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The ability to detect and accurately estimate the strength of interaction effects are criti-
cal issues that are fundamental to social science research in general and IS research in

particular. Within the IS discipline, a significant percentage of research has been devoted to
examining the conditions and contexts under which relationships may vary, often under the
general umbrella of contingency theory (cf. McKeen et al. 1994, Weill and Olson 1989). In our
survey of such studies, the majority failed to either detect or provide an estimate of the effect
size. In cases where effect sizes are estimated, the numbers are generally small. These results
have led some researchers to question both the usefulness of contingency theory and the need
to detect interaction effects (e.g., Weill and Olson 1989). This paper addresses this issue by
providing a new latent variable modeling approach that can give more accurate estimates of
interaction effects by accounting for the measurement error that attenuates the estimated rela-
tionships. The capacity of this approach at recovering true effects in comparison to summated
regression is demonstrated in a Monte Carlo study that creates a simulated data set in which
the underlying true effects are known. Analysis of a second, empirical data set is included to
demonstrate the technique’s use within IS theory. In this second analysis, substantial direct
and interaction effects of enjoyment on electronic-mail adoption are shown to exist.
(PLS; Moderators; Interaction Effects; Structural Equation Modeling; Measurement Error )

Introduction
The ability to detect and accurately estimate inter-
action effects1 between quantitative variables can

∗Tables, figures, and appendices omitted in the printed version of
the article are available online at http://www.informs.org/Pubs/
Supplements/ISR/1526-5536-2003-02-SupplA.pdf.
1 Interaction term within this paper can be thought of in terms
of a multiplicative term (X ∗ Z) in regression or ANOVA-based

be difficult. Within the IS discipline, both empiri-
cal and theoretical models presenting such relation-
ships can easily be found going back several decades

techniques, a moderating arrow in a causal diagram, or high and
low lines on a two-dimensional graph. Such an effect implies the
existence of a moderator that affects the direction and/or strength
of the relation between an independent (i.e., predictor) variable and
a dependent or criterion variable.
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(e.g., Powers and Dickson 1973, Ginzberg 1979, Franz
1979). In fact, it can be argued that a significant per-
centage of IS research has been devoted to examin-
ing those moderating variables that create interaction
effects (i.e., the conditions and contexts under which
theoretical relationships may vary) often under the
general umbrella of contingency theory (McKeen et al.
1994, Weill and Olson 1989), and within emerging the-
ories (Goodhue and Thompson 1995, Chan et al. 1997,
Taylor and Todd 1995, Davis et al. 1992).

Yet, as to be presented in this paper, a majority of
past IS studies have either failed to detect a mod-
erating influence or have failed to provide an esti-
mate of the size of the interaction effect. If presented,
the effect size values are generally small. Collectively,
these results suggest that moderators have a small
influence on our developing theories, which in turn
has led some researchers to question the usefulness
of contingency theory and the need to detect inter-
action effects (e.g., Weill and Olson 1989). Essentially,
the argument is: “Why develop contingency theo-
ries or attempt to measure such interaction effects
if the extant research indicates either no or minimal
effects?”

The position of this paper is that our current
lack of understanding and development of contingent
effects may be a byproduct of the analytic method as
opposed to a failing of theoretical development. Prob-
lems in measuring interaction effects are especially
pronounced in field research and observational stud-
ies (e.g., McClelland and Judd 1993), where much of
the difficulties can be attributed to measurement error.
Measurement error has been cited as the cause of both
lowering the ability to detect as well as underestimat-
ing the true effects (Busemeyer and Jones 1983; Aiken
and West 1991, pp. 160–165).

The most common techniques employed in IS
research for moderator analysis are regression and
ANOVA.2 Yet, these techniques assume the single
item measures being used are perfectly reliable (i.e.,
error free). To compensate for this, additional item
measures are often created, combined into a sum-
mated scale, and then used in moderated regression

2 SeeTables1,2,and3athttp://www.informs.org/Pubs/Supplements
/ISR/1526-5536-2003-02-SupplA.pdf.

or ANOVA analysis. The reliability of the scale is
assessed using internal consistency measures such as
Cronbach’s alpha, which (consistent with the summa-
tion process) assumes equal weighting of items.

While an improvement over single item measures,
it is important to recognize at least two assump-
tions held in creating summated scales. The first
assumption, by nature of the equal weighting pro-
cess, treats all items as equal in their reliabilities. In
turn, this implies all items are equal in their contri-
bution towards estimating the interaction effect. The
second assumption is the reliability of the summated
scale will remain the same when applied later within
a theoretical model. This assumption may not be true
given that the reliability estimate is made in isola-
tion as opposed to within the context for which it
is subsequently used. Chin and Marcolin (1995), for
example, have shown that the reliability of individual
items, and therefore the internal consistency of scales,
can differ when used in different models. Unfortu-
nately, by virtue of the summation process, we have
no opportunity to assess the validity of these two
assumptions—that being equal item reliability and
unchanging scale reliability.

Thus, moderator analysis should not only account
for measurement error during the initial scale con-
struction, but also during the statistical analysis
that estimates the interaction effect. A more realistic
approach would be to weight the individual items for
each scale based on their individual contributions in
the context of the interaction model being tested. By
weighting items that are more predictive and reliable
in estimating an interaction effect, a more accurate
scale can be created. It should also provide informa-
tion when the analysis is completed on the variability
of each measure such that only more reliable mea-
sures are used for future research.

As a possible solution for assessing and account-
ing for measurement error when analyzing interac-
tion effects, Kenny and Judd (1984) proposed using
a product-indicator approach, in which measures of
latent constructs are crossmultiplied to form inter-
action terms that are used to estimate the under-
lying latent interaction construct within the LISREL
algorithm. While this general approach has been
employed in several studies (Kenny and Judd 1984,
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Jöreskog and Yang 1996), growing evidence from
the literature suggests that the LISREL product-
indicator approach can be problematic for several rea-
sons. These reasons include the fact that the LISREL
product-indicator approach is technically demanding,
often resulting in analytical errors and, even if mod-
eled correctly, is not a complete solution (Bollen and
Paxton 1998, p. 267; Li et al. 1998; Ping 1996). These
problems are discussed in the Literature Review
section below.

Overall, if IS theory is to develop in appropriate
ways, our analytical techniques must help uncover
the “true” underlying interaction effects we seek.
It should neither hinder this search nor propagate
the inherent weaknesses of older techniques. Hence,
any IS researcher considering moderating influences
within a theoretical model should be aware of the
problems discussed in this paper so as to produce
valid and accurate results.

Towards this end, we argue that a moderator’s
measurement error should be considered not only in
initial reliability assessment, but also in subsequent
analyses of the theoretical model. A new latent vari-
able modeling approach within partial least squares
(PLS) is shown to provide this subsequent assessment
of measurement, thus overcoming problems within
both traditional analytical techniques that can mask
measurement error (e.g., aggregated or single indica-
tors) and current problems associated with LISREL-
based approaches.

Empirical data is presented to demonstrate how
these analytical techniques impact theoretical devel-
opment through the presentation of two studies: A
simulated data set where the underlying true effects
are known and an electronic-mail adoption data set
where the emotion enjoyment is shown to have not
only a substantial direct effect on adoption inten-
tion, but also an interaction effect that is stronger
than those typically found in IS research. The simu-
lated data set was developed using rigorous Monte
Carlo techniques. The analysis of this data enables the
comparison of factors—reliability, effect size, num-
ber of indicators, and sample size—that can influence
measurement error within the analytical techniques.

It will be argued that the new latent variable mod-
eling approach provides more accurate estimates of

interaction effects by accounting for the measurement
error within measures that, when ignored, can atten-
uate the estimated relationships. These more accurate
estimates should improve the validation of theories,
ensuring that fruitful avenues are maintained and
new ones are detected. To the best of our knowledge,
the use of product indicators to model interaction
effects in a PLS analysis has never been published
and by providing this new procedure, we believe
researchers will be better able to more accurately
detect and estimate contingent relationships—an abil-
ity that has been argued in the past to be an use-
ful approach for advancing social science research
(Greenwald et al. 1986).

The remainder of this paper is structured as follows.
First, the growing importance of interaction terms
within IS research is established, and the continuing
tendency to employ analysis techniques that accounts
for or assesses the fallibility of measures in this work
is noted. A summary of the cumulative knowledge
is presented, providing an overall picture of theoreti-
cal advancements surrounding interaction terms (i.e.,
moderators). These theoretical advancements include
a discussion of measurement error, reliability, LISREL-
based approaches, and summated scales to illustrate
their role within the analysis of interaction terms. Then
a new latent variable PLS modeling approach is intro-
duced in an effort to improve on the previous short-
comings. Following that, two studies are presented to
provide empirical evidence. Discussion and conclu-
sions are then offered, summarizing how best to use
this new approach.

Literature Review
Interaction terms have been used in the IS field for
some time; moderators, multiplicative terms, contin-
gency terms or contingency theory, and interaction
effects are all expressions used to refer to interaction
terms. We begin by examining the growing impor-
tance of interaction terms within the IS literature and
the extent to which previous IS contingency research
has primarily applied analytical techniques, such
as ANOVA3 and multiple regression, that assume

3 Note that what is concluded regarding effect size estimations
using regression throughout this paper is equally so for ANOVA
because the latter represents a special case of the former.
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infallible measures. Measurement error is the primary
problem that is exposed within these analytical prac-
tices, which raises other problems within this litera-
ture, such as the use of summated scales. The primary
problem with these analytical practices is their inabil-
ity to handle or present information relating to impact
of measurement error. These problems are highlighted
and discussed.

Importance to Emerging Theory
Moderators are important to theories being advanced
within the IS field, as can be seen by their long his-
tory in the literature and their increasing use in dom-
inant theories. Two of these emerging IS theories that
employ moderators are task-technology fit (Goodhue
and Thompson 1995) and business-IT strategic fit
(Chan et al. 1997), which are discussed after a brief
review of the history of moderator use in IS research.

Through an exhaustive review of the information
systems literature back to 1980,4 moderators were
found to be present from the start and their impor-
tance is evident. For instance, Schonberger (1980) con-
sidered how information systems design approaches
led to good systems but only when the contingent
factors were appropriately matched, such as infor-
mation needs for MIS supporting functions match-
ing the decision-making type. More recently, McKeen
et al. (1994) summarized the contingency studies that
existed for the relationship between user participa-
tion and satisfaction, and suggested that two out of
four moderating variables, namely task and system
complexity, changed the relationship. However, with
a change in R2 of 0.012, these two moderators were
considered unsubstantial. The authors concluded that
these moderating variables were probably not the
only two important ones and suggested five other
promising moderators for future investigation. From
the authors’ experience, the unmoderated relationship

4 All articles in MIS Quarterly, Information Systems Research, Manage-
ment Science, the Journal of MIS, Decision Sciences, the Communications
of the ACM, Information & Management, and proceedings of ICIS
and HICSS up to 1995 and as far back as the journal goes or 1980
whichever is more recent were reviewed by two research assistants
and the authors. The choice for the start date of 1980 coincides with
the first ICIS conference and has been used by Culnan (1987) as the
starting point for mapping the intellectual structure of the IS field.

was not seen as adequate for an investigation into
user participation and satisfaction. Throughout the
years, similar studies employing moderators can be
found in information systems research providing a
long and important history.

In addition to this long history, moderators are
increasingly used in dominant theories within the
field. Two well-known theories in which the con-
cept of moderation is important are Goodhue and
Thompson’s (1995) task-technology fit model and
Chan et al.’s (1997) business-IT strategic fit model.
Goodhue and Thompson (1995) suggest that technol-
ogy characteristics, moderate relationships between
task and individual characteristics, and system use.
And, although the authors theorize the impact of tech-
nology characteristics on these relationships as mod-
erating, they go on in this paper to develop these
constructs in mediating,5 as opposed to moderating,
relationships. Chan et al. (1997) carried the modera-
tion concept from theory to analysis. They found that
alignment between business strategy and IT strategy
was a better predictor of business performance and IS
effectiveness than either strategy on its own. In their
final analysis, they modeled alignment as a moderat-
ing influence on the relationship between IS strategy
and business strategy. Several other dominant IS the-
ories (Davis’ 1989 TAM model, Doll and Torkzedah’s
1991 user participation/involvement model) and the
streams of research that extend these models and oth-
ers (e.g., Hartwick and Barki 1994, p. 461) suggest that
moderators are an important avenue of future devel-
opment, and many calls are noted in the literature.
McKeen et al. (1994) noted these calls as far back as
1984 (Ives and Olson 1984) and heralded the investi-
gation of more contingency factors and the expansion
of the theoretical complexity of moderated models.
These calls are constantly repeated within the field
(e.g., Anderson 1985, Vanderslice 1987, Tait and Vessy
1988, Doll and Torkzedah 1989, Sambamurthy and
Zmud 1999).

In addition to calls from within the field, there is
evidence from other fields that the relatively young

5 A mediating relationship is an intervening construct that sits
between two other constructs and passes/mediates the influence of
the one variable through to the other.
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IS field can expect moderators to grow in promi-
nence. If the IS field follows a similar evolutionary
path to that of other fields, such as organizational
behavior and psychology (Stone 1988), moderators
will likely be used more and assume a prominent
role within IS research investigations. This trend
is evidenced in the literature6 with the number of
articles that investigate moderators steadily rising
since 1980 and the number of moderators within
these articles continually expanding. As the IS field
applies more complex theories, its methodologies and
analytical approaches, such as the use of modera-
tors, will become more important. Dominant theories
are, increasingly, employing moderators in a central
role, one that is likely to remain for some time.

Problems Emerging
Although many laud the importance of moderators
within theoretical development, others within the IS
field have questioned the overall usefulness of contin-
gency research (which is based on moderators). Weill
and Olson (1989) did exactly this when they stated
that the “highly mixed empirical results” (p. 79) is evi-
dence of a lack of contribution to knowledge (p. 67).
Cavaye (1995) suggests that the “literature regularly
proclaims” (p. 319) the importance of moderating
influences for user participation and IS development
project success, but “empirical research continues to
provide inconsistent results” (p. 319). These incon-
sistencies raise doubt in researcher’s minds, bringing
into question the value of this work (p. 317) and cre-
ating a mistaken impression that moderators are not
important.

In fact, this negative conclusion is exactly the oppo-
site of what Cavaye (1995) was arguing, although
never stated explicitly. She argued that contingency
factors might explain many of these “inconsistent” or
“inconclusive” results, listing numerous moderating
influences that might better capture this theoretical
relationship. Raising the importance of moderators
within theoretical development is exactly her point
and an underlying message of this paper. To accom-
plish this, however, we need to be aware of the
shortcomings of our current techniques.

6 See Figure 1 at http://www.informs.org/Pubs/Supplements/ISR/
1526-5536-2003-02-SupplA.pdf.

Current Shortcomings in the Moderator
Literature
The difficulties, as expressed within the moderator lit-
erature,7 are presented next. In particular, we focus
on eight, emergent, key problem areas for assess-
ing moderators,8 including measurement error and
how reliability, summated scales, number of indica-
tors, effect size, sample size, power, and incomplete
reporting influence the subsequent empirical analyses
and results.

Measurement Error and Reliability. Measurement
error is most often assessed first through reliabil-
ity analysis and then ignored or constrained in the
subsequent analysis of the theoretical relationships.
The sequence goes as follows: Measurement error
assessments typically begin with a Cronbach’s reli-
ability check where reliability levels are determined
and poorly convergent items are excluded, then vari-
ables are aggregated into a single score (e.g., summed
or averaged).9 Once this aggregation or reduction to
a single item takes place, further assessment of mea-
surement error in any subsequent analysis is impos-
sible because the measurement error has been fixed
by the scale construction method. Fixing in this way
causes inaccuracies in the subsequent estimates of the
theoretical relationships, as will be shown below.

Compounded with this fixed-scale construction is
the use of subsequent analytical techniques that
cannot assess measurement error. Regression and
ANOVA are the preferred methods used to test mod-
erators (see Tables 1 and 27�8) in IS research, and
they, by definition, focus on single measures (scaled
or otherwise). Unfortunately, additional tests to assess
the discriminant and nomological validity of the indi-
vidual items within the theoretical model (i.e., main
and interaction effects) can never be made. Measure-
ment error as a result of a multi-item scale can-
not be assessed within these techniques, and, as a
result, issues of multidimensionality, poor items and
construct interpretation are hampered.

7 See the Literature Review summary at http://www.informs.org/
Pubs/Supplements/ISR/1526-5536-2003-02-SupplA.pdf.
8 See the Moderators Employed summary at http://www.informs.
org/Pubs/Supplements/ISR/1526-5536-2003-02-SupplA.pdf.
9 Single-indicator scores also can be used; however, their measure-
ment error cannot be assessed because there is only one item.
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Summated Scales. Special emphasis on summated
scales is noted here as the practice is often proposed
as the solution to the measurement error problem.
To overcome the issue of single indicators, many
researchers have employed the practice of summing
items to create a single indicator for use within regres-
sion or ANOVA,10 with the belief that the resulting
summated scale better accounts for the underlying
measurement error (Gelderman 1998, same issue for
averaged scales; Igbaria and Baroudi 1993). Although
this summation practice performs better than single
indicators, it can mask measurement error through
the two-step process described above in which item
aggregation is performed outside of the theoreti-
cal context in which the aggregated score is subse-
quently used. Thus, summated scales, while found to
be the standard practice in the IS literature, can be
suboptimal in two ways: Equal item reliability and
unchanging scale reliability.

In summing items into a single measure, the
assumption is made that all items are equally reli-
able. However, this summing approach, while reduc-
ing measurement error, is suboptimal relative to the
PLS algorithm. PLS treats each indicator separately,
allowing each item to differ in the amount of influ-
ence on the construct estimate. Therefore, indica-
tors with weaker relationships to related indicators
and the latent construct11 are given lower weightings
(Lohmöller 1989; Wold 1982, 1985, 1989), resulting in
higher reliability for the construct estimate and thus
stronger theoretical development.

Summated scales can also be suboptimal because
the reliability estimate of the construct is made in iso-
lation from the theoretical model in which it is to be
used. The practice of aggregating items may give a
false sense that measurement error has been handled
when, in fact, measurement error should be rechecked
in the context of the final theoretical model before
assurances of minimal measurement error are made.
As will be shown in the empirical data section, the
two-step approach leads to suboptimal estimates and

10 See Tables 1, 2, and 3 for list of studies at http://www.informs.
org/Pubs/Supplements/ISR/1526-5536-2003-02-SupplA.pdf.
11 Latent constructs are unobserved factors that are reflected by or
formed from its measures.

yet, as seen from our review, represents the current
dominant approach used in IS research.

Number of Items. The next logical extension is to
begin employing multiple measures so as to capture
and analyze measurement error. Reliability theory
tells us that the greater the number of indicators used
to measure a construct, the more reliable and accu-
rate the subsequent analyses will be (Carmines and
Zeller 1979). Furthermore, reliability increases even
faster when higher quality (i.e., more reliable) indi-
vidual items are used, and hence, higher quality items
should always be the goal. However if high quality
items cannot be guaranteed, extra items should be
proposed and analyzed.

Few moderator studies are employing these high
quality or multiple item scales. Although reliability
is not always reported, our best guess from a review
of the reported data is that the IS field is achieving
about 0.70 reliability. From a review of the regres-
sion and path analysis articles, which are closest to
accounting for measurement error, the average num-
ber of indicators observed was three.12 Most struc-
tural equation modeling literature suggests that three
indicators should be a minimum and not an average
(Bollen 1989). Consequently, when reliability is lower
or the number of indicators is small, measurement
error is more problematic, which further complicates
theoretical model development.

LISREL Solution for Summated Scales. Covar-
iance-based techniques, such as LISREL, can accom-
modate measurement error but are not necessarily
the best alternative for overcoming summated scale
problems. These techniques have been shown to
be less than ideal under many data conditions
for analyzing interaction terms using the product-
indicator approach (Bollen and Paxton 1998, p. 267; Li
et al. 1998, p. 240; Ping 1996). Comparisons between
LISREL and PLS are highlighted in Table 4,13 dis-
cussed below, and compared later to the PLS product-
indicator approach.

12 See Table 2 at http://www.informs.org/Pubs/Supplements/
ISR/1526-5536-2003-02-SupplA.pdf.
13 Available at http://www.informs.org/Pubs/Supplements/ISR/
1526-5536-2003-02-SupplA.pdf.
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Various LISREL specifications have been conducted
in the past (Kenny and Judd 1984, Jöreskog and Yang
1996); however, Ping (1996) recently noted that these
covariance-based procedures “may produce specifica-
tion tedium, errors, and estimation difficulties in larger
structural equations models” (p. 166). Part of the diffi-
culty involves the need to calculate and specify in the
software the required set of nonlinear constraints, which
increases exponentially with the number of indicators.
In agreement, Bollen and Paxton (1998, p. 267, empha-
sis added) stated that “the best known procedures for
models with interactions of latent variables are tech-
nically demanding. Not only does the potential user
need to be familiar with structural equation modeling
(SEM), but the researcher must be familiar with pro-
gramming nonlinear and linear constraints and must
be comfortable with fairly large and complicated mod-
els.” In agreement, Li et al. (1998, p. 26) stressed “the
need for care in the specification of nonlinear con-
straints in models” and go on to state that “mistakes
can easily be made, the consequences of which may
be worse than ignoring the interaction effect in the
first place.” Again, these constraints grow exponen-
tially with the number of interaction terms.

To overcome the need to calculate such constraints,
Ping (1995, 1996) recommended an alternative two-step
approach that advocates conducting analysis in two
steps, separating measurement and structural model
assessments. However, the ability to assess the reli-
ability and validity of individual items using such
a two-step approach has been questioned (Fornell
and Yi 1992). The two-step approach makes more
demanding analytical assumptions concerning both
uncorrelated errors and multivariate normality of
observed variables, and fails to adjust standard errors
for constrained parameters that are necessary so as
to anchor scales for interpretation (Bollen and Paxton
1998, p. 280). Thus, the standard errors of estimates
for parameters, such as loadings, error terms, and
variance of latent product variables, are unknown and
no significance test statistics are available. Further, the
two-step method provides only an approximation of
the true results and only when somewhat demand-
ing assumptions are met. Those assumptions are that
(a) the model is correct and (b) the data are multi-
variate normal (Li et al. 1998, p. 24), which are two
conditions that are often not met.

Even if the preceding conditions are met, there
are additional operational issues to consider. In gen-
eral, when the number of indicators in a model goes
beyond 40 or 50, computation tends to not even con-
verge. Because of the full information algorithm, the
computational demands grow exponentially as one
increases the number of items used. In addition, the
sample size required to yield stable parameter and
model fit estimates must also increase (more on this
issue later).

Finally, in contrast to both summated regression
and our PLS approach, the LISREL algorithm does not
explicitly calculate construct scores. Thus, if a goal of
the researcher is to obtain a single best approxima-
tion of each construct, LISREL will not provide this as
part of the process in estimating the interaction effect.
In all, LISREL moderator specifications are technically
demanding and not necessarily the complete solution.

Effect Size, Power, Sample Size, and Reporting
Other problems noted in the literature included effect
sizes, sample size, power, and incomplete reporting,
which are often intertwined with each other and,
hence, are handled here collectively so as to highlight
the types of problems encountered. Only 21% of the
moderators tested in IS studies (Table 1) were found to
be significant, which begs the question as to whether
the other effects did not exist or were just not detected?

Effect size14 was not reported for 71% of the signi-
ficant moderators in the nine regression-based articles

14 Effect size is the strength of the theoretical relationship found
in an analysis and provides an estimation of the degree to which
a phenomenon exists in a population. The standard approach for
determining the strength of an interaction effect involves contrast-
ing the difference between the squared multiple correlation for the
baseline or “main effects” model consisting of the measures that
are eventually used to estimate the interaction effects and the inter-
action model containing the same main effects variables plus the
interaction terms. Thus, the interaction model always represents
a superset of the baseline model (i.e., the main effects model is
hierarchically nested within the interaction model). An explicit cal-
culation of the change in R2 between these two models provides
an estimate of the effect size of the interaction term. Cohen (1988)
recommends using the difference in R2 to calculate an f 2 effect
size (this is discussed later in the paper). Caution should be made
in using the beta estimate for the interaction term as an estimate
of effect size. Only under certain conditions would this regression
estimate approximate the effect size. Specifically, you’d need to be
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(Table 3). The three remaining moderator estimates,
based on Cohen’s (1988) guidelines, yielded two small
effects (0.036 and 0.050) and a medium effect (0.123).
Several things accounted for our inability to report the
effect sizes of the interaction terms in the reviewed
work, including the use of techniques that restrict
an effect size calculation such as split samples, the
lack of sufficient information (e.g., standard error) to
standardize unstandardized estimates, or omission of
effects in the manuscripts for other unspecified rea-
sons. Inconsistent reporting, the latter finding, hin-
ders any attempt to aggregate the field of knowledge
(Weill and Olson 1989).

Sample sizes averaged 81.5 for articles using regres-
sion or path analysis, and 148 for articles using
analysis of variance techniques (Table 1). Statisti-
cal power was reported in only four articles with
just one of these indicating the recommended 0.80
(Cohen 1988). In general, power is impacted by small
effect sizes, small sample sizes, random measure-
ment error, larger standard deviation, and nonnormal
data distributions. Given the fact that many of these
power-limiting conditions existed within the litera-
ture reviewed, one wonders whether an explanation
for the null results is that they were just not detected.

In conclusion, moderators have a long history
within the IS research field and are gaining promi-
nence in many emerging theories. Despite the ongo-
ing calls to increase investigation into moderating
effects, problems have emerged around measure-
ment error, reliability, single item measures, sum-
mated scales, inconsistent results, and small overall
impact. Few studies have used analytic techniques
that can calculate effect size or can present a com-
plete solution (e.g., LISREL). Power levels tend to be
low. Meta-analyses are either theoretical (Trice and
Treacy 1986, Goodhue 1986) or report inconsistent
results (Cavaye 1995). These inconsistent results are

using standardized measures to produce an interaction term, where
the calculated interaction term tends to yield low correlations with
the individual component parts of the term. In the case of zero cor-
relation, the square of the unstandardized estimate of the beta esti-
mate for the interaction term can represent an approximation of the
change in R2. This is the situation for our Monte Carlo simulation
and thus allows for the convenience of examining the regression
estimate as an approximation of the effect size.

often blamed on different operationalizations of the
constructs, uncontrolled research factors, inappropri-
ate quantitative studies with little richness in the
understanding of the influences, and poorly validated
instruments (Cavaye 1995). We believe these problems
are opportunities for improvement.

To such an end, a new latent variable model-
ing approach for analyzing interaction effects is now
introduced and its ability to address these prob-
lems is discussed. Empirical evidence is then pre-
sented from two studies: A Monte Carlo study and an
IT-adoption data set. The Monte Carlo study allows
us to assess the approach’s improvement over previ-
ous techniques, while the IT adoption study demon-
strates the use of the new approach within an actual
IS data set and theoretical framework.

PLS Product-Indicator Approach
for Measuring Interaction
To account for the effects of measurement error, a
product-indicator approach in conjunction with PLS
is proposed. To the best of our knowledge, this repre-
sents the first time such a technique has been applied
using PLS for assessing interaction effects. Both Chan
et al. (1997) and Bergeron et al. (2001), for exam-
ple, discuss the theoretical implications of modera-
tors as a fit variable but never fully demonstrate
the empirical properties of such a product-indicator
technique. Chan et al.’s (1997) work comes closest
to a moderated model but was missing two cru-
cial main effects paths in the final model analyzed.
Paths between each exogenous15 construct and each
endogenous construct, in this model, must be ana-
lyzed. When the main effect variables are missing in
the analysis, interaction path coefficients are not true
interaction effects (Jaccard et al. 1990). Furthermore,
the individual items were not centered or standard-
ized, the moderation scores were averaged and the

15 Exogenous constructs in this situation can be thought of as inde-
pendent variables, which have no antecedents that are currently
being evaluated in the statistical analysis. More simply, if there
are no causal arrows leading into the independent variable, then
it is an exogenous construct, otherwise it is called an endoge-
nous construct. The distinction is important for issues surrounding
estimation.

196 Information Systems Research/Vol. 14, No. 2, June 2003



CHIN, MARCOLIN, AND NEWSTED
A Partial Least Squares Modeling Approach

scores were then used as a formative measure,16 a
sequence that results in uninterpretable coefficients.17

Consequently, an empirical demonstration of the PLS
technique is crucial for understanding an appropriate
analytical process in which such errors in execution
are avoided.

PLS Appropriateness
The use of PLS has been gaining interest and use
among IS researchers in recent years (Compeau and
Higgins 1995, Aubert et al. 1994, Chin and Gopal
1995) because of its ability to model latent constructs
under conditions of nonnormality and with small to
medium sample sizes. It is important to recognize that
the operational act of creating product terms by mul-
tiplying measures together (to be discussed next) in
and of itself is not new. These product terms are used
in traditional multiple regression and, as described
earlier, have been used for covariance-based solutions
using software such as LISREL. Rather, it is the cou-
pling and conceptualization of these product indica-
tors within an easy-to-use PLS context that is new.

Being a components-based structural equation
modeling technique, PLS is similar to regression, but
simultaneously models the structural paths (i.e., theo-
retical relationships among latent variables) and mea-
surement paths (i.e., relationships between a latent
variable and its indicators). Rather than assume equal
weights for all indicators of a scale, the PLS algorithm
allows each indicator to vary in how much it con-
tributes to the composite score of the latent variable.
Thus, indicators with weaker relationships to related
indicators and to the latent construct are given lower
weightings, and those varied weightings are car-
ried through to an assessment of the theoretical esti-
mates. In this sense, PLS is preferable to techniques
such as single-item regression that assumes error-
free measurement, summated regression that assumes
equal-weighted measurement and factor score-based
regression that assumes constrained measurement

16 For a discussion of formative measures, see Appendix D at
http://www.informs.org/Pubs/Supplements/ISR/1526-5536-2003-
02-SupplA. pdf.
17 Chan et al. tested the other model but have not published them
for public review. Their claim is that the results are similar.

error within the estimates of the theoretical variables
(Lohmöller 1989; Wold 1982, 1985, 1989).18

Our PLS product-indicator approach represents a
one-step technique that requires no additional spec-
ification of parameter constraints or assumptions of
multivariate normality, can be used to estimate large
complex models (even when embedded in the mid-
dle of a nomological network), and estimates standard
errors via resampling procedures (see Chin 1998b for
a discussion of resampling procedures in conjunction
with PLS). Furthermore, sample size (as to be demon-
strated by the Monte Carlo study) is not constrained
by the number of product indicators as would be the
case in LISREL estimations, which require increas-
ingly larger sample sizes as the number of indicators
grows. A simple PLS heuristic19 for main-effects-only
models indicates that a sample size of 30 would be
a reasonable starting point for the three-construct
model discussed here and is independent of the num-
ber of indicators used. As shown in Appendix A,
the comparable LISREL sample would be 200 and
increases quickly as the number of indicators increase
(up to 1,820 sample size for 12 indicators). Practically,
as the model complexity increases beyond 40 or 50
indicators, the LISREL software may not even converge.
The PLS approach, in contrast, has been shown to
yield computational results for a model with 672 indi-
cators, 21 latent variables, and 200 cases in approxi-
mately 1.5 minutes on a 166-MHz Pentium computer
(Chin and Newsted 1999, p. 335).

The final point of comparison to be clarified is that
the underlying assumption of uncorrelated error terms
among indicators cannot, by definition, hold true for
any moderator analysis (see Kenny and Judd 1984 for
derivation). Because they are created through multi-
plication, the error terms for the product indicators
are partially correlated with the error terms for the
indicators of the other exogenous constructs.20 While

18 Additional information about the PLS method and how it com-
pares to covariance-based procedures is provided in Appendix A
at http://www.informs.org/Pubs/Supplements/ISR/1526-5536-
2003-02-SupplA.pdf.
19 See Appendix A at http://www.informs.org/Pubs/Supplements/
ISR/1526-5536-2003-02-SupplA.pdf.
20 This will be discussed in greater detail in the next subsection.
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problematic if not accounted for within covariance-
based modeling software such as LISREL, these cor-
relations may actually help provide a more accurate
estimation of the interaction effect when using PLS.
The reason is that there is a known bias in PLS that
underestimates the structural effects.21 While there are
no known ways to estimate the amount of bias or
inaccurate estimates in a complex model, we do have
formulae to account for this bias in single- and two-
construct models (see Chin 1998b, p. 330 for details).
In these cases, bias is reduced with more indica-
tors, and hence we can expect the same tempering
effects within our Monte Carlo analysis. Whether or
not reduced bias continues to be true in the multi-
construct case will be assessed in the next section.
Overall, we believe that the data conditions within
the IS field are likely more aligned with the require-
ments of the PLS approach than the requirements of
the LISREL approach.

PLS Setup
Predictor, moderator, and dependent variables under
this PLS approach are viewed as latent variables
or constructs, which are ideas that cannot be mea-
sured directly. Instead, multiple indicators, or mea-
sures, for these latent variables must be obtained.
Although it is possible to gather measures in many
ways, one example of a measure is a survey ques-
tion in a data collection instrument. For this analytic
technique, each indicator is modeled as being influ-
enced by both the underlying latent variable (i.e.,
reflective indicators) and error. Product indicators
reflecting the latent interaction variables are then cre-
ated by multiplying the indicators from the predictor
and the moderator variables (see Figure 2). This ana-
lytical model is consistent with the theoretical model
shown in Figure 3. Each set of indicators reflecting
their underlying construct or latent variable are then
submitted to PLS for estimation resulting in a more
accurate assessment of the underlying latent variables
and their relationships.

21 It will be demonstrated in the next section that this PLS bias is
less problematic than regression’s underestimation.

Figure 2 Model with Three Indicators per Main Construct and Nine
Produce Indicators for the Interaction Construct

X

Predictor

Variable

X*Z
Interaction

Effect

x1 x2 x3

Z
Moderator

Variable

z1 z2 z3

Y

Dependent

Variable

y1 y2 y3

x2*z1 x2*z2 x2*z3 x3*z1 x3*z2 x3*z3x1*z1 x1*z2 x1*z3

0.30

0.50

0.30

0.70 0.70 0.70

0.70
0.70

0.70

0.70 0.70
0.70

0.49 0.490.49 0.49 0.49 0.49 0.49 0.49 0.49

Note. Path coefficients at the levels specified were created through Monte
Carlo simulations.

Standardizing or Centering Measures
An important step in undertaking the PLS product-
indicator approach is to determine whether indicators
must be standardized or centered. Standardizing or
centering indicators helps avoid computational errors
by lowering the correlation between the product indi-

Figure 3 Comparable Theoretical Model for Analytic Model in Figure 2

X
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Variable

Z
Interaction
Variable

Variable
Dependent

X
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cators and their individual components (Smith and
Sasaki 1979); consequently, one of the techniques must
always be used. Furthermore, without such a process,
each product term would likely have a different inter-
pretation, limiting the ability of the PLS procedure
to accurately estimate the underlying interaction con-
struct. Standardizing or centering the indicators also
allows an easier interpretation of the resulting regres-
sion beta for the predictor variable. This beta repre-
sents the effect expected at the mean value of the
moderator variable, which is set to zero.

Standardization is used for reflective measures if it
is decided that they can be conceived of as approx-
imately parallel indicators (i.e., equivalent in their
measurement of the underlying construct) and no
a priori emphasis is given to a particular indicator in
the set. Under this situation, all indicators reflecting
the predictor and moderator constructs are standard-
ized22 to a mean of zero and variance of one (Jaccard
et al. 1990, Aiken and West 1991). This approach can
be done for ordinal- and interval-level items, such as
Likert-scaled attitudinal items, and must be calculated
before submitting the data to PLS. Many statistical
packages can save standardized Z scores to a file to
facilitate this calculation.

Alternatively, centering can be used to maintain
the scale metric (or units of measurement), which
might be necessary for theoretical interpretation. If
it is decided that some indicators are theoretically
more important than others, indicators would only
be centered—to achieve a mean of zero—by sub-
tracting the mean from every score. This centering
technique is only used if it is felt that the origi-
nal metric of the items or their variances should be
maintained, and usually must be calculated explicitly
within a statistical package before submitting the data
to PLS. For ratio-level items, it is important to have
all items transformed to the same metric in addition
to being centered. For example, if you measured tem-
peratures in both Celsius and Fahrenheit, you must

22 Standardizing is accomplished by calculating the mean and stan-
dard deviation for each indicator. Then for each indicator score,
the corresponding overall mean is subtracted and the result is
divided by the respective standard deviation. Centering refers only
to subtracting the mean.

convert them all to the same scale. After that, you
need to center each temperature indicator by sub-
tracting the respective means of the converted scales
from their respective data values. Otherwise, the esti-
mated latent variable score produced by PLS would
be indeterminable and hence uninterpretable.

Calculating Interaction Term Measures
Once the standardized or centered indicators of the
predictor variable X and the moderator variable Z

are calculated, product indicators are developed by
creating all possible products from the two sets of
indicators, usually through an explicit multiplication.
These product indicators are used to reflect the latent
interaction variable. For example, if there are three
measures reflecting the main predictor X and three
measures for the moderator variable Z, there would
be nine measures for representing the interaction term
X∗Z. Graphically, this is depicted in Figure 2. Because
any indicator reflecting the predictor X or moderator
Z is viewed as interchangeable with another from the
same set, any product indicator xi ∗zi would represent
a parallel measure of the underlying latent interaction
variable X ∗Z.

PLS Estimation
The PLS procedure is then used to estimate the latent
variables as an exact linear combination of its indi-
cators with the goal of maximizing the explained
variance for the indicators and latent variables. Fol-
lowing a series of ordinary least squares analyses, PLS
optimally weights the indicators such that a result-
ing latent variable estimate can be obtained.23 The
weights provide an exact linear combination of the
indicators for forming the latent variable score that
is not only maximally correlated with its own set of
indicators, as in components analysis, but also cor-
related with other latent variables according to the
structural, or theoretical, model.

Empirical data illustrating the PLS approach is
now presented. Because our purpose is to improve

23 For standardized indicators, the default estimation procedure of
unit variance/no location should yield similar results to the orig-
inal scale/with locations option. For centered data, the original
scale/with locations should be used.
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on the dominant technique found in the literature
(i.e., regression and ANOVA), comparisons to single-
indicator regression and summated regression are
included. The first study presents a simulated Monte
Carlo data set where true effects are known and
the ability of each technique to estimate these coef-
ficients is shown. The second study presents an IS
data set around e-mail adoption with the moderating
influence of emotion.

Study 1: Monte Carlo Simulation
To test the efficacy of the PLS product-indicator
approach for detecting and estimating interaction
effects where measurement error exists, a Monte
Carlo simulation study was first executed. PLS,
single-indicator regression, and summated regression
analytical techniques are compared under varying
conditions of effect size, sample size, number of indi-
cators, and measurement error—the influences most
prevalent in the literature and central to the inter-
action term analysis. We begin our presentation of
this study by explaining Monte Carlo simulation
and follow this with a description of the predeter-
mined population parameters used to assess our PLS
product-indicator approach. Because accounting for
measurement error is at the heart of the difference
between the PLS and regression techniques, loading
patterns are first held at a level of 0.70 to provide
a baseline comparison, and later varied to extend
our understanding. The baseline case and subsequent
variations are briefly outlined before the simulation
results are shown.

Monte Carlo Simulation
Monte Carlo simulations are typically applied
by latent variable/structural equation modeling
researchers to ascertain the robustness of statisti-
cal estimators (e.g., Chin and Newsted 1999, Chou
et al. 1991, Sharma et al. 1989). Monte Carlo sim-
ulation refers to a procedure of generating artificial
data, based on a specific statistical model that is
defined in terms of a stochastic generating mecha-
nism (Noreen 1989). In other words, we create data
that conforms to specifically stated model parame-
ters, such as structural paths (e.g., main and inter-
action effects), factor loadings, and error terms. Two

different approaches have been used to generate data
to assess the robustness of latent variable methods.
In the Monte Carlo approach, the implied covari-
ance matrix of the observed variables is computed
for given values on the parameters in the model and
then data are generated on the observed variables
from a multivariate distribution having this covari-
ance matrix. Thus, data are only generated for the
observed variables and not for the construct level.
In the alternative approach, data are first generated
for the latent variables according to the relationships
specified in the model and then data are generated
for the observed variables from the latent variables
in the model. This latter approach is better suited
to generate data with the distributional characteris-
tics imposed by the model. For this study, we apply
the second approach, consistent with the examples
and functionality available in the software package
PRELIS 2.14 (Jöreskog and Sorbom 1993).

Monte Carlo Population Parameters
Using PRELIS 2.14 (Jöreskog and Sorbom 1993), data
were generated to conform to an underlying popula-
tion model where the standardized beta of X on Y

was 0.30, the beta of Z on Y was 0.50, and the inter-
action effect 
X ∗Z� was 0.30. The model is shown
in Figure 2. Indicators for all primary constructs, or
latent variables, were modeled as having factor load-
ings of 0.70 because this is a minimum standard
of the IS literature.24 Thus, the true scores for the
main and interaction effects are known. The goal here
is to determine how well the PLS product-indicator
approach detects and recovers (i.e., estimates) the true
effects under conditions of measurement error.

Monte Carlo Design—The Baseline Case and
Subsequent Cases of Comparison
The Monte Carlo design is intended to achieve sev-
eral objectives. The first objective, as our baseline case,
is to assess how well the new PLS product-indicator
method performs at retrieving the true population
parameter. As such, sample sizes are varied at 20, 50,

24 As an initial test near the end of the paper, we do examine the
PLS product-indicator performance with different loadings (and,
hence, different reliability).
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100, 150, 200, and 500 cases, and the number of indica-
tors per primary construct of X, Z, and Y are varied at
1, 2, 4, 6, 8, 10, and 12. For each cell in this completely
crossed design, 500 simulations were performed. For
example, in the cell representing sample size 50 and
4 indicators per construct, 500 data sets were gener-
ated consisting of sample sizes of 50 where each case
had 4 indicators for each of the 3 constructs X�Z, and
Y (factor loadings of 0.70), and 16 product indicators
for X ∗Z (factor loadings of 0.49).

A second objective, after examining the absolute
performance of the new approach, is a comparison
to regression-based estimates. A comparison between
the PLS product-indicator approach and single-
indicator regression is made, which represents a sim-
ple initial point of departure to establish the relative
effectiveness of the product-indicator approach in
accommodating measures with error. In addition,
the comparison between the PLS product-indicator
approach and the common practice of summing scales
within a regression analysis (the often suggested solu-
tion for addressing measurement error) is also under-
taken. Using the data generated from the Monte
Carlo simulation, summated scales are created and
employed in additional regression analyses. The path
estimates for the summated regression analyses are
then compared to those obtained via the PLS product-
indicator approach.

As a final objective, unequal loadings (a situation
more typical among research studies) are compared
with the Monte Carlo data for the PLS product-
indicator and summated regression approaches.
While the next analysis is not exhaustive, a brief simu-
lation is provided to see how both techniques perform
under conditions of heterogeneous loading patterns
(i.e., not all 0.70).

Having described the Monte Carlo objectives, the
results are now presented. We begin with a discussion
of significant levels and the influences of sample size
and number of indicators followed by a discussion
of the ability to estimate the known/true underlying
path estimates.

Significance
Tables 5, 6, and 7 provide the results and significance
tests for the 6× 7 crossed design in which PLS runs

were made using PLS-Graph version 3.0 (Chin 2001).
As noted, a single indicator multiple regression forms
the initial baseline of comparison for how well the
PLS product-indicator approach performs. Results of
using single-indicator regression with varying sample
sizes are provided in the column of Table 7 labeled
“one item per construct.” When using PLS, the case of
one indicator per construct is identical to performing
a multiple regression with a single-indicator measure.

Accurate estimates are invaluable to IS research and
only achieved if analytical techniques can both detect
and estimate the true scores. Advocating that detec-
tion by itself is sufficient (i.e., significance) is incom-
plete because the goal is to accurately detect the true
score if it exists. Hence, we will first examine the
pattern of significance and then, with this pattern in
mind, consider the accuracy of the estimations. Only
then can conclusions be drawn.

Significance levels achieved within each cell from
the single-indicator regression and PLS analyses are
shown in Table 5. In general, small sample sizes or
few indicators produced few significant estimations
at p ≤ 005. For example, multiple regression using a
single indicator, as represented by the first column,
did not detect a significant effect. The predictor X

term and the moderator Z term achieved significance
sooner at sample sizes of 100 and 50, respectively.
Consequently, PLS’s ability to estimate the noninter-
action terms that are either more reliable or have
larger effect sizes 
z= 050� is reaffirmed. The single-
indicator approach appears inadequate for estimating
interaction terms because no results were significant.

Let us pause for a moment to understand three
possible patterns of significance. These ideal patterns
of results, as shown in Table 6, might be formed if
(i) only the number of indicators has an influence,
(ii) only sample size has an influence, or (iii) both
have an equal influence. A solid line is drawn to
distinguish where the results change from nonsignif-
icant to significant.

If only the number of indicators had an influence,
then a solid vertical line would be observed as shown
in Table 6(i), because no matter how large the sample
size grew, the significance within a column would not
change. If only sample size had an influence, then a
solid horizontal line would be observed as shown in
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Table 5 Tests of Significance for the Mean Estimates Shown in Table 7 (500 Runs in Each Cell)

Predictor: X (.30) 

(dashed  line) 

Number of Indicators 

Sample Size 1 2 4 6 8 10 12 

20        

50     * * * 

100   ** ** ** ** ** 

150  ** ** ** ** ** ** 

200  * ** ** ** ** ** 

500  * ** ** ** ** ** 

        

Moderator:  Z (.50) 

(solid line) 

       

Sample Size 1 2 4 6 8 10 12 

20        

50   ** ** ** ** ** 

100  * ** ** ** ** ** 

150  ** ** ** ** ** ** 

200  * ** ** ** ** ** 

500  * ** ** ** ** ** 

        

Interaction: X*Z (.30) 

(double line) 

       

Sample Size 1 2 4 6 8 10 12 

20        

50        

100   * ** ** ** ** 

150  * ** ** ** ** ** 

200   ** ** ** ** ** 

500   ** ** ** ** ** 

Note. ∗p < 0�05 (one-tailed t value: 1.66, df = 499).
∗∗p < 0�01 (one-tailed t value: 2.36, df = 499) (outlined by the dark line).

Table 6 Possible Patterns of Significance

** ** **

** ** **

** ** **

** ** **

** ** **

** ** **

** ** ** ** ** ** **

** ** ** ** ** ** **

** ** ** ** ** ** **

**
** ** **

** ** ** **
** ** ** ** **

** ** ** ** ** **
** ** ** ** ** ** ** 

** ** ** ** ** ** ** **

SS SS SS

Indicators Indicators Indicators

(i) Only number of indicators

has an effect

(ii) Only sample size has an

effect

(iii) Both have an equal 

influence

Note. ∗∗ = significance.
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Table 6(ii), because no matter how many indicators
were used the significance within a row would not
change. Finally, if both had an equal influence, then
a tiered, diagonal line would be observed as shown
in Table 6(iii), because significance would change
incrementally by both rows (sample size impact) and
columns (indicator impact). These patterns will be
compared throughout the results.

Sample Size. As a general observation regarding
Table 5, it can be seen that smaller sample sizes did
not produce significant results for many of the com-
binations across each of the predictor, moderator and
interaction terms. The sample size of 20 failed to
detect the true effect in all combinations. Interaction
term results for the sample size of 50, also, were
not significant. Small sample sizes clearly should be
avoided when analyzing moderator variables.

For larger sample sizes, there appears to be a
threshold after which an increase in sample size does
not change the significance level.25 The dashed, solid,
and double lines designate the division between non-
significant and significant at 0.01, a conservative level
that balances both detection and estimation results
as will be seen below. The first two parts of Table 5
for predictor X and moderator Z appear to have flat,
horizontal lines, and the last part for the interaction
term appears to have a more slightly tiered pattern.
Accordingly, these patterns reconfirm that, for the
PLS product-indicator approach, sample size is more
influential in determining significance for noninter-
action terms and terms with large effect sizes, but
the patterns also suggest that both sample size and
the number of indicators are influential in determin-
ing significance for interaction terms. The equality of
these latter influences will be revisited again when
reviewing path estimation.

Indicators. The influence of indicators is promis-
ing. More indicators were generally significant, and it
is clearly seen that fewer indicators (under four) often
lead to nonsignificant results until either a larger sam-
ple size was used, such as 150 or over, or a true effect

25 Note, however, that other statistical benefits could result from
this increase in sample size, such as greater statistical precision. See
Appendix B for a discussion of those benefits.

was larger, such as Z = 050. Significance at 0.01 was
achieved for the interaction term at 6 indicators—100
sample size, and 4 indicators—150 sample size, rep-
resenting ideal threshold values for sample size and
number of indicators in PLS.

Taken together, the results of significance levels
for sample size and number of indicators suggest
that appropriate detection of interaction terms require
sample sizes of 100–150 and 4 or more indicators for
each predictor and moderator constructs. The ideal
threshold combinations outlined above imply that
increasing the number of indicators when analyzing
moderators is just as important as gathering more
data. Determining significance is an important first
step and essential when calculating the correct path
estimates. The ability of the techniques to capture true
path estimates is now explored.

Path Estimation
After reviewing significance, true score estimation
can be addressed. Table 7 provides the path esti-
mations and standard error results for the different
combinations of sample size and number of indicators.

Single-Indicator Regression
Keeping in mind that a perfect estimation procedure
should result in 0.30 for the x to y path, 0.50 for the z

to y path, and 0.30 for the x∗z to y path, note that the
Table 7 single-indicator regression results (Column 1),
which are under conditions of measurement error,
consistently (and significantly) underestimated these
true effects. The reason, as discussed earlier, is that
single-indicator regression does not explicitly take
into account the attenuating effects of measurement
error. At a sample size of 500, for example, path esti-
mations for single-indicator regression are one-half to
one-third of the true effects. Estimation of the inter-
action term, keeping in mind that none yielded sig-
nificant results, was only 0.098—far from the 0.30
true score. Therefore, the single-indicator regression
approach never seems to yield the true effects even
when larger sample sizes are used.

Ideal PLS Interaction Terms
Estimation with the PLS product-indicator approach
is promising. Specifically, the number of indicators
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Table 7 PLS Path Estimation from Monte Carlo Simulation (500 Runs per Cell)

Indicators per construct 

Sample 

size

one item per 

construct a
two per construct 

(4 for interaction) 

four per construct 

(16 for interaction) 

six per construct 

(36 for interaction) 

eight per construct 

(64 for interaction) 

ten per construct 

(100 for interaction) 

twelve per construct 

(144 for interaction) 

20

x -->y  0.186  

(0.276)

z --> y  0.330 

(0.286)

x*z--> y  0.162 

(0.352)

x -->y  0.186 

 (0.276) 

z --> y  0.330 

 (0.286) 

x*z--> y  0.162 

(0.352)

x -->y  0.215 

(0.250)

z --> y  0.334 

(0.264)

x*z--> y  0.250 

(0.370)

x -->y  0.219 

(0.237)

z --> y  0.335  

(0.251)

x*z--> y  0.276 

(0.377)

x -->y  0.217 

(0.238)

z --> y  0.341 

(0.254)

x*z--> y  0.267 

(0.402)

x -->y  0.220 

(0.237)

z --> y  0.341 

(0.251)

x*z--> y  0.305 

(0.375)

x -->y  0.217 

(0.223)

z --> y  0.323 

(0.259)

x*z--> y  0.308 

(0.424)

50

x -->y  0.130   

(0.220)

z --> y  0.241 

 (0.298) 

x*z--> y  0.104 

(0.248)

x -->y  0.195 

 (0.187) 

z --> y  0.326 

(0.218)

x*z--> y  0.172 

(0.236)

x -->y  0.232 

(0.153)

z --> y  0.386 

(0.159)

x*z--> y  0.274 

(0.186)

x -->y  0.251 

(0.139)

z --> y  0.390 

(0.154)

x*z--> y  0.276 

(0.232)

x -->y  0.263 

(0.131)

z --> y  0.403  

(0.142)

x*z--> y  0.304 

(0.216)

x -->y  0.264 

(0.124)

z --> y  0.396 

(0.142)

x*z--> y  0.320 

(0.230)

x -->y  0.267 

(0.126)

z --> y  0.418 

(0.134)

x*z--> y  0.333 

(0.221)

100

x -->y  0.140   

(0.186)

z --> y  0.247 

(0.270)

x*z--> y  0.114 

(0.210)

x -->y  0.208 

 (0.130) 

z --> y  0.326   

(0.195)

x*z--> y  0.169 

(0.181)

x -->y  0.256 

(0.091)

z --> y  0.382 

(0.143)

x*z--> y  0.256 

(0.120)

x -->y  0.260 

(0.100)

z --> y  0.410 

(0.120)

x*z--> y  0.282  

(0.119)

x -->y  0.274 

(0.078)

z --> y  0.431 

(0.097)

x*z--> y  0.304  

(0.112)

x -->y  0.283 

(0.080)

z --> y  0.434   

(0.097)

x*z--> y  0.308  

(0.117)

x -->y  0.276 

 (0.080) 

z --> y  0.444 

(0.092)

x*z--> y  0.332  

(0.087)

150

x -->y  0.145 

 (0.174) 

z --> y  0.243 

(0.269)

x*z--> y  0.102 

(0.214)

x -->y  0.256 

 (0.091) 

z --> y  0.382 

 (0.143) 

x*z--> y  0.256  

(0.120)

x -->y  0.245 

(0.086)

z --> y  0.397 

(0.122)

x*z--> y  0.242  

(0.100)

x -->y  0.261 

(0.073)

z --> y  0.417 

(0.104)

x*z--> y  0.277  

(0.080)

x -->y  0.265 

(0.070)

z --> y  0.440 

(0.085)

x*z--> y  0.291  

(0.078)

x -->y  0.271    

(0.070)

z --> y  0.448 

(0.080)

x*z--> y  0.298  

(0.065)

x -->y  0.280 

(0.062)

z --> y  0.453 

(0.075)

x*z--> y  0.303 

 (0.070) 

200

x -->y  0.151   

(0.164)

z --> y  0.246 

 (0.263) 

x*z--> y  0.102 

(0.211)

x -->y  0.199    

(0.120)

z --> y  0.328 

 (0.183) 

x*z--> y  0.176  

(0.143)

x -->y  0.243 

(0.081)

z --> y  0.397 

(0.118)

x*z--> y  0.242  

(0.082)

x -->y  0.259 

(0.068)

z --> y  0.426 

(0.092)

x*z--> y  0.267  

(0.063)

x -->y  0.273  

(0.072)

z --> y  0.432 

(0.096)

x*z--> y  0.300  

(0.108)

x -->y  0.275 

 (0.059) 

z --> y  0.448 

(0.073)

x*z--> y  0.291  

(0.058)

x -->y  0.280 

(0.056)

z --> y  0.456 

(0.067)

x*z--> y  0.300  

(0.049)

500

x -->y  0.146 

 (0.160) 

z --> y  0.246 

 (0..258) 

x*z--> y  0.098  

(0.206)

x -->y  0.198 

 (0.109) 

z --> y  0.328  

(0.176)

x*z--> y  0.165  

(0.142)

x -->y  0.242 

(0.069)

z --> y  0.396  

(0.110)

x*z--> y  0.222  

(0.087)

x -->y  0.257 

(0.057)

z --> y  0.424 

(0.084)

x*z--> y  0.248  

(0.064)

x -->y  0.268 

(0.047)

z --> y  0.441 

(0.068)

x*z--> y  0.262  

(0.051)

x -->y  0.271 

(0.044)

z --> y  0.452 

(0.058)

x*z--> y  0.269  

(0.048)

x -->y  0.278 

(0.041)

z --> y  0.458 

(0.053)

x*z--> y  0.277  

(0.043)

Note. x -�y refers to the mean of 500 path estimates from predictor x to criterion y (true score = 0�30; below dashed line denotes significance).
z -�y refers to the mean of 500 path estimates from the moderator variable z to criterion y (true score = 0�50; below solid line denotes significance).
x ∗z -�y refers to the mean of the 500 path estimates for the interaction effect of z on the path from x to y (true score = 0�30; below double lines denote

significance).
Significance is denoted through the bolded lines with values below the lines being significant at 0.01. Dashed line is predictor X , solid line is moderator Z ,

and double line is interaction term X ∗Z .
aSame as single-indicator multiple regression (population standard errors are within parentheses).

has a slightly greater positive impact on results than
do larger sample sizes. This conclusion is based on
the observations that, as shown in Table 7, the inter-
action term estimation (values below the double lines
are significant) approaches the 0.30 true score at
8 indicators—100 sample size within 10% of the true
score (i.e., above 0.27) and is close to estimation at
6 indicators—150 sample size. These cell combina-
tions are slightly higher than the threshold ideals sug-
gested above, with the 4 indicators—150 sample size
combination falling about 15% away from the true
score.

Number of Indicators or Sample Size
In the cells above and to the left of the ideal thresh-
olds identified above, path estimations are well below
the true score by at least 15%–20%. In the cells below
and to the right of these threshold points in the table,
the influence of sample size and number of indica-
tors can be evaluated by the patterns of estimation.
Increasing the sample size (i.e., estimations further
down the columns) does not improve on these estima-
tions and, in fact, can make them worse. For instance,
the interaction path estimations for 6 and 8 indica-
tors at a 500 sample size dropped to 0.248 and 0.262,
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respectively, from 0.261 and 0.304 values at the thresh-
olds. This pattern is generally consistent throughout
the other columns as well.

Increasing the number of indicators (i.e., estima-
tions across the rows), however, does improve estima-
tions more consistently. Within a row, each increase in
indicators generally produces an increase in the esti-
mation, consistently moving toward or maintaining
the true score. Thus, more indicators help estimate the
“true” parameter more closely.

Power
Sample size alone did not appear to help much
at uncovering the true parameter for interaction
terms, and hence a strategy of gathering more data
(i.e., increasing sample size) might not be helpful.
Although this was observed in the data, it is impor-
tant to recognize how sample size and the number of
indicators contribute to statistical estimates through
power. For a discussion of these influences on power,
see Appendix B.26

Inaccurate True Score Estimates
As seen in the literature review, attenuation of the
estimates through measurement error is a condition
that creates inaccurate true score estimates. This con-
dition exists in the Monte Carlo data and had an effect
on single-indicator regression, while only having a
slight dampening effect on PLS estimates.

Single-Indicator Regression Biases. Estimation of
the interaction term of X ∗Z for the single-indicator
regression analysis resulted in estimations around
0.10 (Table 7) when they should be 0.30. Such results
could leave the researcher with the impression that
an interaction effect is much smaller than its true
score, or even that the interaction effect is possibly
nonexistent. This interaction term estimation, in par-
ticular, would generally represent the worst among
the estimations, because the interaction reliability
will be necessarily smaller because it is a product
of the reliabilities of the predictor and moderator
indicators.

26 Available at http://www.informs.org/Pubs/Supplements/ISR/
1526-5536-2003-02-SupplA.pdf.

PLS Biases. While much better than single-
indicator regression, we see that PLS still tends to
underestimate the structural paths that connect con-
structs. At the same time, PLS tends to overestimate
the measurement paths connecting constructs to their
indicators. Loadings in these results are overestimated
as Table 827 displays. The true loadings were set in the
Monte Carlo analysis at 0.70 for the main-effects con-
structs of predictor X and moderator Z, and by impli-
cation at 0.49 for the interaction construct of X ∗Z. If
we consider from Table 5 only the loadings for signifi-
cant estimates, we can see that the loadings in Table 8
tend to be inflated by more than 10% in the two- and
four-indicator situation. And, as conjectured by Chin
(1995, p. 319), it is not until we use 10 to 12 indicators
that a more accurate loading estimate is reached.

Thus, contrasted to other causal modeling tech-
niques (e.g., LISREL), PLS tends to be more conser-
vative in its estimates of theoretical (i.e., structural)
paths and more positively biased towards its load-
ing estimates. This implies caution against putting too
much emphasis on PLS loadings when there are few
indicators (i.e., ≤8). Among the significant estimates,
we do see that, on average, the estimates for the
interaction construct of X ∗Z were closer to the 0.30
true effect than the estimates of predictor X to their
true effect of 0.30. Our interaction construct thus had
reduced estimation bias. With the initial results of the
baseline Monte Carlo study in mind, a short explo-
ration of two further comparisons—summated scales
within regression and heterogeneous loadings—are
undertaken.

Summated Regression—with Baseline Data
Using the same Monte Carlo data as in the baseline
case, the practice of summing scales was employed
for the 2- through 12-indicator cases. Multiple regres-
sion was then used to provide significance levels and
true-score estimates. Interaction term results from this
summated regression are shown in Table 9. These sig-
nificance results demonstrate patterns more similar to
the PLS product-indicator approach patterns than the
single-indicator regression patterns (Table 7). How-
ever, summated regression still consistently under-

27 Available at http://www.informs.org/Pubs/Supplements/ISR/
1526-5536-2003-02-SupplA.pdf.
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Table 9 Monte Carlo Path Estimation for Interaction Term �X ∗Z� Using Summated Regression (500 Runs per Cell) with
Means, Population Standard Errors in Parentheses, and t-Stats, Respectively

Indicators per construct 

Sample

size

two per 

construct (4 

for

interaction)

(std. Error) 

t value

four per 

construct (16 

for

interaction)

six per 

construct (36 

for

interaction)

eight per 

construct (64 

for

interaction)

ten per 

construct (100 

for interaction) 

twelve per 

construct (144 

for

interaction)

20

0.146

(.290)

0.502

0.205

(.259)

0.792

0.232

(.236)

0.982

0.229

(.248)

0.926

0.240

(.237)

1.015

0.243

(.231)

1.053

50

0.151

(.210)

0.717

0.210

(.159)

1.324

0.216

(.150)

1.436

0.238

(.145)

1.646

0.242

(.144)

1.688

0.268

(.130)

2.066

100

0.150

(.180)

0.830

0.212

(.130)

1.631

0.233

(.112)

2.070

0.249

(0.090)

2.509

0.250

(.103)

2.435

0.270

(.091)

2.965

150

0.212

(.130)

1.631

0.209

(.121)

1.730

0.238

(.096)

2.480

0.255

(.083)

3.079

0.255

(.082)

3.118

0.260

(.079)

3.288

200

0.160

(.155)

1.035

0.205

(.105)

2.038

0.236

(.089)

2.668

0.252

(.095)

2.669

0.257

(.077)

3.314

0.270

(.064)

4.244

500

0.157

(.149)

1.054

0.211

(.098)

2.158

0.236

(.075)

3.159

0.250

(.061)

4.072

0.257

(.059)

4.365

0.265

(.052)

5.094

Note. True score = 0�30. Significance is denoted through the bolded double lines with values below the lines being significant at
0.01. t = 2�36, P ≤ 0�01, one-tail.

estimated the true theoretical interaction term scores
by more than 10% in 41 of 42 cells. Of the signifi-
cant results, most are substantially below the correct
score.

These conclusions are drawn, in part, from the sig-
nificance levels and estimates shown in Table 9, where
double lines denote patterns of significance for sum-
mated regression. Any interaction term value below
the double line is significant at 0.01. The pattern of
significance is somewhat similar to the PLS product-
indicator approach, but less effective in detection with
8 indicator—100 sample size and 6 indicator—150
sample size cells being identified as ideal points. All
values for the 2 and 4 indicators are not significant,
and the 6 indicator—100 sample size cell did not
emerge as significant as it was in the PLS baseline case.

Beyond the fact that summated regression detects
the interaction true score at later points than does
PLS, we can also compare the accuracy of both esti-

mates from the true value of 0.30 via the mean rela-
tive bias (MRB). Analogous to the formula provided
by Reinartz et al. (2002), the average percentage bias
for the t = 500 runs from the true population estimate
Xpop of 0.3 can be determined as follows:

MRB = 100∗ 1
t

t∑

i=1

Xpop−Xi

Xpop


From Figure 4, no summated regression estimate
reached the true interaction score of 0.30, and only
two cells (12 indicators—200 and 100 sample sizes)
came within 10% of that score. Most of the PLS
estimates reached the 10% threshold at 6 indicators
and were within the 5% range at 8 indicators.28

28 The sample size 500 is the only anomaly, which, although per-
forming better than summated regression, was lower than the other
sample sizes. We are unclear as to this difference beyond simulation
artifact.
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Figure 4 Mean Relative Bias in PLS and Regression Interaction Terms Highlighting the Influence of the Number of Items and Sample Size (0%
Represents Zero Bias in the True Score Estimation)
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In contrast to the interaction term results, the ability
to detect the direct effects of predictor X and moder-
ator Z were identical for both summated regression
and PLS.29 For strong effect sizes 
Z= 050�, both pro-
cedures were able to detect an effect at 4 indicators—
50 sample size. For the moderate effect size

X = 030�, more data (sample size ≥ 100) or more
indicators (4+) was required to obtain significance.
But these moderate effect sizes are not consistently
estimated (i.e., within 10% of the true score) until
eight or more indicators are used. Small sample sizes
performed poorly once again until either a large effect
size existed 
Z = 050� or a large number of indicators
were used.

Summated Regression—with Heterogenous
Loadings
To this point in the analysis, the data set created
with the Monte Carlo simulation maintained a 0.70

29 Because of page limitations, these results are not presented but
are available from the authors upon request.

loading pattern, which reflects a typical level found
within the IS literature and provided a consistent
benchmark for comparing sample size, effect size,
and number of indicators. Comparing the summated
regression-based technique to the new PLS product-
indicator approach under varying loading patterns is
the objective of the next simulation. The results of this
comparison are shown in Table 10.

In this analysis, loadings were varied for the inde-
pendent X variable and the moderating Z variable.
By varying these loadings, conditions of heteroge-
neous constructs were simulated, reflecting the exis-
tence of more and less measurement error among a
set of items, as shown in Table 10, first column. The
dependent Y variable was maintained at 0.70 load-
ings to simplify the design. Furthermore, based on
the previous Monte Carlo results, sample size was set
at 100 and the number of indicators kept at either 6
or 8, which was the ideal range in the baseline case
balancing both significance and accurate estimation.
Average regression scores were calculated for the
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Table 10 Monte Carlo Simulation Comparing the Impact of Heterogeneous Loadings on the Interaction Esti-
mate (in Bold) for the PLS Product Indicator Approach and Regression Using Averaged Scores
with Population Standard Errors in Parentheses (Sample Size of 100, 500 Runs per Cell, 8 and
6 Indicators)

Factor Loading 

Patterns for 6 items - 

pattern repeated for 

both X and Z 

constructs
a

PLS Product 

Indicator

Estimates
(Std. Error)

Regression

Estimates Using 

Averaged Scores 
(Std. Error)

A1

2 at .80, 2 at .70 

2 at.60 

x*z--> y 0.285

(0.108)

** x*z--> y  0.234

(0.112)

*

A2

3 at .80 

3 at .70 

x*z--> y  0.288 

(0.091)

** x*z--> y 0.246

(0.102)

**

A3

3 at .80 

3 at .60 

x*z--> y 0.283

(0.112)

** x*z--> y  0.228

(0.115)

*

A4

2 at .80, 2 at .60 

2 at .40 

x*z--> y 0.302

(0.123)

** x*z--> y  0.218

(0.124)

*

A5

3 at .80 

3 at .40 

x*z--> y 0.296

(0.123)

** x*z--> y 0.213

(0.128)

*

A6

3 at .70 

3 at.60 

x*z--> y 0.280

(0.145)

* x*z--> y  0.221

(0.124)

*

A7

2 at.70, 2 at .60 

2 at .30 

x*z--> y 0.304

(0.129)

* x*z--> y 0.189

(0.144)

*

Factor Loading 

Patterns for 8 items - 

pattern repeated for 

both X and Z 

constructs
a

PLS Product 

Indicator

Estimates
(Std. Error)

Regression Estimates 

Using Averaged 

Scores
(Std. Error)

B1 4 at .80, 2 at .70 

2 at.60 

x*z--> y 0.293

(0.121)

** x*z--> y 0.250

(0.102)

**

B2 4 at .80

4 at .70 

x*z--> y  0.297 

(0.114)

** x*z--> y 0.234

(0.109)

*

B3 4 at .80 

4 at .60 

x*z--> y 0.306

(0.107)

** x*z--> y  0.251

(0.099)

*

B4 4 at .80, 2 at .60, 

2 at .40 

x*z--> y 0.311

(0.112)

** x*z--> y  0.240

(0.109)

*

B5 6 at .80 

2 at .40 

x*z--> y 0.318

(0.124)

** x*z--> y 0.223

(0.118)

*

B6 4 at .70 

4 at.60 

x*z--> y 0.305

(0.115)

** x*z--> y  0.234

(0.112)

*

B7 4 at.70, 2 at .60 

2 at .30 

x*z--> y 0.314

(0.134)

** x*z--> y 0.224

(0.118)

*

x ∗ z -�y refers to the mean of the 500 path estimates for the interaction effect of z on the path from x to y

(true score = 0�30).
aDependent variable loadings are held at 0.70 to simplify the design.
∗Significant at 0.05; ∗∗significant at 0.01.

X and Y variables by averaging the indicators, respec-
tively, and were calculated for the moderating Z vari-
able by multiplying the averaged X and Y values.
Even though scores could have been aggregated
through various techniques, this method produced
the best regression results.

The results in Table 10 show that in all instances of
heterogeneous loadings for the eight-indicator situa-
tion, the PLS product indicator approach consistently
estimates the 0.30 true effect of the interaction term (as
seen in the bolded values and the MRB values within
5% of the true estimate, Figure 5), and these differ-
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Figure 5 Comparison of PLS and Regression Interaction Terms MRB Under Conditions of Heterogeneous Item Quality (0% Represents Zero Bias in
the True Score Estimation)
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ences are not statistically significant. The summated
regression approach, on the other hand, was both sig-
nificantly different and consistently underestimates the
0.30 true effect by 16%–37%. No matter whether load-
ings vary a little as in the case with 0.80 and 0.70
loading combinations or vary a lot as in the case with
0.70, 0.60, and 0.30 loading combinations, PLS per-
formed well, demonstrating its ability to handle mea-
surement error and produce consistent results. For
the six-indicator situation, as expected, the estimates
tended to be lower. But again, we see an improvement
of using PLS over summated regression. Here the esti-
mates using summated regression ranged from 0.19
to 0.25, while the lowest PLS estimate was at 0.28. As
in the homogeneous case, the patterns for the direct
effects of predictor X and moderator Z under the
summated regression approach were similar to earlier
results.30 This, then, leads us to conclude that when
the reality of varying loadings patterns and lower reli-
ability emerge, PLS is more accurate in its estimates
of true scores than is summated regression.

30 Because of page limitations, these results are not presented but
are available from the authors upon request.

Summary
Taking all the results from sample size, number of
indicators, effect size, and reliability into account,
a minimum sample size of 150 with 4 indicators
or a minimum sample size of 100 with 6 indica-
tors appears best to balance the trade-offs for detec-
tion and accurate estimate. Researchers should always
strive for the highest reliability possible in their mea-
sures. Unfortunately, lower or varied reliability is
a reality of research in the IS field, one that is
not likely to go away. The PLS product-indicator
approach, demonstrated above, provides researchers
with a technique that allows them to manage this
reality. Variability in individual item reliability did
not influence the PLS estimates in our eight-indicator
simulation. With these threshold combinations, struc-
tural path estimates will be within 10% of the true
effects, as shown in Table 7, and the overestimation
of the measurement paths will be kept to a minimum,
as shown in Table 8.

This conclusion, in combination with our findings
in the literature review, may provide a possible expla-
nation for the poor results of the past moderator
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studies. Recall that, in our literature review, studies
examining moderators employed an average sample
size of 81.5 and an average number of three indi-
cators. PLS improved on single-indicator measures
and summated scales, and handled varying effect
sizes, sample sizes, power levels, number of indica-
tors, and reliabilities. Although we cannot conclude
from our analysis how other effect sizes, loadings,
and reliabilities would fare, these should be tested
in the future to get an even greater appraisal of
how PLS and summated regression estimates may
vary. Smaller sample sizes and fewer indicators using
the PLS product-indicator approach would likely be
appropriate when using more reliable indicators (i.e.,
loadings higher than 0.70), but we cannot estimate by
how much the estimates would rise.

Now that we have demonstrated through this
Monte Carlo analysis that the PLS approach improves
on regression-based techniques, the role of the PLS
approach within IS theory is explored. Empirical
data for the moderating influence of enjoyment
on the well-known relationship between perceived
usefulness and intention to use is now presented.

Study 2: The Moderating Effect of
Enjoyment on the Perceived
Usefulness/IT-Adoption
Intention Relationship
This section presents the PLS product-indicator
approach as applied to detecting the interaction
effect of enjoyment on the perceived usefulness/IT-
adoption intention relationship. In Davis’ (1989) orig-
inal presentation of this model, perceived usefulness
and perceived ease of use were modeled as hav-
ing direct effects on adoption intention. Later, Davis
et al. (1992) note the difference between extrinsic and
intrinsic sources of motivation to computer use in
the workplace. While usefulness, an extrinsic source
of motivation, had a significant effect on adoption
intention, enjoyment, an intrinsic source of motivation
defined as the extent to which the activity of using
the computer is perceived to be enjoyable in its own
right apart from any performance consequences, was
felt to also have a direct effect. Their study found

that both perceived usefulness and enjoyment medi-
ated the influence of perceived ease of use on inten-
tion. Thus, perceived ease of use was not included in
predicting intention for this analysis.

The question becomes whether enjoyment also
moderates the usefulness to the intention relation-
ship. Consider the following example to illustrate the
potential role of enjoyment as a moderator. The TAM
model states that the stronger a person’s belief in
the usefulness of an information technology (IT), the
more he/she would intend to use it. Yet, we also
believe that the impact of this belief on IT-usage inten-
tion is negatively moderated by the level of enjoyment
the individual has during his or her use of the IT. In
essence, when the usage experience is more enjoyable,
the impact of perceived usefulness on future inten-
tion to use is lower. Conversely, the less enjoyable
one perceives the IT to be, the stronger the impact
of one’s perception of usefulness on intention to use.
This phenomenon is based on a cognitive consis-
tency argument in which the underlying theory is
that when IT usage is extremely enjoyable, instru-
mental issues, such as perceived usefulness, ought
not to come into one’s decision-making criteria for
future usage. In fact, for those people whose predom-
inant purpose is enjoyment, more usefulness may be
considered a detrimental feature, thereby negatively
impacting intention to use. Thus, all else being equal,
if we had two different groups of people in which
the first group perceived the IT to be highly enjoy-
able and the second group perceived it to be highly
unenjoyable, we would expect a low to negative cor-
relation between perceived usefulness and IT-usage
intention for the first group, and a high correlation
for the second group. In this scenario, the depen-
dent variable 
Y � would represent IT-usage intention,
and the predictor 
X� and moderator 
Z� variables
would represent perceived usefulness and enjoyment,
respectively.

Chin and Gopal (1995) similarly found that both
enjoyment and relative advantage (which uses iden-
tical items to perceived usefulness) had an effect on
group support system adoption intentions. In their
article, they state “that there is also the possibility of
interaction effects among the constructs that were not
taken into account in this study. For example, Davis
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et al. (1992) indicated that a positive interaction might
exist between enjoyment and usefulness. Because of
its similarity to usefulness, the relative advantage con-
struct used in this study may also have an interaction
effect with enjoyment” (p. 58).

To test the possibility of such an interaction effect,
the perceived usefulness and enjoyment items were
used to examine the adoption intention of electronic
mail. See Appendix C31 for construct definition, items
used, and organizational setting.

In formulating and testing for interaction effects
using PLS, one needs to follow a hierarchical pro-
cess similar to that used in multiple regression in
which one compares the results of two models (i.e.,
one with and one without the interaction construct).
Standardized indicators were chosen for this analy-
sis because Likert scales were employed in this study,
and the indicators were considered to be theoreti-
cally parallel. The standardizations were calculated
using SPSS 9.0. For the analysis with the interac-
tion construct (as depicted in Figure 2), it is neces-
sary to include the two main effects constructs (in
this study, perceived usefulness and enjoyment) to
assess how the moderator construct, enjoyment, influ-
ences the impact of perceived usefulness on intention.
When using the default standardized output from
PLS, the standardized beta estimate of the main con-
struct X (perceived usefulness) on dependent con-
struct Y (intention) is interpreted as the amount of
influence of X on Y when the moderator construct Z
(enjoyment) is equal to zero. Likewise, the beta esti-
mate from moderator construct Z to Y is interpreted
as the amount of direct influence of Z on Y when X

is equal to zero.
The standardized path estimate from the interaction

construct informs us how a change in the level of the
moderator construct Z (enjoyment) would change the
influence of the main construct X (perceived useful-
ness) on dependent construct Y (intention). Thus, if
X (perceived usefulness) has an estimated beta effect
of B on Y (intention), a beta M from the interaction
construct can be interpreted as a beta change to B+M

for the estimated path from X (perceived usefulness)

31 Avaiable at http://www.informs.org/Pubs/Supplements/ISR/
1526-5536-2003-02-SupplA.pdf.

to Y (intention) when Z (enjoyment) increases by one
standard deviation from the baseline of zero.

You can also compare the squared multiple correla-
tion 
R2� for this interaction model with the squared
multiple correlation for the “main effects” model,
which excludes the interaction construct. The differ-
ence between the squared multiple correlations is
used to assess the overall effect size f 2 for the inter-
action where 0.02, 0.15, and 0.35 have been suggested
as small, moderate, and large effects, respectively
(Cohen 1988).32 It is important to understand that
a small f 2 does not necessarily imply an unimpor-
tant effect. Even a small interaction effects can be
meaningful under extreme moderating conditions, if
the resulting beta changes are meaningful, then it is
important to take these conditions into account.

The results of this study, as shown in Figure 6,33

give a standardized beta of 0.449 from usefulness to
intention, 0.227 from enjoyment to intention, and an
interaction effect of −0209 with a total R2 of 0.50.
Thus, these results imply that one standard devia-
tion increase in enjoyment will not only impact inten-
tion directly by 0.227, but it would also decrease the
impact of perceived usefulness to intention from 0.449
to 0.240. As expected, the main effects model, shown
in Figure 7,34 resulted in a slightly higher standard-
ized beta and a smaller R2 of 0.465. The interaction
construct, therefore, has an effect size f of 0.07,35

which is between a small and medium effect and
is larger than found in most past IS studies. Even
with a small-to-moderate effect size, these beta esti-
mates help inform us of the conditions under which
enjoyment becomes a dominant factor—equaling and
potentially overshadowing perceived usefulness. For
the group of people who perceive electronic mail to
be extremely enjoyable, perceived usefulness will be a

32 f 2 = �R2(interaction model) − R2(main effects model)�/�1 − R2·
(main effects model)]. Interaction effect sizes are small if 0.02,
medium if 0.15, and large if 0.35 (Cohen 1988).
33 Available at http://www.informs.org/Pubs/Supplements/ISR/
1526-5536-2003-02-SupplA.pdf.
34 Available at http://www.informs.org/Pubs/Supplements/ISR/
1526-5536-2003-02-SupplA.pdf.
35 f 2 = 
050−0465�/
1−0465�= 007, a small to medium effect size.
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less important factor on usage intention than is enjoy-
ment. If there is a reasonable likelihood of encoun-
tering such a group, being aware of this interaction
becomes important.

To assess whether the interaction effect and main
effects were significant, a bootstrap resampling pro-
cedure (Efron and Tibshirani 1993) was performed.
The results of 500 resamples indicate that all paths,
weights and loadings, (as shown in Table 11) were
significant at the 0.01 level.36

The accuracy of the path estimates to the true
effects must be assessed next. As noted earlier, the
estimates of the structural paths tend to be more accu-
rate as the reliability score for the estimated construct
increases. To assess the reliability of the latent variable
estimated by PLS, the composite reliabilities as sug-
gested by Werts et al. (1974) were calculated and are
presented in Table 11. Use of this formula, which does
not assume equal loadings or error terms among the
measures, typically provides more accurate estimates
of the composite reliability. Overall, except for enjoy-
ment with a three-indicator composite reliability of
0.85, the composite reliabilities of the other constructs
are very high—at or above 0.96. In the case of enjoy-
ment, if we employ the composite reliability as a bias
correction factor, the 0.227 path between enjoyment
and intention increases slightly to 0.246.

As a contrast, we summed the indicators and
performed a moderated regression analysis instead.
The result was a smaller interaction path of −0140

p < 005� with a correspondingly smaller R2 of 0.422.
Furthermore, the effect could not be considered sig-
nificant at the 0.01 level. With the main effects R2 of
0.404, this yields a substantially lower change in R2

of 0.018 and an f 2 of 0.03. Contrast these numbers
with those obtained using PLS (path of −0209 with
p < 001, f 2 of 0.07) and we see the theoretically
weighted scales of PLS outperformed the summated
scales by more than a factor of two. Thus, without the
PLS procedure, we would not be able to conclusively

36 We choose bootstrapping over the use of jackknifing because
computational time was not a constraint and jackknifing is
considered both less efficient and an approximation to the
bootstrap (Chin 1998b, p. 320). Table 11 is available at
http: //www.informs.org/Pubs/Supplements/ISR/1526-5536-2003-
02-SupplA.pdf.

prove that enjoyment, an intrinsic motivation to use
a computer, represents a significant and substantive
moderating effect in the TAM model.

Discussion and Conclusion
This paper provided a new approach towards the
assessment of interaction effects among continu-
ous variables. IS research over the past 15 years
has predominantly employed multiple regression-
and ANOVA-based analytic techniques to investigate
these interaction terms. Less than one-quarter of the
interaction terms investigated in these works have
been found to be significant, with only a handful
of the articles providing an effect size estimate. As
suggested, these cumulative results may be due to
the analytic technique employed—specifically, mul-
tiple regression where this technique was demon-
strated through the Monte Carlo simulation to often
underestimate the moderator effect size by 16%–37%,
depending on the number of indicators used.

As Cronbach (1987, p. 417) has urged, “further
investigation of statistical power in studies of inter-
action and invention of more sensitive research
strategies are much to be desired.” Following this
sentiment, this study has provided an initial sense
of the efficiency and effectiveness of a new PLS
product-indicator approach. Through the use of the
new approach, it has been shown that sample sizes
of approximately 100 with eight indicators per main
effect construct, and loadings of 0.70 are needed to
detect an interaction effect and to yield reasonably
consistent estimates. The combination of 150 sample
size, 6 indicators, and 0.70 loadings also produced
similar, significant results. In contrast, the average
sample size and number of indicators in past IS stud-
ies were 81.5 and 3, respectively, much lower than
the standards suggested by the Monte Carlo simula-
tion. Increasing the number of indicators was shown
to have a larger impact on consistent estimations
than did increasing the sample size. Increasing the
reliability of indicators will also help, but this typ-
ically emerges only after several attempts are made
at building better questions and more unidimensional
constructs.

It is important to understand that these suggested
levels pertain only to detecting interaction effects. By
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virtue of the fact that product indicators are mul-
tiplicatively less reliable than their respective indi-
cators, the recommended sample size and indicator
levels will always be larger than models with only
direct effects. The heuristics for sample size and indi-
cators using PLS typically make assumptions that the
loadings of indicators are 0.70 or higher. In the case of
modeling interaction effects, we must increase these
requirements.

Several additional findings around known PLS
biases, influences of different reliabilities, extensions
for nonlinear indicators, and use of formative indica-
tors are possible from these results. Appendix D37 pro-
vides a more complete technical discussion of these
insights.

Finally, it is important to highlight the results of the
Monte Carlo simulation with heterogeneous loadings.
It is typically the case that measures used in research
can vary in the amount of measurement error. PLS is
well suited for use in this situation because its pri-
mary objective is to differentially weight a set of items
to produce the best predictive construct scores. While
summated regression would, by default, treat all mea-
sures identically, our PLS product-indicator results
demonstrate that discounting poor interaction terms
can yield better overall estimates. However, the abil-
ity to sort through the poor performing items as they
are applied within a particular predictive model is
equally important. While not presented here because
of page limitations, the PLS results via the load-
ing estimates can help a researcher determine which
items are of good quality and which need further
improvement for future studies.

In summary, the new PLS product-indicator app-
roach seems to yield promising results for researchers
interested in assessing interaction effects. The Monte
Carlo exercise demonstrated that single-indicator
regression was inadequate for assessing interaction
terms and that summated regression, while perform-
ing better, still underestimated the correct values by
substantial margins. In particular, under conditions of
heterogenous loadings where the individual item reli-
abilities varied, the PLS product-indicator approach

37 Available at http://www.informs.org/Pubs/Supplements/ISR/
1526-5536-2003-02-SupplA.pdf.

came to the fore in retrieving the “true” popula-
tion parameter, whereas regression resulted in at
least a 16% underestimation. In estimating noninter-
action terms that have higher reliabilities, summated
regression and PLS performed equally well.

Study 2, which evaluated the PLS approach using
an IS empirical data set on enjoyment and use inten-
tion again found that the PLS approach retrieved an
interaction estimate 33% higher than the summated
regression approach. While not as conclusive as the
simulation, the effect size was found to be higher than
in previous IS studies and twice the size estimated in
the summated regression.

In all, it is hoped that the issues raised in this
paper—such as appropriate sample size, multiple
indicators, reliability, and power—will be part of
the mindset and standard information provided in
future research papers. Attention to these issues in
future research should help the IS field build a cumu-
lative body of knowledge with fewer problems than
that found through the literature review. As stated
at the start of the paper, it indeed might be the case
that theoretical advancement of moderators has been
impaired more by analytical techniques than by the
lack of conceptualizing contingent factors. We believe
that moderators’ roles within emerging theories are
poised to have large effects on the field, if only we can
improve on the analytical techniques to aid in this
discovery.
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