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Abstract 
 
E-collaboration researchers usually employ P values for hypothesis testing, a common practice 
in a variety of other fields. This is also customary in many methodological contexts, such as 
analyses of path models with or without latent variables, as well as simpler tests that can be seen 
as special cases of these (e.g., comparisons of means). We discuss here how a researcher can use 
another major approach for hypothesis testing, the one building on confidence intervals, in 
analyses of path models with latent variables employing partial least squares structural equation 
modeling (PLS-SEM). We contrast this approach with the one employing P values through the 
analysis of a simulated dataset, created based on a model grounded on past theory and empirical 
research. The model refers to social networking site use at work and its impact on job 
performance. The results of our analyses suggest that tests employing confidence intervals and P 
values are likely to lead to very similar outcomes in terms of acceptance or rejection of 
hypotheses. 
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Introduction 
    There has been steady growth in the use of structural equation modeling (SEM) employing the 
partial least squares (PLS) method (Kock, 2014; Kock & Lynn, 2012), referred to here as PLS-
SEM, in the field of e-collaboration (Kock, 2005; Kock & Nosek, 2005) as well as in many other 
fields where multivariate statistics are employed. 
    This is in part due to the emergence of powerful yet user-friendly software tools such as 
WarpPLS (Kock, 2010; 2015c), which implement the PLS-SEM method. Another reason for this 
growth is that, from a conceptual perspective, many statistical tests can be seen as special cases 
of PLS-SEM analyses. Examples are robust path analyses (Kock & Gaskins, 2014), 
nonparametric comparisons of means (Kock & Chatelain-Jardón, 2011), and even nonparametric 
tests where only one group and one condition are available (Kock, 2013). All of these tests can 
be easily conducted with WarpPLS. A third reason for the growth in the use of PLS-SEM is the 
emergence of factor-based algorithms, which bring together the advantages of algorithms 
employed in traditional PLS-SEM with the precision of covariance-based SEM under common 
factor model conditions (Kock, 2015a). 
    Hypothesis testing in the context of PLS-SEM is usually conducted through the calculation of 
a P value for each path coefficient, where the P value may be one-tailed or two-tailed depending 
on the researcher’s prior knowledge about the direction of the path and the sign of its associated 
coefficient (Kock, 2015b). One question that frequently arises in this context is: How can one 
use confidence intervals for hypothesis testing, in addition to or instead of P values? This paper 
is an answer to this question. 
 

Illustrative model and data 
    Figure 1 shows an illustrative model that is used in our discussion about using confidence 
intervals and P values in hypothesis testing. This model contains five latent variables: internal 
social networking tool use (SN), job satisfaction (JS), organizational commitment (OC), job 
innovativeness (JI), and job performance (JP). 
    Internal social networking tool use (SN) measures the degree to which an employee uses a 
social networking tool (e.g., Facebook) made available internally in the employee’s organization 
to facilitate employee-employee socialization. This is the only exogenous (or independent) latent 
variable in the model. Job performance (JP), the main endogenous (or dependent) latent variable 
in the model measures the employee’s overall performance at work. 
    Three latent variables mediated the indirect relationship between SN and JP. Job satisfaction 
(JS) measures the degree to which the employee is satisfied with the organization. Organizational 
commitment (OC) measures the degree to which the employee is personally committed to the 
organization. Job innovativeness (JI) measures the degree to which the employee engages in 
innovative or creative behavior at work. 
    The figure has been created with WarpPLS, and thus employs the software’s notation for 
summarized latent variable description: the alphanumeric combination under each latent 
variable’s label (e.g., “JP”) in the model describes the measurement approach used for that latent 
variable and the number of indicators. For example “(R)5i” means reflective measurement with 5 
indicators. 
    We employed a Monte Carlo simulation (Robert & Casella, 2005) to create sample data based 
on this model and on assumptions based on past empirical research. The sample we created had 
160 cases, or rows in the data table. The number of columns was 21, the total number of 



 3 

indicators. We assumed that the indirect relationship between SN and JP is fully mediated by the 
latent variables JS, OC and JI. That is, we assumed a neutral direct effect SN>JP at the 
population level. 
 
Figure 1: Illustrative model representation in WarpPLS 
 

 
Notes: SN = internal social networking tool use; JS = job satisfaction; OC = organizational commitment; JI = job 
innovativeness; JP = job performance; notation under latent variable acronym describes measurement approach and 
number of indicators, e.g., (R)5i = reflective measurement with 5 indicators. 
 
 
    Because of the above, the direct path SN>JP was expected in the subsequent analysis to be 
associated with a non-significant effect. Nevertheless this path must be included in the model to 
avoid bias, as its coefficient is only reduced to zero due to the multivariate analysis performed by 
WarpPLS controlling for the effects of the three latent variable mediators. As a result, the link 
SN>JP appropriately influences the estimation of the coefficients associated with the links 
JS>JP, OC>JP and JI>JP. An analysis without the link SN>JP would lead to biased estimates for 
those links. Our data creation process also forced the link OC>JP to be associated with a weak 
effect, which we expected to be non-significant at the small sample size we used (N=160). 
 

Hypothesis testing with P values and confidence intervals 
    Figure 2 illustrates the relationship between P values and confidence intervals. From an 
intuitive conceptual perspective, P values and confidence intervals are close related. More 
technical views grounded on mathematical statistics, however, reveal that they are profoundly 
different. In our discussion here we highlight the intuitive conceptual perspective, as our focus is 
primarily on how to contrast the use of P values and confidence intervals for hypothesis testing. 
    Let us assume that we estimated a path coefficient 𝛽 through 𝛽� , and that we also estimated the 
standard error 𝜎 associated with this path coefficient through 𝜎�. The standard error estimate 𝜎� is 
in fact an estimate of the standard deviation of the distribution of estimated path coefficients in a 
set of samples, of a given size, taken randomly from a population. How do we employ these 
estimates for hypothesis testing? 
    P value test. To conduct a test of the hypothesis that 𝛽� > 0, at the 0.05 significance level (i.e., 
1-95%), we calculate the one-tailed P value associated with the path coefficient. Generally 
speaking, this quantity could be interpreted as the probability that 𝛽�  belongs to a distribution 
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with mean of zero and standard deviation of 𝜎�. It can be calculated as the area under the curve 
shown on the left side of the figure, considering the total area to be 1. If P ≤ 0.05 the hypothesis 
is accepted, otherwise it is rejected. The T ratio test can be seen as a variation of this test, where 
the T ratio (a.k.a. T value, T statistic, and t-statistic), calculated as 𝛽� 𝜎�⁄ , is used instead of the 
corresponding P value for comparison against a threshold such as 1.64 or 1.96. 
 
Figure 2: P values versus confidence intervals 
 

 
 
 
    Confidence interval test. To conduct the same test using a 95% confidence interval, we 
calculate the lower and upper limits of the confidence interval. These are given respectively by 
𝛽� − 1.96𝜎� and 𝛽� + 1.96𝜎�. If the value 0 (zero) does not fall within this interval (i.e., 0 ∉ CI) the 
hypothesis is accepted, otherwise (i.e., 0 ∈ CI) it is rejected. Looking at the right side of the 
figure, we see that the value 0 (zero) falls outside the theoretical confidence interval, being 
located to the left of the interval. Thus, in this theoretical example, the hypothesis that 𝛽� > 0 
would be accepted. 
 

Hypothesis testing results based on illustrative model and data 
    Table 1 shows the hypothesis testing results based on the illustrative model discussed earlier 
and the data we created for it. The path coefficients, standard errors, and P values were 
calculated with WarpPLS employing the following settings: “PLS Mode A” was selected as the 
outer model analysis algorithm, “linear” was selected as the inner model analysis algorithm for 
all paths, and “Stable3” was selected as the “resample” method (or the method used for the 
calculation of standard errors and P values). 
    As we can see the hypothesis testing results were the same for both tests, employing P values 
and confidence intervals. With P values, frequently the criterion P < 0.05 is used instead 
P ≤ 0.05 for accepting a hypothesis. In practice, using either criterion tends to have the same 
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effect, since it is rare for a P value to be exactly 0.05. This is the case in our example; either 
criterion leads to the same results. 
 
Table 1: Hypotheses testing with P values and confidence intervals 
 

Path Path 
coefficient 

Standard 
error T ratio P value Supported? Why? Confidence 

interval (95%) Supported? Why? 

SN>JS 0.301 0.074 4.068 <0.001 Yes P≤0.05 0.156 0.446 Yes 0 ∉ CI 
SN>OC 0.281 0.074 3.797 <0.001 Yes P≤0.05 0.136 0.426 Yes 0 ∉ CI 
SN>JI 0.198 0.076 2.605 0.005 Yes P≤0.05 0.049 0.347 Yes 0 ∉ CI 
SN>JP 0.027 0.079 0.342 0.367 No P>0.05 -0.128 0.182 No 0 ∈ CI 
JS>JP 0.265 0.075 3.533 <0.001 Yes P≤0.05 0.118 0.412 Yes 0 ∉ CI 
OC>JP 0.068 0.078 0.872 0.192 No P>0.05 -0.085 0.221 No 0 ∈ CI 
JI>JP 0.318 0.074 4.297 <0.001 Yes P≤0.05 0.173 0.463 Yes 0 ∉ CI 

Note: P values calculated automatically by WarpPLS, based on T ratios, using the incomplete beta function. 
 
 
     It is noteworthy that the hypothesis testing results were the same for both tests, because 
employing a test based on a one-tailed P value is perceived by many as “opening the door” for 
type I errors (false positives). In this example the one-tailed P value tests are apparently as 
effective in terms of avoiding type I errors as the equivalent tests based on confidence intervals. 
We know this because we created the data with the expectation that the links SN>JP and OC>JP 
would be non-significant at the sample size used (N=160). 
    We should note that the P values reported in the table were calculated by WarpPLS based on 
the T ratios using the incomplete beta function, which does not assume that the T distribution is 
exactly normal. In reality, T distributions have “heavier tails” than normal distributions, with the 
difference becoming less noticeable as sample sizes increase. Thus the P values in the table may 
be different from those that readers would have obtained from tables published online or from 
tables in some statistics books. The numbers on those tables are often generated assuming that T 
distributions are identical to normal distributions. 
 

Discussion and concluding remarks 
    PLS-SEM has experienced steady growth in the field of e-collaboration and in many other 
fields where multivariate statistics are employed. One of the reasons for this is the emergence of 
powerful and user-friendly software tools for PLS-SEM, such as WarpPLS. Another reason is 
that many statistical tests can be conceptually seen as special cases of PLS-SEM analyses; e.g., 
nonparametric comparisons of means tests (Kock, 2013). 
    Researchers usually employ P values for hypothesis testing in PLS-SEM, where each 
hypothesis refers to a path in a model. P values may be one-tailed or two-tailed, depending on 
the prior knowledge of the researcher about the path’s direction and the sign of its associated 
coefficient (Kock, 2015a). We discussed here how a researcher can use confidence intervals for 
hypothesis testing, contrasting this approach with the one employing P values. 
    We used an illustrative model as a basis for our discussion. This illustrative model contained 
five latent variables: internal social networking tool use (SN), job satisfaction (JS), 
organizational commitment (OC), job innovativeness (JI), and job performance (JP). We 
employed a Monte Carlo simulation to create sample data based on this model and on 
assumptions based on past empirical research. 
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    The results of our analyses suggested that employing confidence intervals and P values are 
likely to lead to very similar outcomes in terms of acceptance or rejection of hypotheses. In fact, 
the outcomes were the same with respect to our model. The results of our analyses also 
suggested that, in our model, employing tests based on one-tailed P values at the 0.05 
significance level has approximately the same effect in terms of avoidance of false positives as 
employing tests based on 95% confidence intervals. 
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