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Abstract 
 
Should P values associated with path coefficients, as well as with other coefficients such as 
weights and loadings, be one-tailed or two-tailed? This question is answered in the context of 
structural equation modeling employing the partial least squares method (PLS-SEM), based on 
an illustrative model of the effect of e-collaboration technology use on job performance. A one-
tailed test is recommended if the coefficient is assumed to have a sign (positive or negative), 
which should be reflected in the hypothesis that refers to the corresponding association. If no 
assumptions are made about coefficient sign, a two-tailed test is recommended. These 
recommendations apply to many other statistical methods that employ P values; including path 
analyses in general, with or without latent variables, plus univariate and multivariate regression 
analyses. 
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Introduction 
    A common question often arises in the context of discussions about structural equation 
modeling (SEM) employing the partial least squares (PLS) method, referred to here as PLS-SEM 
(Kock, 2013b; 2014; Kock & Lynn, 2012), among researchers in the field of e-collaboration 
(Kock, 2005; Kock & Nosek, 2005) as well as many other fields. Should P values associated 
with path coefficients be one-tailed or two-tailed? 
    This is an important question because normally one-tailed tests yield lower P values than two-
tailed tests. In fact, this is always the case when symmetrical distributions of path coefficients are 
assumed, such as Student’s t-distributions. Therefore, the decision as to whether to use one-tailed 
or two-tailed tests can influence whether one or more hypotheses are accepted or rejected. This 
decision also influences the statistical power of a PLS-SEM analysis, with the power being 
higher with tests employing one-tailed P values. 
    We try to provide an answer to this question, which requires brief ancillary discussions of 
related topics – e.g., PLS-SEM’s treatment of measurement error. While our discussion 
addresses path coefficients, it also applies to other coefficients such as weights and loadings. 
Even though the focus is on PLS-SEM, much of what is said here applies to many other 
statistical analysis techniques. Among these are path analyses in general, without or without 
latent variables, as well as univariate and multivariate regression analyses. 
 

Illustrative model 
    The discussion presented in this study is based on the illustrative model shown in Figure 1. 
This model contains two latent variables, e-collaboration technology use (L) and job 
performance (J). Each latent variable is measured indirectly through three indicators. 
 
Figure 1: Illustrative model 
 

 
 
 
    Let us assume that 𝐽, 𝐿, 𝑥�� and 𝑥�� (𝑖 = 1 … 3) are scaled to have a mean of zero and a 
standard deviation of one (i.e., these variables are standardized). Our illustrative model can then 
be described by equations (1), (2), and (3). 
 

𝑥�� = 𝜆��𝐿 + 𝜃��, 𝑖 = 1 … 3. (1) 
𝑥�� = 𝜆��𝐽 + 𝜃��, 𝑖 = 1 … 3. (2) 

𝐽 = 𝛽𝐿 + 𝜀. (3) 
 
    The path coefficient 𝛽 and loadings 𝜆�� and 𝜆�� (𝑖 = 1 … 3) are assumed to describe the model 
at the population level, as true values. The population is made of teams of individuals who use an 
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integrated e-collaboration technology including e-mail and voice conferencing to different 
degrees. That is, the unit of analysis is the team, not the individual. 
    The e-collaboration technology facilitates the work of the teams. Different values of job 
performance by the teams, where performance is evaluated by managers, are associated with 
different degrees of use of the e-collaboration technology. 
 

PLS-SEM and measurement error 
    PLS-SEM algorithms estimate latent variable scores as exact linear combinations of their 
indicators (i.e., as “composites”). As such, they do not properly account for measurement error. 
This can be illustrated through (4) and (5); where latent variable scores are calculated properly 
accounting for, and not properly accounting for, the measurement error 𝜖. Both equations denote 
the number of indicators as 𝑛. 
 

𝐹 = ∑ 𝜔��
�
��� 𝑥�� + 𝜖. (4) 

𝐹� = ∑ 𝜔����
��� 𝑥��. (5) 

 
    A full discussion of the effects of PLS-SEM not properly accounting for measurement error is 
outside the scope of this study. Nevertheless, one effect that will be noticed in the next section is 
that the path coefficient is attenuated, due to the correlation attenuation property (Nunnally & 
Bernstein, 1994) expressed in (6). 
 

𝑟�𝐹�� ,𝐹��� = 𝑟�𝐹� ,𝐹���𝛼�𝛼�. (6) 
 
    In this correlation attenuation equation, 𝛼� and 𝛼� denote the true reliabilities of the true latent 
variables 𝐹� and 𝐹�, which are estimated via PLS-SEM as 𝐹�� and 𝐹�� . These true reliabilities can be 
estimated through the Cronbach’s alpha coefficients for the latent variables. 
    Equation (7) expresses this general correlation attenuation equation in the more specific 
context of our illustrative model. In it, 𝐽� and 𝐿� are the PLS-SEM estimates of the true latent 
variables 𝐽 and 𝐿. 
 

𝑟�𝐽�, 𝐿�� = 𝑟(𝐽, 𝐿)�𝛼�𝛼�. (7) 
 
    In our model the standardized path coefficient 𝛽 is in fact equal to the true correlation 𝑟(𝐽, 𝐿), 
since the endogenous latent variable 𝐽 has only one predictor (𝐿). Even when this is not the case 
in more complex models, path coefficients tend to be attenuated in concert with their 
corresponding correlations. 
 

Distribution of estimated coefficients across multiple samples 
    Figure 2 shows the distribution of values of the estimated path coefficient 𝛽�  across 500 
samples of size 100. The samples were generated through a Monte Carlo simulation (Robert & 
Casella, 2005) based on the illustrative model. The data was created to follow normal 
distributions. Each sample was analyzed with the software WarpPLS, version 4.0 (Kock, 2013). 
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The analyses were conducted using the PLS Regression algorithm, which has been increasingly 
used in PLS-SEM (Guo et al., 2011; Kock, 2010). 
 
Figure 2: Distribution of path coefficient estimates 
 

 
Notes: N=100; PLS Regression algorithm used; values obtained through a Monte Carlo simulation with 500 samples 
(replications); shift to the left (from . 3) in the distribution mean due to correlation attenuation. 
 
 
    As we can see, this distribution of values of the estimated path coefficient 𝛽�  across many 
samples does not appear to have a mean of . 3, which is the true population mean. There appears 
to be a shift to the left. The reason for this is the correlation attenuation property discussed in the 
previous section; due to PLS-SEM algorithms in general, including PLS Regression, not properly 
accounting for measurement error. 
    The standard deviation of this distribution of values of the estimated path coefficient 𝛽�  across 
many samples is what is often referred to as the “standard error” associated with the estimate, 
denoted here as 𝜎�. With the standard error 𝜎� and the mean estimated path coefficient �̅� one can 
obtain the 𝑇 ratio via (8). 
 

𝑇 = �̅� 𝜎�⁄ . (8) 
 
    The 𝑇 ratio can then be used as a basis for the estimation of the one-tailed P value 𝑃� for 𝛽�  via 
integration through (9). In this equation |𝑇| is the absolute value of 𝑇 and 𝐹(𝑡) is a function that 
refers to a Student’s t-distribution. 
 

𝑃� = ∫ 𝐹(𝑡)𝑑𝑡��
|�| . (9) 

 
    Student’s t-distributions are symmetrical about the mean. Therefore, the two-tailed P value 𝑃� 
for 𝛽�  can be obtained by multiplication of 𝑃� by 2, as indicated in (10). 
 

𝑃� = 2𝑃�. (10) 
 
    Researchers employing PLS-SEM do not know the true population values of path coefficients 
and loadings prior to their analyses, and thus do not conduct Monte Carlo simulations to obtain 
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estimates. They instead obtain estimates via resampling techniques, of which bootstrapping is the 
most widely used. 
    Resampling techniques can in fact be seen as part of a special class of Monte Carlo simulation 
techniques. They yield values for 𝜎� that approximate the true values, usually slightly 
underestimating them. 
    Also, in practice the value of 𝑃� is obtained via approaches other than integration, such as: 
specialized multivariate statistics and PLS-SEM software such as WarpPLS (which perform the 
integration themselves); general-purpose numeric calculation software such as R, MATLAB, and 
Excel; and published tables in statistics books and websites. 
 

Using one-tailed and two-tailed P value estimations 
    Let us assume that we obtained the estimate 𝛽� = .3 for the path coefficient in our model. Do 
we use a one-tailed or two-tailed P value to estimate its significance? To answer this question we 
need to consider the hypothesis to which the estimate refers. The hypothesis is stated beforehand 
and incorporates the event whose complement’s probability we are trying to ascertain via the 
test. Let us say that our hypothesis is as follows. 
    H1: An increase in e-collaboration technology use (L) by a team is associated with an increase 
in job performance (J). 
    To test the significance of the estimate 𝛽� = .3 in the context of this hypothesis, via the 
calculation of a P value, is essentially to calculate the probability that the estimate 𝛽� = .3 is due 
to chance (the complement of what is stated in the hypothesis) given a set of pre-specified 
conditions. In this case, the set contains only one condition, which is that the path coefficient is 
positive, which is stated in the hypothesis. 
    If the effect is “real”, and therefore not due to chance, the probability that it comes from a 
distribution that refers to no effect should be small. That is, this probability should be lower than 
a certain threshold, usually .05 (hence the oft-used P < .05 significance level). In PLS-SEM 
typically a distribution that refers to no effect is defined as a Student’s t-distribution with a 
standard deviation that equals the standard error 𝜎� and that has a mean of zero. 
    The graph on the left in Figure 3 shows how this distribution would look like. The P value is 
calculated via integration. It is equal to the area indicated under the curve at the far right. Clearly 
the resulting probability refers to the one-tailed P value 𝑃� discussed in the previous section. This 
is the probability that the path coefficient estimate would be equal to or greater than . 3. 
    When would a two-tailed test be used? The answer, again, builds on the prior knowledge 
incorporated into the hypothesis being tested. Without the prior knowledge that the association 
between e-collaboration technology use (L) and job performance (J) is positive (i.e., that an 
increase in L leads to an increase in J), our hypothesis would likely be different. For example, it 
could be along the following lines: 
    H2: There is an association between e-collaboration technology use (L) and job performance 
(J). 
    Here any value of 𝛽�  significantly lower or greater than zero would support the hypothesis. To 
test this hypothesis for a given estimate 𝛽�  obtained through a PLS-SEM analysis, we would 
again assume that a “no effect” path estimate would come from a Students’ t-distribution with a 
mean of zero and with a standard deviation that equals the standard error 𝜎�. But now we do not 
assume that the path coefficient is positive. Therefore we calculate the probability that we would 
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obtain a path coefficient estimate that would be: equal to or greater than 𝛽� , or equal to or lower 
than −𝛽� . 
    The graph on the right in Figure 3 shows how this probability would be calculated via 
integration as the sum of the areas indicated under the curve to the far left and far right. Clearly 
the resulting probability refers to the two-tailed P value 𝑃� discussed earlier. 
 
Figure 3: One-tailed and two-tailed P value estimations 
 

 
Notes: schematic representations; axes scales adjusted for illustration purposes. 
 
    Both graphs in Figure 3 are schematic representations, with the axes scales adjusted for 
illustration purposes. In the graphs of the actual distributions the areas used for P value 
estimation are often too small to be effectively used in visual illustrations of those areas under 
the probability distribution curves. 
    It is noteworthy that, in the discussion above, the hypothesized direction of causality of the 
effect (L → J or J → L) is not as important in defining whether the test is one-tailed or two-tailed 
as the hypothesized sign of the effect. The hypothesized direction of causality could, under 
certain conditions, be important in defining the method of estimation of the path coefficient. This 
is particularly true if we assume that the relationship between the latent variables is nonlinear. In 
this case, the hypothesized direction of causality of the effect would become much more 
important. 
    Should the relationship be assumed to be nonlinear, thus leading to a nonlinear analysis (Kock, 
2010; 2013), we would obtain different estimates for the nonlinear path estimate going in one 
direction 𝛽��� and the other 𝛽���. This is an interesting property of nonlinear analyses that may 
have many useful applications. Among these applications is possibly that of causality assessment 
(Kock, 2013). 
    The meaning of the nonlinear path estimate would be different from that of the linear path 
estimate, since it would no longer refer to a fixed gradient, as a linear path estimate does. In the 
nonlinear case the gradients 𝜕𝐽� 𝜕𝐿⁄  and 𝜕𝐿� 𝜕𝐽⁄  would change for different values of the latent 
variables. This would have implications that arguably go beyond the scope of this study. 
Generally speaking, the sign of the nonlinear path estimate refers to the overall sign of the 
nonlinear relationship, or the sign of the “linear equivalent” of the nonlinear relationship. 
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Discussion and concluding remarks 
    The path attenuation phenomenon discussed earlier, stemming from PLS-SEM algorithms in 
general not properly accounting for measurement error, has an interesting influence on P value 
estimation using the approach discussed. It makes it more conservative. The reason is that the 
path coefficients estimated via PLS-SEM are closer to zero than the true path coefficients, which 
makes the area under the curve that refers to the P value normally greater than it would have 
been should an unbiased method be used. This leads to higher P values, other things being equal 
(e.g., the same resampling technique is used). 
    It may seem peculiar that prior knowledge incorporated into a hypothesis influences the test of 
the hypothesis. Nevertheless, this is consistent with the notion that, in frequentist inference, the 
conditional probability of any event is calculated based on a smaller set of possible events than 
the corresponding unconditional probability. This applies to events specified in hypotheses. 
    This leads to an interesting question. If our hypothesis incorporates the prior knowledge that 
𝛽 > 0 and our estimate turns out to violate this prior knowledge (e.g., 𝛽� = −.3), would a one-
tailed test applied to 𝛽� = −.3 be acceptable? The answer is “no”, because if the prior knowledge 
incorporated into the hypothesis is not supported by the evidence (i.e., the negative path 
coefficient estimate), then the hypothesis is falsified outright. If a hypothesis incorporates the 
belief that 𝛽 > 0 and we obtain an estimate 𝛽� = −.3 then the hypothesis is in fact falsified 
without the need for the calculation of a P value. 
    This highlights the fact that prior knowledge is important in the theorizing process that often 
precedes empirical research. Prior knowledge comes from thorough reviews of pertinent theories 
and past empirical research. The more prior knowledge is brought into empirical research, the 
more the research moves toward the confirmatory end of the exploratory-confirmatory spectrum. 
Generally speaking, bringing credible prior knowledge into empirical research is a “good thing”, 
and allows one to lower the threshold of evidence needed to ascertain the likelihood of an event 
that builds on that prior knowledge. Nevertheless, prior knowledge comes with an “inferential 
cost”, as discussed above. 
    Some researchers have suggested that P value estimation should be carried out directly from 
bootstrapping distributions. However, it should be clear that if we had used the distribution of 
path estimates obtained via bootstrapping in our tests instead of a Student’s t-distribution, a one-
tailed estimation of P values would likely yield distorted results. This would have happened 
because bootstrapping distributions are usually asymmetrical, as our Monte Carlo-generated 
distribution was, with the degree of asymmetry varying depending on both data distributions and 
model characteristics. 
    We hope that the discussion presented here will help e-collaboration researchers who employ 
PLS-SEM, as well as researchers in other fields who use this multivariate analysis method, to 
decide whether to use one-tailed or two-tailed P values under different circumstances. Even 
though our discussion addresses primarily path coefficients, it also applies to other coefficients 
such as weights and loadings. While the discussion focuses on PLS-SEM, it applies to many 
other statistical analysis techniques. Among these are path analyses in general, with or without 
latent variables, as well as univariate and multivariate regression analyses. 
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