0.076 0.076 0.076
CO>GT(EstSEPath) 0.120 0.115 0.122 0.047 0.053 0.054
CO>EU(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400
CO>EU(AvgPath) 0.347 0.347 0.347 0.347 0.347 0.347
CO>EU(Power) 0.781 0.900 0.867 1 1 1
CO>EU(SEPath) 0.131 0.131 0.131 0.072 0.072 0.072
CO>EU(EStSEPath) 0.133 0.116 0.124 0.049 0.053 0.055
CO>AC(TruePath) 0.250 0.250 0.250 0.250 0.250 0.250
CO>AC(AvgPath) 0.224 0.224 0.224 0.218 0.218 0.218
CO>AC(Power) 0.419 0.611 0.559 0.985 0.995 0.994
CO>AC(SEPath) 0.141 0.141 0.141 0.061 0.061 0.061
CO>AC(EstSEPath) 0.166 0.118 0.129 0.054 0.054 0.056
GT>SU(TruePath) 0.500 0.500 0.500 0.500 0.500 0.500
GT>SU(AvgPath) 0.333 0.333 0.333 0.347 0.347 0.347
GT>SU(Power) 0.711 0.863 0.823 1 1 1
GT>SU(SEPath) 0.206 0.206 0.206 0.160 0.160 0.160
GT>SU(EstSEPath) 0.146 0.116 0.125 0.052 0.053 0.055
EU>SU(TruePath) 0.230 0.230 0.230 0.230 0.230 0.230
EU>SU(AvgPath) 0.175 0.175 0.175 0.163 0.163 0.163
EU>SU(Power) 0.254 0.410 0.356 0.917 0.921 0.906
EU>SU(SEPath) 0.131 0.131 0.131 0.085 0.085 0.085
EU>SU(EtSEPath) 0.157 0.119 0.132 0.054 0.054 0.056
AC>SU(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200
AC>SU(AvgPath) 0.159 0.159 0.159 0.147 0.147 0.147
AC>SU(Power) 0.240 0.405 0.335 0.866 0.868 0.849
AC>SU(SEPath) 0.137 0.137 0.137 0.073 0.073 0.073
AC>SU(EStSEPath) 0.165 0.119 0.132 0.053 0.054 0.056

The column labels BOOT, STBL2 and STBL 3 respectively refer to the Bootstrapping,
Stable2, and Stable3 methods. The latent variables in the model used as a basis for the simulation
are: CO = communication flow orientation; GT = usefulnessin the development of I T solutions;
EU = ease of understanding; AC = accuracy; and SU = impact on redesign success (for more
details, see Kock, 2014b). The meanings of the acronyms within parentheses are the following:
TruePath = true path coefficient; AvgPath = mean path coefficient estimate; Power = statistical
power; SEPath = standard error of path coefficient estimate; and EstSEPath = method-specific
standard error of path coefficient estimate.
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To conduct the simulation we created an analyzed 1,000 samples for each of the following
sample sizes: 50, 100, 200, 300, and 500. The PLS Mode A a gorithm was used in the analyses.
In this summarized set of results we restrict ourselves to sample sizes 50 and 300. Full results,
for all sample sizesincluded in the simulation, are available from Kock (2014b).

As we can see, the mean path coefficient estimates differ from the true path coefficients across
different sample sizes, and generally underestimate the true path coefficients. This
underestimation stems from the use of compositesin PLS Mode A, which in turn leads to the
known composite correlation attenuation (Nunnally & Bernstein, 1994). This attenuation
“propagates’ to the path coefficients (Kock, 2014). This problem is addressed in this software
through the availability of Factor-Based PL S agorithms.

Generally the method-specific standard errors of path coefficient estimates obtained via
Stable3 were the closest to the actual (or true) standard errors of path coefficient estimates. This
suggests that standard errors estimated via Stable3 are not only stable when compared with those
estimated via Bootstrapping, but also more accurate. Moreover, both Stable2 and Stable3 led to
greater statistical power than Bootstrapping at small sample sizes. Thisis noteworthy, because
power tends to be compromised the most with small sample sizes, and to invariably increase as
sample sizes go up regardless of the standard error and P value cal culation method used.
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[.5. Missing data imputation methods

A Monte Carlo simulation was conducted to assess the performance of five missing data
imputation methods implemented through this software: Arithmetic Mean Imputation, Multiple
Regression Imputation, Hierarchical Regression Imputation, Stochastic Multiple Regression
Imputation, and Stochastic Hierarchical Regression Imputation. Table |.5, adapted from Kock
(2014c), summarizes the results of this simulation.

Tablel.5. Summarized Monte Carlo experiment results for missing data imputation methods

Missing data imputation NMD MEAN MREGR HREGR MSREG HSREG
scheme

CO>GT(TruePath) 0.450 0.450 0.450 0.450 0.450 0.450
CO>GT(AvgPath) 0.390 0.348 0.367 0.354 0.333 0.300
CO>GT(SEPath) 0.075 0.113 0.110 0.113 0.138 0.162
CO>EU(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400
CO>EU(AvgPath) 0.349 0.312 0.321 0.313 0.289 0.262
CO>EU(SEPath) 0.069 0.101 0.108 0.106 0.133 0.151
CO>AC(TruePath) 0.250 0.250 0.250 0.250 0.250 0.250
CO>AC(AvgPath) 0.219 0.198 0.206 0.195 0.188 0.161
CO>AC(SEPath) 0.062 0.078 0.090 0.083 0.100 0.108
GT>SU(TruePath) 0.500 0.500 0.500 0.500 0.500 0.500
GT>SU(AvgPath) 0.381 0.357 0.359 0.352 0.334 0.312
GT>SU(SEPath) 0.127 0.152 0.156 0.158 0.179 0.195
EU>SU(TruePath) 0.230 0.230 0.230 0.230 0.230 0.230
EU>SU(AvgPath) 0.192 0.183 0.199 0.178 0.188 0.163
EU>SU(SEPath) 0.062 0.072 0.077 0.078 0.082 0.089
AC>SU(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200
AC>SU(AvgPath) 0.165 0.157 0.176 0.154 0.166 0.141
AC>SU(SEPath) 0.058 0.067 0.073 0.072 0.077 0.081
GT3<GT(Truel oad) 0.700 0.700 0.700 0.700 0.700 0.700
GT3<GT(AvgL oad) 0.811 0.691 0.606 0.649 0.623 0.652
GT3<GT(SEL oad) 0.113 0.042 0.120 0.076 0.115 0.090

The column labels NMD, MEAN, MREGR, HREGR, MSREG and HSREG respectively refer
to no missing data, Arithmetic Mean Imputation, Multiple Regression Imputation, Hierarchical
Regression Imputation, Stochastic Multiple Regression Imputation, and Stochastic Hierarchical
Regression Imputation. The latent variables in the model used as a basis for the simulation are:
CO = communication flow orientation; GT = usefulness in the development of IT solutions; EU
= ease of understanding; AC = accuracy; and SU = impact on redesign success (for more details,
see Kock, 2014c). The meanings of the acronyms within parentheses are the following: TruePath
= true path coefficient; AvgPath = mean path coefficient estimate; SEPath = standard error of
path coefficient estimate; Truel oad = true loading; AvglL oad = mean loading estimate; and
SEL oad = standard error of loading estimate.

When creating data for our Monte Carlo simulation we varied the following conditions:
percentage of missing data (0%, 30%, 40%, and 50%), and sample size (100, 300, and 500). This
led to a4 x 3 factorial design, with 12 conditions. We created an analyzed 1,000 samples for
each of these 12 conditions; atotal of 12,000 samples. In this summarized set of results we
restrict ourselves to 30% missing data and the sample size of 300. Full results, for al percentages
of missing data and sample sizesincluded in the simulation, are available from Kock (2014c).
Since al loadings are the same in the true popul ation model, loading-rel ated estimates for only
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one indicator of the composites are shown. This avoids crowding and repetition, as the same
pattern of results repeats itself in connection with al loadings.

The mean path coefficient estimates that are shown underlined were obtained through the
application of the PLS Mode A agorithm to datasets where no data was missing (NMD). Note
that they generally underestimate the true path coefficients. This underestimation stems from the
use of composites, discussed earlier, which leads to an attenuation of composite correlations
(Nunnally & Bernstein, 1994). This correlation attenuation extends to the path coefficients
(Kock, 2014), leading to the observed underestimation. The opposite effect is observed in
connection with loadings, which tend to be overestimated in PLS-based SEM analyses
employing PLS Mode A. As noted earlier, these problems are addressed in this software through
the availability of Factor-Based PLS algorithms.

Multiple Regression Imputation (MREGR) yielded the least biased mean path coefficient
estimates, followed by Arithmetic Mean Imputation (MEAN). When we look at mean loading
estimates, Arithmetic Mean Imputation (MEAN) yielded the least biased results, followed by
Stochastic Hierarchical Regression Imputation (HSREG) and Hierarchical Regression
Imputation (HREGR.

Compared with the no missing data condition (NMD), none of the methods induced a
reduction in standard errors for path coefficients. Thisis noteworthy since prior results outside
the context of PLS-based SEM have tended to show a significant downward biasin standard
errors, particularly for non-stochastic missing data imputation varieties. Such downward biasin
standard errors has led to concerns regarding an inflation in type | errors, and warnings against
the use of single missing data imputation methods in general (Enders, 2010; Newman, 2014).
Our results suggest that such concerns may not be warranted in the context of PLS-based SEM.
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I.6. Factor-Based PLS algorithms

The Factor-Based PL S algorithms available in this software combine the precision of
covariance-based SEM algorithms, under common factor model assumptions (Kock, 2014), with
the nonparametric characteristics of classic PLS algorithms. Moreover, the Factor-Based PLS
algorithms address head-on a problem that has been discussed since the 1920s — the factor
indeterminacy problem. Classic PLS algorithms yield composites, as linear combinations of
indicators, which can be seen as factor approximations. The Factor-Based PL S algorithms, on the
other hand, provide estimates of the true factors, as linear combinations of indicators and
measurement errors.

A Monte Carlo simulation was conducted to comparatively assess the performance of one of
the Factor-Based PL S algorithms, namely the Factor-Based PLS Type CFM1 algorithm, against
that of the PLS Mode A algorithm. Like covariance-based SEM algorithms, the Factor-Based
PLS Type CFM 1 algorithm is fully compatible with common factor model assumptions,
including the assumption that all indicator errors are uncorrelated. Table |.6, adapted from Kock
(2014), summarizes the results of this simulation.

Tablel.6. Summarized Monte Carlo experiment results for composite-based and factor-based algorithms

SEM method PLSA PL SF PLSA PL SF PLSA PL SF
Samplesize 50 50 100 100 300 300

EU>TE(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400
EU>TE(AvgPath) 0.339 0.380 0.309 0.385 0.303 0.394
EU>TE(SEPath) 0.125 0.161 0.128 0.127 0.110 0.070
EU>TP(TruePath) 0.300 0.300 0.300 0.300 0.300 0.300
EU>TP(AvgPath) 0.260 0.301 0.248 0.294 0.234 0.297
EU>TP(SEPath) 0.135 0.157 0.108 0.133 0.085 0.079
TE>TP(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200
TE>TP(AvgPath) 0.201 0.234 0.189 0.225 0.174 0.203
TE>TP(SEPath) 0.144 0.163 0.098 0.132 0.061 0.079
EU3<EU(Truel oad) 0.700 0.700 0.700 0.700 0.700 0.700
EU3<EU(AvgL oad) 0.793 0.692 0.802 0.695 0.808 0.699
EU3<EU(SEL oad) 0.129 0.108 0.113 0.077 0.112 0.049

The column labels PLSA and PL SF respectively refer to the PLS Mode A and Factor-Based
PLS Type CFM 1 algorithms. The latent variablesin the model used as a basis for the smulation
are: EU = e-collaboration technology use; TE = team efficiency; and TP = team performance (for
more details, see Kock, 2014). The meanings of the acronyms within parentheses are the
following: TruePath = true path coefficient; AvgPath = mean path coefficient estimate; SEPath =
standard error of path coefficient estimate; TrueL oad = true loading; AvgLoad = mean loading
estimate; and SEL oad = standard error of loading estimate.

In the Monte Carlo simulation 300 samples were created for each of the following sample
sizes: 50, 100, and 300. We show results for al of the structural pathsin the model, but restrict
ourselves to loadings for one indicator in one factor since al loadings are the same in the true
population model used. Thisis also done to avoid repetition, as the same general pattern of
results for loadings repeats itself for all indicatorsin all factors.

Aswe can see from the summarized results, the Factor-Based PLS Type CFM 1 algorithm
yielded virtually unbiased estimates at the sample size of 300, whereas the PLS Mode A
algorithm yielded significantly biased estimates at that same sample size. One of the reasons for
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these significantly biased estimates with PLS Mode A are the relatively low loadings in the true
population model used as a basis for simulation, namely 0.7 for al indicators, which tend to be a
challenge for algorithms based on Wold' s original PLS design (Kock, 2014).

The relatively low loadings in the true popul ation model apparently had little effect on the
Factor-Based PLS Type CFM1 algorithm’ s asymptotic convergence to the true values of the
model parameters, although those loadings probably slowed down that convergence somewhat as
sample sizes increased. In other simulations we conducted with higher loadings, convergence
was achieved at smaller sample sizes.

For several of the path coefficients and loadings the Factor-Based PLS Type CFM1 algorithm
yielded lower standard errors, particularly as sample sizesincreased. This is noteworthy because
the Factor-Based PLS Type CFM 1 agorithm is considerably more computationally complex
than the PLS Mode A algorithm (Kock, 2014), and thus could have been expected to have a
greater “cost” in terms of standard errors.

Nevertheless, standard errors yielded at the sample size of 50 were generally higher for the
Factor-Based PLS Type CFM1 algorithm. Apparently the difference was enough to have a
negative effect on power, as the ratios of path coefficients to standard errorsindicate. That is, at
the sample size of 50 one could argue based on the results that the PLS Mode A algorithm has
greater power than the Factor-Based PL S Type CFM1 algorithm for this particular model,
although the ratios of path coefficients to standard errors suggest that both algorithms may
struggle to avoid type Il errors at this small sample size, particularly for the paths whose true
coefficients were lower than 0.400 (the path with the highest strength).
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J. Glossary

Adjusted R-squar ed coefficient. A measure equivaent to the R-squared coefficient, with the
key difference that it corrects for spurious increases in the R-squared coefficient due to
predictors that add no explanatory value in each latent variable block. Like R-squared
coefficients, adjusted R-squared coefficients can assume negative values. These are rare
occurrences that normally suggest problems with the model in which they occur; e.g., severe
collinearity or model misspecification.

Average variance extracted (AVE). A measure associated with alatent variable, which is
used in the assessment of the discriminant validity of a measurement instrument. Less
commonly, it can also be used for convergent validity assessment.

Compositereliability coefficient. Thisis ameasure of reliability associated with alatent
variable. Another name for it is Dillon—Goldstein rho coefficient. Unlike the Cronbach’s apha
coefficient, another measure of reliability, the compositive reliability coefficient takes indicator
loadings into consideration in its calculation. It often is slightly higher than the Cronbach’s apha
coefficient.

Construct. A conceptual entity measured through a latent variable. Sometimes it isreferred to
as “latent construct”. The terms “construct” or “latent construct” are often used interchangeably
with the term “latent variable”.

Convergent validity of a measurement instrument. Convergent validity is a measure of the
quality of a measurement instrument; the instrument itself istypically a set of question-
statements. A measurement instrument has good convergent validity if the question-statements
(or other measures) associated with each latent variable are understood by the respondents in the
same way as they were intended by the designers of the question-statements.

Cronbach’s alpha coefficient. Thisisameasure of reliability associated alatent variable. It
usually increases with the number of indicators used, and is often slightly lower than the
composite reliability coefficient, another measure of reliability.

Discriminant validity of a measurement instrument. Discriminant validity is a measure of
the quality of a measurement instrument; the instrument itself is typically a set of question-
statements. A measurement instrument has good discriminant validity if the question-statements
(or other measures) associated with each latent variable are not confused by the respondents, in
terms of their meaning, with the question-statements associated with other latent variables.

Endogenous latent variable. Thisisalatent variable that is hypothesized to be affected by
one or more other latent variables. An endogenous latent variable has one or more arrows
pointing at it in the model graph.

Exogenouslatent variable. Thisisalatent variable that does not depend on other latent
variables, from a SEM analysis perspective. An exogenous latent variable does not have any
arrow pointing at it in the model graph.

Factor score. A factor score is the same as alatent variable score; see the latter for a
definition.

Formative latent variable. A formative latent variable is one in which the indicators are
expected to measure certain attributes of the latent variable, but the indicators are not expected to
be highly correlated with the latent variable score, because they (i.e., the indicators) are not
expected to be correlated with one another. For example, let us assume that the latent variable
“Satisf” (“satisfaction with ameal”) is measured using the two following question-statements: “I
am satisfied with the main course” and “| am satisfied with the dessert”. Here, the meal
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comprises the main course, say, filet mignon; and a dessert, afruit salad. Both main course and
dessert make up the meal (i.e., they are part of the same meal) but their satisfaction indicators are
not expected to be highly correlated with each other. The reason is that some people may like the
main course very much, and not like the dessert. Conversely, other people may be vegetarians
and hate the main course, but may like the dessert very much.

Indicator. The term indicator is frequently used as synonymous with that of manifest variable;
aconvention that is used here. Thus, see the latter for a definition. More technically though,
indicators are manifest variables that are actually used in the measurement model as direct
measures of latent variables. As such, technically speaking, there can be manifest variables that
are not indicators, if the manifest variablesin question are part of the original dataset but not
included in the measurement model.

Inner model. In astructural equation modeling analysis, the inner model is the part of the
model that describes the relationships among the latent variables that make up the model. In this
sense, the path coefficients are inner model parameter estimates.

Latent variable. A latent variable is avariable that is measured through multiple variables
called indicators or manifest variables. For example, “ satisfaction with ameal” may be alatent
variable measured through two manifest variables that store the answersonalto 7 scale
(1=strongly disagree; 7 strongly agree) to the following question-statements: “I am satisfied with
thismeal”, and “After thismeal, | feel full”.

Latent variable block. A latent variable block is agroup of latent variables in which one or
more predictor latent variables point at one criterion latent variable. In a PLS-based SEM
analysis, once latent variable scores are calculated, a series of multiple least squares regressions
are conducted to calculate path coefficients. Each multiple least squares regression is performed
on alatent variable block, until all blocks are covered. The term “latent variable block” is also
used in the PLS-based SEM literature to refer to a group of manifest variables linked to their
assigned latent variable; i.e., alatent variable and its indicators.

Latent variable score. Latent variable scores are values calculated based on the indicators
defined by the user as associated with the latent variable. They are calculated using one of the
outer model analysis algorithms available. These scores may be understood as new columnsin
the data, with the same number of rows as the original data (unless arange-restricted analysisis
conducted), and which generally tend to maximize the loadings and minimize the cross-loadings
of a pattern matrix of loadings after an oblique rotation.

Latent variableerror. An error variable that accounts for the variance in an endogenous
latent variable that is not accounted for by the latent variable predictors that point at the
endogenous latent variable. The terms “error” and “residual” are used interchangeably in this
document. Nevertheless, they refer to subtly different entities. Technically speaking, the term
“error” typically refersto the error variable in the true population model, which is assumed to be
uncorrelated with latent variables other than the endogenous latent variable to which it is
associated. Conversely, the term “residual” typically refers to the corresponding estimated error,
the difference between the expected value of the latent variable and its point estimate, which in
practice is often correlated with latent variables other than the endogenous latent variable to
which it is associated. Thisis an example of a broader occurrence in multivariate analyses. more
often than not sample-specific estimates violate assumptions about the theoretical true values,
even if dlightly.

Manifest variable. A manifest variable is one of several variables that are used to indirectly
measure alatent variable. For example, “ satisfaction with amea” may be alatent variable
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measured through two manifest variables, which assume as values the answerson al to 7 scale
(1=strongly disagree; 7 strongly agree) to the following question-statements: “I am satisfied with
thismeal”, and “ After thismeal, | feel full”.

Outer model. In a SEM analysis, the outer model isthe part of the model that describes the
relationships among the latent variables that make up the model and their indicators. In this
sense, the weights and loadings are outer model parameter estimates.

Portable document format (PDF). Thisis an open standard file format created by Adobe
Systems, and widely used for exchanging documents. It is the format used for this software's
documentation.

Q-squared coefficient. This measure is also known after its main proponents as the Stone-
Geisser Q-squared coefficient (Geisser, 1974; Stone, 1974). The Q-squared coefficient isa
nonparametric measure traditionally calculated via blindfolding. It is used for the assessment of
the predictive validity (or relevance) associated with each latent variable block in the model,
through the endogenous latent variable that is the criterion variable in the block. The Q-squared
coefficient is sometimes referred to as aresampling analog of the R-squared. It is often similar in
value to that measure. The Q-squared coefficient can assume negative values.

Reflective latent variable. A reflective latent variable is onein which al of the indicators are
expected to be highly correlated with the latent variable score, and also highly correlated with
one another. For example, the answers to certain question-statements by a group of people,
measured on a 1 to 7 scale (1=strongly disagree; 7 strongly agree) and answered after ameal, are
expected to be highly correlated with the latent variable “ satisfaction with ameal”. The question-
statements are: “1 am satisfied with this meal”, and “ After this meal, | feel full”. Therefore, the
latent variable “ satisfaction with ameal”, can be said to be reflectively measured through these
two indicators. These indicators store answers to the two question-statements. This latent
variable could be represented in amodel graph as “ Satisf”, and the indicators as * Satisf1” and
“Satisf2”.

Reliability of a measurement instrument. Reliability is ameasure of the quality of a
measurement instrument; the instrument itself istypically a set of question-statements. A
measurement instrument has good reliability if the question-statements (or other measures)
associated with each latent variable are understood in the same way by different respondents.

R-squar ed coefficient. Thisisameasure calculated only for endogenous latent variables, and
that reflects the percentage of explained variance for each of those latent variables. The higher
the R-squared coefficient, the better is the explanatory power of the predictors of the latent
variable in the model, especialy if the number of predictorsis small. Contrary to popular belief
and in spite of what their name implies, R-squared coefficients are not calculated by squaring a
correlation-like measure. They can assume negative values, although these are rare occurrences
that normally suggest problems with the model in which they occur; e.g., severe collinearity or
model misspecification.

Structural equation modeling (SEM). A general term used to refer to a class of multivariate
statistical methods where complex relationships among latent variables and indicators are
estimated at once. In a SEM analysis, each latent variable is typically measured through multiple
indicators, athough there may be cases in which only one indicator is used to measure a latent
variable. Key measures of relationships among latent variables are path coefficients (or
standardized partial regression coefficients) and corresponding P values. Key measures of
relationships among latent variables and their respective indicators are weights and loadings, and
corresponding P values.
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Varianceinflation factor (VIF). Thisisameasure of the degree of collinearity (or
multicollinearity) among variables, including both indicators and latent variables. With latent
variables, collinearity can take two main forms: vertical and lateral collinearity (Kock & Lynn,
2012). Vertical, or classic, collinearity is predictor-predictor latent variable collinearity in
individual latent variable blocks. Lateral collinearity isaterm coined by Kock & Lynn (2012)
that refers to predictor-criterion latent variable collinearity; atype of collinearity that can lead to
particularly misleading results. Full collinearity VIFs alow for the simultaneous assessment of
both vertical and lateral collinearity in a SEM model.
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