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Abstract 

The composite-factor estimation dichotomy has been the epicenter of a long and ongoing debate 
among proponents and detractors of the use of the partial least squares (PLS) approach for 
structural equation modeling (SEM). In this brief research note we discuss the implementation of 
a new method to conduct factor-based PLS-SEM analyses, which could be a solid step in the 
resolution of this debate. This method generates estimates of both true composites and factors, in 
two stages, fully accounting for measurement error. Our discussion is based on an illustrative 
model in the field of e-collaboration. A Monte Carlo experiment suggests that model parameters 
generated by the method are asymptotically unbiased. The method is implemented as part of the 
software WarpPLS, starting in version 5.0. This note provides enough details for the method’s 
implementation in other venues such as R and GNU Octave. 
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Introduction 

    The debate among proponents and detractors of the use of Wold’s partial least squares (PLS) 
method (Adelman & Lohmoller, 1994; Lohmöller, 1989; Wold, 1980) in the context of structural 
equation modeling (SEM) has been going on for a long time. So far, it shows no signs of 
resolution. It arises from common factor model assumptions, which form the basis on which 
covariance-based SEM (CB-SEM) rests (Kline, 2010; Mueller, 1996). The debate is centered 
around two main issues. 
    The first issue is that Wold’s original PLS design for “soft” SEM has a number of advantages 
over CB-SEM, such as minimal model identification demands, practically no data or model 
parameter distribution assumptions, virtually universal convergence to solutions, and estimation 
of “pseudo-factors”. The latter, “pseudo-factors”, provide a partial solution to the factor 
indeterminacy problem of CB-SEM. 
    The second issue fueling the debate is that the original PLS design does not base its model 
parameter estimation methods on the estimation of true factors. Estimation is based on 
“composites”, which are exact linear combinations of indicators, and are referred to above as 
“pseudo-factors”. The composite estimates generated by the original PLS design can be seen as 
factors minus their corresponding measurement errors. Reliance on them leads to biased model 
parameter estimates (notably path coefficients and loadings) even as sample sizes grow to 
infinity (Kock, 2014b). 
    In this brief research note we describe what could be a solid step in the resolution of this 
debate, although it may open new avenues for debate on different issues. We show how 
researchers can implement what we refer to as “Factor-Based PLS-SEM” (PLSF-SEM). This 
new method generates estimates of both true composites and factors, in two stages, fully 
accounting for measurement error. 
    The PLSF-SEM method is implemented in version 5.0 of WarpPLS, which is under intensive 
internal testing and nearing beta release at the time of this writing. WarpPLS is an SEM software 
tool that is unique in that it enables nonlinear analyses where best-fitting nonlinear functions are 
estimated for each pair of structurally linked variables in path models, and subsequently used 
(i.e., the nonlinear functions) to estimate path coefficients that take into account the nonlinearity. 
Moreover, WarpPLS provides a comprehensive set of model fit and quality indices that are 
compatible with both composite-based and factor-based SEM. 

Illustrative model 

    Our discussion is based on the illustrative model depicted in Figure 1, which builds on an 
actual empirical study in the field of e-collaboration (Kock, 2005; 2008; Kock & Lynn, 2012). 
This illustrative model incorporates the belief that e-collaboration technology use (𝐹�) by teams 
of workers tasked with the development of new products in organizations (e.g., a new consulting 
service, a new car part) increases both team efficiency (𝐹�) and team performance (𝐹�). Team 
efficiency (𝐹�) is related to the speed and cost at which teams operate. Team performance (𝐹�) is 
related to how well the new products developed by teams perform in terms of sales and profits. 
    In this illustrative model 𝛽�� is the path coefficient for the link going from factor 𝐹� to factor 
𝐹�; 𝜆�� is the loading for the jth indicator of factor 𝐹�; 𝜃�� is the indicator error for the jth indicator 
of factor 𝐹�; 𝜀� is the measurement error associated with 𝐹�; and and 𝜁� is the structural error 
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associated with 𝐹�, which exists only for endogenous factors. An endogenous factor has at least 
one other factor pointing at it in the model. 
 
Figure 1. Illustrative model 
 

 
 
 
    Note that the measurement errors 𝜀� are not the same as the structural errors 𝜁�. Measurement 
errors exist for any factors that are measured with a certain degree of imprecision, whether the 
factors are exogenous or endogenous. Structural errors exist only for endogenous factors. 
Analogously, the measurement errors 𝜀� should not be confused with the indicator errors 𝜃��, 
even though these two types of errors are related. The former arise due to the existence of the 
latter, and can be seen as “extra” indicators that account for the explained variances in their 
respective factors that are not accounted for by the actual factor indicators. 

PLSF-SEM’s first stage: Composites 

    In our discussion in this and the following sections all variables are assumed to be 
standardized; i.e., scaled to have a mean of zero and standard deviation of one. This has no 
impact on the generality of the method or of the discussion. All standardized variables can be 
rescaled back to their original scales. 
    PLSF-SEM’s first stage yields initial estimates of the composites. These estimates are used in 
the method’s second stage, where factors and other model parameter estimates are produced. It 
starts by setting weights and loadings as 1 (reversed indicators must be properly adjusted), and 
initializing the composite estimates with a standardized vector of the summed indicators. Then 
measurement errors 𝜀�̂, reliabilities 𝛼��, measurement error weights 𝜔���, and composite weights 
𝜔��� are set as indicated in (1)-(4). 
 
 

𝜀�̂ ≔ 𝑆𝑡𝑑𝑧[𝑅𝑛𝑑(𝑁)]. (1) 

𝛼�� ≔
𝑛𝑖������  

�1+�𝑛𝑖−1��������
. (2) 
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𝜔��� ≔ �1 − 𝛼��. (3) 

𝜔��� ≔ �𝛼��. (4) 

 
    In these equations 𝑅𝑛𝑑(𝑁) is a function that returns an independent and identically distributed 
(i.i.d.) variable with 𝑁 rows, with 𝑁 being the sample size; 𝑆𝑡𝑑𝑧(∙) is a function that returns a 
standardized column vector; 𝑛� is the number of indicators of factor 𝐹�; 𝑥� is a matrix with 𝑁 
rows and with each column referring to one of the indicators associated with 𝐹�; and 𝛴����� is the 
mean of the non-redundant correlation coefficients among the column vectors that make up 𝑥� 
(e.g., the mean of the lower triangular version of 𝛴����). 
    Technical readers will notice that the reliability estimate 𝛼�� above is the Cronbach’s alpha 
coefficient (Cronbach, 1951; Kline, 2010). We are aware that serious questions have been raised 
regarding Cronbach’s alpha’s psychometric properties. However, while the PLSF-SEM method 
uses the Cronbach’s alpha coefficient as a basis for the estimation of measurement error and 
composite weights, it makes no assumptions about the coefficient’s main purported psychometric 
properties that have been the target of criticism (Sijtsma, 2009). This is an important distinction 
in light of measurement error theory (Nunnally & Bernstein, 1994). 
    Moreover, we developed and tested a number of experimental versions of the PLSF-SEM 
method prior to writing this note, using various reliability estimates. The versions employing the 
Cronbach’s alpha coefficient tended to yield the best results. Sijtsma (2009) notes that the 
Cronbach’s alpha coefficient may have limited uses, even in the face of its psychometric 
limitations. It is quite possible that we found one, although this is an issue that clearly merits 
further investigation. 
    PLSF-SEM’s first stage then proceeds by iteratively estimating factors 𝐹��, matrices 𝜃�� with 𝑁 
rows and with each column storing one of the indicator error terms, column vectors of weights 
𝜔��, composites 𝐶��, and column vectors of loadings 𝜆�� according to (5)-(9). Convergence is 
achieved when the sum of the absolute differences between successive estimates of the matrix of 
loadings for the entire model 𝜆� changes by less than a small fraction. 
 
 

𝐹�� ≔ 𝑆𝑡𝑑𝑧�𝐶��𝜔��� + 𝜀�̂𝜔����. (5) 

𝜃�� ≔ 𝑥� − 𝐹��𝜆��
�
. (6) 

𝜔�� ≔ 𝛴����
���𝛴���� − 𝑑𝑖𝑎𝑔�𝛴�������𝜆��

��
. (7) 

𝐶�� ≔
�
����

(𝑥�𝜔��). (8) 

𝜆�� ≔ �𝐶��
�𝑥��

�
𝜔���. (9) 
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    In these equations 𝑑𝑖𝑎𝑔�𝛴������ is the diagonal matrix of covariances among the indicators and 
corresponding error terms, and the superscript + denotes the Moore–Penrose pseudoinverse 
transformation. It is useful to observe that 𝑑𝑖𝑎𝑔�𝛴������ is a diagonal matrix because in the 
common factor model 𝛴������ = 0 for all 𝑖 ≠ 𝑗. That is, in the common factor model indicator 
error terms are correlated with their corresponding indicators and uncorrelated with other 
indicators in the same factor. 
    Researchers familiar with the mathematics underlying PLS will see that the estimation steps 
above differ significantly from those employed in Wold’s original PLS design (Adelman & 
Lohmoller, 1994; Lohmöller, 1989; Wold, 1980). Particularly noteworthy is that the estimation 
steps above incorporate significantly more information in defining the relationships among 
weights and loadings, chiefly information about the relationships among indicators and their 
error terms. 
    In Wold’s original PLS design and its variants weights and loadings are typically assumed to 
be proportional to one another, and thus linearly related. At the population level, our simulations 
suggest that usually they are not (i.e., the relationship between any factor’s weights and loadings 
is usually nonlinear). As a result, the original PLS design does not yield estimates of the true 
composites. It is our contention that there is one unique true composite associated with each 
factor, and that the PLSF-SEM method yields estimates of the true composites. 

PLSF-SEM’s second stage: Factors 

    PLSF-SEM’s second stage starts with the estimation of the elements 𝛴����� of a target 
correlation matrix 𝛴��� via (10), which follows from the correlation attenuation notion of 
measurement error theory (Nunnally & Bernstein, 1994). In this equation 𝛴������ is the correlation 
between composites estimated in the first stage, corresponding to the pair of factors 𝐹� and 𝐹�. 
Here 𝛴����� are the elements of the matrix of estimated correlations among factors 𝛴���, which can 
be seen as a population matrix estimate. 
 
 

𝛴����� ≔
𝛴������
�𝛼��𝛼��

. 
(10) 

 
    In this second stage the PLSF-SEM method will fit the matrix of correlations among estimated 
factors 𝛴���� , which can be seen as a model-implied matrix estimate, to 𝛴���. To that end, the 
method proceeds by initializing factors as indicated in (14) and iteratively performing the 
assignments in (11)-(15). Since factors and measurement errors are re-estimated in each iteration, 
so must the correlation matrix elements 𝛴������, 𝛴������ and 𝛴������. These are the elements of the 
correlation matrices among factors, factors and composites, and factors and measurement errors, 
respectively. 
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𝜀�̂ ≔ 𝑆𝑡𝑑𝑧 �𝜀�̂ + �𝛴����� − 𝛴�������
������
����

�𝐶��𝜔��� + 𝜀�̂𝜔�����. 
(11) 

𝐹�� ≔ 𝑆𝑡𝑑𝑧�𝐹�� + �𝜔��� − 𝛴�������𝐶��𝜔����. (12) 

𝜀�̂ ≔ 𝑆𝑡𝑑𝑧�𝜀�̂ −  𝛴������𝐶��𝜔��� + �𝜔��� − 𝛴�������𝐹��𝜔����. (13) 

𝐹�� ≔ 𝑆𝑡𝑑𝑧�𝐶��𝜔��� + 𝜀�̂𝜔����. (14) 

𝜀�̂ ≔ 𝑆𝑡𝑑𝑧 � �
����

�𝐹�� − 𝐶��𝜔�����. (15) 

 
    The assignments in (11)-(13) are called “variation sharing” assignments, and constitute a 
critical ingredient of the PLSF-SEM method. As a group they are akin to a “soft” version of the 
classic expectation-maximization algorithm (Dempster et al., 1977) used in maximum likelihood 
estimation, but with apparently faster convergence and nonparametric properties. Through these 
assignments factors and measurement errors obtain variation that they did not have at the end of 
PLSF-SEM’s first stage, but that is an integral part of the true measurement errors and factors. 
Ultimately all of this variation emanates from the true composites. 
    The assignments above are only carried out for the variables indexed by 𝑖 where 𝜔��� > 0. That 
is, factors and measurement errors are only adjusted in those cases where measurement error is 
assumed to exist, which are also cases where 𝛼�� < 1. Convergence is achieved when the sum of 
the absolute differences 𝛴����� − 𝛴������ falls below a small fraction, or when the sum of the 
absolute differences between successive estimates of 𝛴������ changes by less than a small fraction. 
Once convergence is achieved, final estimates of the composites, weights and loadings are 
generated through (16)-(18). 
 
 

𝐶�� ≔ 𝑆𝑡𝑑𝑧 � �
����

�𝐹�� − 𝜀�̂𝜔�����. (16) 

𝜔�� ≔ 𝑥��𝐶��𝜔���. (17) 

𝜆�� ≔ 𝑥��𝐹��
��. (18) 

 
    The PLSF-SEM method then lastly proceeds to estimate path coefficients through a standard 
path analysis (Mueller, 1996; Wright, 1934; 1960) using the factor estimates. Standard errors for 
path coefficients and any other model parameter can be estimated via resampling or stable P 
value calculation methods (Kock, 2013; 2014), as is usually done in the original PLS design. The 
standard errors can subsequently be used to obtain chance probability estimates for hypothesis 
testing (Kock, 2014c), for any model parameter. 
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Monte Carlo experiment 

    We conducted a Monte Carlo experiment (Paxton et al., 2001) based on the true population 
model depicted in Figure 2, whereby 300 samples were created for each of the following sample 
sizes: 50, 100, and 300. This Monte Carlo experiment was conducted as part of extensive internal 
tests of version 5.0 of WarpPLS. 
 
Figure 2. True population model 
 

 
 
 
Table 1. Summarized Monte Carlo experiment results 
 
SEM method PLSA PLSF PLSA PLSF PLSA PLSF 
Sample size 50 50 100 100 300 300 
EU>TE(TruePath) .400 .400 .400 .400 .400 .400 
EU>TE(AvgPath) .339 .380 .309 .385 .303 .394 
EU>TE(SEPath) .125 .161 .128 .127 .110 .070 
EU>TP(TruePath) .300 .300 .300 .300 .300 .300 
EU>TP(AvgPath) .260 .301 .248 .294 .234 .297 
EU>TP(SEPath) .135 .157 .108 .133 .085 .079 
TE>TP(TruePath) .200 .200 .200 .200 .200 .200 
TE>TP(AvgPath) .201 .234 .189 .225 .174 .203 
TE>TP(SEPath) .144 .163 .098 .132 .061 .079 
EU3<EU(TrueLoad) .700 .700 .700 .700 .700 .700 
EU3<EU(AvgLoad) .793 .692 .802 .695 .808 .699 
EU3<EU(SELoad) .129 .108 .113 .077 .112 .049 
Notes: XX>YY = link from factor XX to YY; EU = e-collaboration technology use; TE = team efficiency; TP = 
team performance; XX1 … XXn = indicators associated with factor XX; TruePath = true path coefficient; AvgPath 
= mean path coefficient estimate; SEPath = standard error of path coefficient estimate; TrueLoad = true loading; 
AvgLoad = mean loading estimate; SELoad = standard error of loading estimate. 
 
 
    A summarized set of results based on the analyses of simulated samples is shown in Table 1. 
True values, mean parameter estimates, and standard errors are shown next to one another. 
Results obtained through the PLSF-SEM method (under the “PLSF” columns) are contrasted 
with results obtained through the PLS Mode A algorithm (under the “PLSA” columns). PLS 
Mode A with the “path weighting” scheme was employed, the most widely used in analyses 
employing the original PLS design. We show results for all of the structural paths in the model, 
but restrict ourselves to loadings for one indicator in one factor since all loadings are the same in 
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the true population model used. This is also done to avoid repetition, as the same general pattern 
of results for loadings repeats itself for all indicators in all factors. 
    As we can see from the summarized results, the PLSF-SEM method yielded virtually unbiased 
estimates at 𝑁 = 300, whereas PLS Mode A yielded significantly biased estimates at that same 
sample size. One of the reasons for these significantly biased estimates with PLS Mode A are the 
relatively low loadings in the true population model (𝜆�� = .7, for all 𝑖 and 𝑗), which tend to be a 
challenge for algorithms based on the original PLS design. 
    The relatively low loadings in the true population model apparently had little effect on PLSF-
SEM’s asymptotic convergence to the true values of the model parameters, although those 
loadings probably slowed down that convergence somewhat as sample sizes increased. In other 
simulations we conducted with higher loadings, convergence was achieved at smaller sample 
sizes. Generally speaking, high loadings are to be expected based on the common factor model, 
as they imply the use of psychometrically sound measurement instruments. 
    For several of the path coefficients and loadings the PLSF-SEM method yielded lower 
standard errors, particularly as sample sizes increased. This is noteworthy because the PLSF-
SEM method is clearly more computationally complex than PLS Mode A, and thus could have 
been expected to have a greater “cost” in terms of standard errors.  
    However, standard errors yielded at 𝑁 = 50 were generally higher for the PLSF-SEM method. 
Apparently the difference was enough to have a negative effect on power, as the ratios of path 
coefficients to standard errors indicate. That is, at 𝑁 = 50 one could argue based on the results 
that PLS Mode A has greater power than the PLSF-SEM method for this particular model, 
although the ratios of path coefficients to standard errors suggest that both methods may struggle 
to avoid type II errors at this small sample size, particularly for the paths whose true coefficients 
were lower than . 400 (the path with the highest strength). 

Discussion and conclusion 

    While Wold’s original PLS design offers several advantages over CB-SEM, it is largely 
incompatible with the common factor model (Kline, 2010; Mueller, 1996). Arguably the 
common factor model is the core foundation of CB-SEM. Given this, in Monte Carlo simulations 
where data is created based on common factor model assumptions, the original PLS design 
yields biased model parameters. Generally path coefficients are underestimated, and loadings are 
overestimated. This “advantages-with-costs” scenario has led to much debate over the years 
among proponents and detractors of the original PLS design. 
    In this brief research note we discussed what could be a solid step in the resolution of this 
debate. We showed how researchers can implement Factor-Based PLS-SEM (PLSF-SEM), a 
new method that generates estimates of both true composites and factors. The method does so in 
two stages, and fully accounts for measurement error. Since it generates estimates of both true 
composites and factors, the PLSF-SEM method can potentially place researchers in a position 
where they can subsequently estimate any model parameter imaginable. 
    At this point the reader may ask a reasonable question. Given that confirmatory factor 
analyses and hypothesis testing require primarily estimates of loadings and path coefficients, 
why would one want to generate factor estimates? The answer is that there are certain types of 
analyses that require factor scores, and more will likely be developed in the future as estimates of 
true factor scores become available to methodological researchers. 
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    For example, the recently developed full collinearity test concurrently assesses lateral and 
vertical collinearity among factors (Kock & Lynn, 2012), providing the basis on which a number 
of methodological issues can be addressed (e.g., common method bias), but cannot be properly 
conducted without factor scores. Also, factor scores enable nonlinear analyses where best-fitting 
nonlinear functions are estimated for each pair of linked factors, and subsequently used to 
estimate path coefficients that take into account the nonlinearity (Guo et al., 2011; Kock, 2013; 
Moqbel et al., 2013). 
    It is our belief that the PLSF-SEM method is a solid step in the legitimization of modified 
versions of Wold’s original “soft” PLS techniques for confirmatory factor and full-blown SEM 
analyses that are consistent with the common factor model. However, commonsense suggests 
that the PLSF-SEM method has weaknesses that will be uncovered as time goes by. It is very 
unlikely that any new method will be problem-free. 
    As the PLSF-SEM method is refined and improved, it may serve as the basis for the 
development of novel statistical tests that could lead to new insights in the context of SEM. 
Users of WarpPLS, starting in version 5.0, will be able to test the PLSF-SEM method and 
variations for themselves. Also, we hope that this brief note will provide enough details for 
implementations, in numerical programming environments such as R and GNU Octave, to be 
developed and tested under various conditions. We welcome comments, suggestions, and 
corrections. 
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