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Abstract 
 
Recent methodological developments building on partial least squares (PLS) techniques and 
related ideas have significantly contributed to bridging the gap between factor-based and 
composite-based structural equation modeling (SEM) methods. PLS-SEM is extensively used in 
the field of e-collaboration, as well as in many other fields where multivariate statistical 
analyses are employed. We compare results obtained with four methods: covariance-based SEM 
with full information maximum likelihood (FIML), factor-based SEM with common factor model 
assumptions (FSEM1), factor-based SEM building on the PLS Regression algorithm (FSEM2), 
and PLS-SEM employing the Mode A algorithm (PLSA). The comparison suggests that FSEM1 
yields path coefficients and loadings that are very similar to FIML’s; and that FSEM2 yields 
path coefficients that are very similar to FIML’s and loadings that are very similar to PLSA’s. 
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Introduction 
    Structural equation modeling (SEM) methods and software tools allow researchers to 
simultaneously define and test measurement and structural models involving latent variables. 
Mathematically such variables are, at the population level, weighted aggregations of indicators 
(quantitative responses in questionnaires) and measurement errors. In this context, structural 
models (a.k.a. inner models) are often assessed through path coefficients among latent variables, 
and measurement models (a.k.a. outer models) are often assessed through loadings among 
indicators and their respective latent variables. 
    The relatively recent popularity of partial least squares (PLS) techniques and their use in SEM 
has led to strong criticism from some quarters. This criticism is primarily due to the fact that 
classic PLS-SEM methods are composite-based, not factor-based. That is, in classic PLS-SEM 
methods latent variables are estimated as weighted aggregations of indicators, without the 
inclusion of measurement errors. The latter, the measurement errors, can be seen as “extra” 
indicators that complement the actual indicators; together, actual indicators and measurement 
errors make up factors. Without measurement errors, the use of composites instead of factors 
leads to some known sources of bias. Notably, path coefficients tend to be attenuated with 
respect to their corresponding true values. 
    Recent methodological developments building on PLS techniques and related ideas have 
significantly contributed to bridging the gap between factor-based and composite-based SEM 
methods. At the time of this writing at least one widely used PLS-SEM software tool, namely 
WarpPLS (Kock, 2015a), implemented these developments. Factor-based SEM builds on classic 
PLS-SEM techniques as well as on more advanced and modern techniques. In it, both factors and 
composites are estimated, with the factors being derived from the composites. For an overview 
and discussion of classic PLS-SEM techniques, see Kock & Mayfield (2015). For a broad 
discussion of the two-stage process whereby factors and composites are estimated in factor-based 
SEM, see Kock (2015b). 
    Partly due to the ease-of-use and extensive features of software tools such as WarpPLS, which 
we use here in our illustrative analyses because it provides the most extensive set of features 
among comparable software, PLS- SEM is now extensively used in the field of e-collaboration 
(Kock, 2005; 2008; 2010; 2013; 2014), as well as in many other fields where multivariate 
statistical analyses are employed (see, e.g., Kock & Gaskins, 2014; Kock & Verville, 2012). 
    In this study, we compare results obtained with four SEM methods: covariance-based SEM 
with full information maximum likelihood (FIML), factor-based SEM with common factor 
model assumptions (FSEM1), factor-based SEM building on the PLS Regression algorithm 
(FSEM2), and PLS-SEM employing the Mode A algorithm (PLSA). The comparison suggests 
that FSEM1 yields path coefficients and loadings that are very similar to FIML’s; and that 
FSEM2 yields path coefficients that are very similar to FIML’s and loadings that are very similar 
to PLSA’s. 
 

Illustrative model and data 
    Our discussion is based on the illustrative model depicted in Figure 1, which builds on actual 
empirical studies in the field of e-collaboration (Kock, 2005; 2008; Kock & Lynn, 2012). This 
illustrative model addresses the organizational effect of the use of an internal e-collaboration 
management tool with social networking capabilities (EM) on job performance (JP), an effect 
that is mediated by intermediate effects on job satisfaction (JS) and job innovativeness (JI). 
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Figure 1: Illustrative model used 
 

 
Notes: EM = internal e-collaboration management tool with social networking capabilities; JS = job satisfaction; JI 
= job innovativeness; JP = job performance; notation under latent variable acronym describes measurement 
approach and number of indicators, e.g., (R)9i = reflective measurement with 9 indicators. 
 
 
    The figure has been created with the SEM analysis software WarpPLS (Kock, 2015a). 
Therefore it employs the software’s standard notation for summarized latent variable description. 
In it the alphanumeric combination under each latent variable’s label (e.g., “JP”) in the model 
describes the measurement approach used for that latent variable and the number of indicators. 
For example “(R)9i” means reflective measurement with 9 indicators. 
    We employed the Monte Carlo method (Kock, 2016; Robert & Casella, 2005) to create sample 
data based on this model, as well as assumptions grounded on past empirical research. The 
sample we created had 1000 cases; or rows in the data table. The number of columns was 24, 
which was the total number of indicators used. We assumed that the indirect relationship 
between EM and JP was fully mediated by the network of links involving the latent variables JS 
and JI. 
    The above can be restated as follows. We assumed a neutral direct effect EM→JP at the 
population level. Nevertheless, the EM→JP link must be included in SEM analyses aimed at 
testing the model. The reason for this is that the indirect relationship between EM and JP at the 
population level, mediated by the network of links involving JS and JI, induces endogeneity. 
More specifically, the error term for JP is correlated with EM. Adding the EM→JP link in SEM 
analyses provides a partial correction for the bias stemming from this situation. 
 

The SEM methods compared 
    This methodological study compared four SEM methods: covariance-based SEM with full 
information maximum likelihood (FIML), factor-based SEM with common factor model 
assumptions (FSEM1), factor-based SEM building on the PLS Regression algorithm (FSEM2), 
and PLS-SEM employing the Mode A algorithm (PLSA). A brief description of these methods is 
provided below. 
    Covariance-based SEM with full information maximum likelihood (FIML). This is the 
classic method for covariance-based SEM, where convergence to a solution occurs via 
minimization of the overall difference between the model-implied and empirical indicator 
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covariance matrices. This method explicitly accounts for measurement error, but does not 
generate estimates of either composites or factors. Prior to the development of tools such as 
WarpPLS, this has generally been the most widely used method for SEM (Kock & Lynn, 2012). 
    Factor-based SEM with common factor model assumptions (FSEM1). This method 
generates estimates of both true composites and factors, in two stages, explicitly accounting for 
measurement error (Kock, 2015b). Like the FIML method, this FSEM1 method is fully 
compatible with common factor model assumptions. In its first stage, this method employs a new 
“true composite” estimation sub-algorithm, which estimates composites based on mathematical 
equations that follow directly from the common factor model. The second stage employs a new 
“variation sharing” algorithm, which can be seen as a “soft” version of the classic expectation-
maximization algorithm used in maximum likelihood estimation, with apparently faster 
convergence and nonparametric properties. 
    Factor-based SEM building on the PLS Regression algorithm (FSEM2). This method first 
estimates composites via PLS Regression (Kock & Mayfield, 2015), whereby the latent variables 
are estimated without taking the inner model into consideration. This FSEM2 method then 
proceeds by estimating factors employing the new variation sharing algorithm, which is also 
used in the FSEM1 method. Unlike FSEM1, this method does not enforce the common factor 
model assumption that indicator error terms are uncorrelated, which past research suggests to be 
a rare occurrence in actual empirical data. Among the factor-based methods implemented 
through WarpPLS, this factor-based SEM method can be seen as the closest to Wold’s original 
PLS design (Kock, 2015a). 
    PLS-SEM employing the Mode A algorithm (PLSA). This is by far the most widely used 
PLS-SEM method in practice. The Mode A is often referred to as the “reflective” mode, which is 
arguably incorrect because both reflective and formative latent variables can be used with this 
algorithm (Kock & Mayfield, 2015). In this method the inner model influences the outer model 
through path coefficients and correlations, depending on whether the links go into or out from 
each latent variable, respectively. 
    We used R 3.2.2 and the package lavaan 0.5-19 (Rosseel, 2012) for the SEM analysis 
employing FIML. We used WarpPLS 5.0 (Kock, 2015a) for the SEM analyses employing 
FSEM1, FSEM2 and PLSA. The WarpPLS outer model analysis algorithm settings chosen were 
the following: “Factor-Based PLS Type CFM1” for FSEM1, “Factor-Based PLS Type REG1” 
for FSEM2, and “PLS Mode A” for PLSA. 
 

Path coefficients and loadings 
    Table 1 shows the path coefficients estimated through each of the four methods. All methods 
yielded P values lower than 0.001, which are highly statistically significant, for the paths 
EM→JS, JS→JI, JS→JP and JI→JP. For the path EM→JP, the following P values were obtained 
from the SEM analyses: P=0.135 by FIML, P= 0.113 by FSEM1, P= 0.122 by FSEM2, and 
P=0.243 by PLSA. All of these P values for the path EM→JP suggest a statistically non-
significant association between the variables EM and JP. 
    The small and non-significant path coefficients for EM→JP are a reflection of the population 
model. While there is no link between EM and JP at the population level, the network of links 
connecting these two variables leads to them being correlated. This same network of links leads 
to the endogeneity instance mentioned earlier: the error term for JP is correlated with EM. 
Therefore, when analyzing the samples we expected the path coefficients for EM→JP to be 
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nonzero, and also non-significant, regardless of the method used. This is indeed what we 
observed. 
    As we can see, three methods yielded path coefficient estimates that were in general relatively 
close to one another: FIML, FSEM1 and FSEM2. These are factor-based methods, which take 
measurement error into account when generating estimates of path coefficients. We can also see 
that PLSA, a composite-based method, generally yielded path coefficient estimates that were 
uniformly lower than those generated by the other three factor-based methods. 
    Table 2 lists the loadings estimated through each of the four methods. Here we see a different 
pattern of similarities and differences than that of path coefficients. FIML and FSEM1 yielded 
loading estimates that were relatively close to one another. So did FSEM2 and PLSA. The 
loading estimates generated by these two latter methods (i.e., FSEM2 and PLSA) were generally 
higher than those estimated by FIML and FSEM1. 
 
Table 1: Path coefficients 
 
 FIML FSEM1 FSEM2 PLSA 
EM→JS 0.486 0.491 0.485 0.440 
JS→JI 0.458 0.470 0.464 0.417 
EM→JP -0.035 -0.038 -0.037 -0.022 
JS→JP 0.221 0.221 0.213 0.209 
JI→JP 0.556 0.571 0.563 0.509 
 
Table 2: Loadings 
 
 FIML FSEM1 FSEM2 PLSA 
EM→EM1 0.898 0.893 0.904 0.905 
EM→EM2 0.847 0.851 0.874 0.877 
EM→EM3 0.803 0.810 0.850 0.846 
EM→EM4 0.763 0.765 0.820 0.819 
EM→EM5 0.700 0.696 0.774 0.776 
JS→JS1 0.903 0.903 0.906 0.910 
JS→JS2 0.844 0.833 0.872 0.875 
JS→JS3 0.791 0.799 0.843 0.843 
JS→JS4 0.769 0.772 0.824 0.824 
JS→JS5 0.695 0.700 0.770 0.766 
JI→JI1 0.896 0.898 0.903 0.905 
JI→JI2 0.858 0.856 0.882 0.885 
JI→JI3 0.804 0.811 0.846 0.845 
JI→JI4 0.750 0.747 0.812 0.813 
JI→JI5 0.683 0.677 0.761 0.759 
JP→JP1 0.899 0.903 0.890 0.893 
JP→JP2 0.855 0.856 0.862 0.864 
JP→JP3 0.793 0.806 0.822 0.825 
JP→JP4 0.767 0.780 0.798 0.799 
JP→JP5 0.657 0.675 0.704 0.704 
JP→JP6 0.628 0.650 0.681 0.686 
JP→JP7 0.591 0.616 0.649 0.644 
JP→JP8 0.528 0.546 0.590 0.586 
JP→JP9 0.536 0.563 0.596 0.594 
 
 
    Many researchers, particularly those who are strong adherents to covariance-based SEM 
methods such as FIML, argue that a measurement model assessment building on a factor analysis 



 6 

cannot be properly conducted based on loadings generated through composite-based SEM 
methods such as PLSA. We can see here why this claim is often made. If loadings are higher, 
then measurement model assessment criteria based on loading thresholds (e.g., 0.5 or 0.7) are 
more easily achieved. And loadings were generally higher with FSEM2 and PLSA than with 
FIML and FSEM1. 
    However, the above argument has a fundamental flaw – it presupposes that the empirical data 
is sampled from a population that strictly conforms to the common factor model. Indeed, if the 
population from which the sample was drawn conforms strictly with common factor model 
assumptions, then the loadings generated by FIML and FSEM1 would provide the basis for a 
more conservative measurement model assessment than those generated by FSEM2 and PLSA. 
However, as noted earlier, common factor model assumptions do not normally hold with real (as 
opposed to simulated) empirical data. 
 

Differences among path coefficients and loadings 
    Figure 2 shows illustrative differences among path coefficients estimated through the four 
methods. Four bars are shown; each representing the root-mean-square error (RMSE) calculated 
based on individual path coefficient differences. The RMSEs were calculated by averaging the 
squared differences among path coefficients, and taking the square root of this average. The 
RMSEs shown were chosen to illustrate differences and similarities between pairs of methods, 
with the matched methods selected based on the results presented earlier in table format. 
 
Figure 2: Differences among path coefficients (RMSEs) 
 

 
 
 
    Each bar, being a RMSE contrasting two methods, can be seen as an aggregate measure 
reflecting the overall difference between the two methods in terms of path coefficients. For 
example, the first bar on the left shows the RMSE calculated based on the differences among 
path coefficients generated by the FSEM1 and FIML methods. RMSEs do not assume negative 
values, which is why all bars start at zero and have a positive number associated with their 
height. 
    We can see that the FSEM1 and FSEM2 methods yield path coefficients that are, on 
aggregate, fairly similar to those generated by the FIML method. Of the two methods, FSEM1 
and FSEM2, the one closest to FIML in terms of path coefficient estimates is the FSEM2 
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method. This is interesting, because the FSEM2 method can be seen as a “hybrid” method that 
incorporates elements of classic composite-based and modern factor-based SEM methods. As 
noted earlier, the FSEM2 method first estimates composites based on PLS Regression, and then 
uses those estimates to obtain factors employing the variation sharing algorithm (Kock, 2015b). 
    Figure 3 shows illustrative differences among loading estimated through the four methods. 
Similarly to the previous figure, four bars are shown; each representing the RMSE calculated 
based on individual loading differences involving a pair of methods matched for comparison 
purposes. The pairs of methods that are compared are presented in the same order as in the 
previous figure. 
 
Figure 3: Differences among loadings (RMSEs) 
 

 
 
 
    The FSEM1 method yields loadings that are, on aggregate, fairly similar to those generated by 
the FIML method. The FSEM2 method, on the other hand, yields loadings that are, on aggregate, 
fairly similar to those generated by the PLSA method. Based on these results, it would be 
reasonable to argue that, if one were to conduct a measurement model assessment that is more 
compatible with covariance-based SEM, without using a classic covariance-based SEM method 
such as FIML, one should consider using the FSEM1 method. 
    Why should one employ a method such as FSEM1 instead of FIML? There are many reasons 
for that possible choice to be made. One is that the more modern FSEM1 method does not make 
any assumptions about data distribution (e.g., that the indicator data is normally distributed). 
Another reason is that the more modern FSEM1 method allows for the construction of fairly 
complex models, nearly always generating usable results – without the convergence problems 
often found with complex models in covariance-based SEM methods such as FIML. 
    But one of the most important reasons why a researcher may prefer to use a method such as 
FSEM1 instead of FIML is that FSEM1 generates latent variable scores, which can then be used 
in nonlinear analyses. In this respect, FSEM1 is like the FSEM2 and PLSA methods; all of these 
three methods generate latent variable scores during the estimation process. Of the three, FSEM1 
and FSEM2 generate latent variable scores that minimize path coefficient bias. With latent 
variable scores, nonlinear multivariate data analysis tools such as WarpPLS can then be used in 
analyses that take into consideration possible curvilinear relationships among latent variables. 
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Discussion and concluding remarks 
    The gap between factor-based and composite-based SEM methods has until recently been a 
major barrier to methodological integration in the SEM realm. Recent methodological 
developments building on PLS, as well as related techniques and ideas, have significantly 
contributed to bridging this gap. To our knowledge at least one widely used PLS-SEM software 
tool, namely WarpPLS, comprehensively implements these developments. 
    A distinguishing characteristic of the factor-based SEM methods discussed here is that they 
build on classic PLS-SEM techniques as well as on more modern techniques. They estimate both 
factors and composites; with the factors being derived from the composites, and with those 
factors fully incorporating measurement error. 
    Given that factor-based SEM takes into account measurement error, and that measurement 
errors in the same model tend to be inter-correlated, factor-based SEM tends to correct the path 
coefficient attenuation bias often seen in classic PLS-SEM methods that rely solely on 
composites for estimation of SEM model parameters. 
    We compared results obtained with four methods: covariance-based SEM with full 
information maximum likelihood (FIML), factor-based SEM with common factor model 
assumptions (FSEM1), factor-based SEM building on the PLS Regression algorithm (FSEM2), 
and PLS-SEM employing the Mode A algorithm (PLSA). Our analyses suggest that FSEM1 
yields path coefficients and loadings that are very similar to FIML’s; and that FSEM2 yields path 
coefficients that are very similar to FIML’s and loadings that are very similar to PLSA’s. 
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