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Abstract 

Monte Carlo experiments aimed at assessing the statistical power of structural equation 
modeling (SEM) techniques typically focus on true population path coefficients, ignoring true 
sample path coefficients. We demonstrate the limitations stemming from such practice in 
statistical power assessments. This is done in the context of SEM techniques employing the 
partial least squares (PLS) method, where power claims have led to much recent debate. We 
show that the sample sizes at which power is greater than .8 differ significantly when we 
consider true population and true sample paths, and that the difference increases with decreases 
in the magnitudes of the paths being considered. Finally, we illustrate empirically how these 
differences affect the conclusions we can draw from the analysis of a relatively small sample of 
size 193. 
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1. Introduction 

    Structural equation modeling (SEM) techniques allow for the construction and analysis of path 

models (Wright, 1934; 1960) with “latent” variables, which are variables that are measured 

indirectly through other “observed” or “manifest” variables. The latter are frequently referred to 

as the “indicators” of the latent variables (Kline, 2010; Schumacker & Lomax, 2004). 

    Indicators often take the form of numeric variables that store answers to question-statements 

in questionnaires. Each question-statement is designed to refer to a specific latent variable, 

measuring it with a certain degree of imprecision. Using multiple indicators to measure a latent 

variable reduces measurement error. 

    Many SEM techniques have been developed over the years, with two main classes of 

techniques having gained broader acceptance: covariance-based SEM and PLS-based SEM (Hair 

et al., 2011; Kline, 2010; Kock & Lynn, 2012). Covariance-based SEM, generally viewed as the 

classic form of SEM, builds on strong parametric assumptions and relies on the minimization of 

differences between model-implied and empirical data covariance matrices.  

    PLS-based SEM, also known as PLS path modeling (Henseler & Chin, 2010), is essentially 

nonparametric in design, and relies on the estimation of composites that stand in for factors (i.e., 

the latent variables). Because of its nonparametric nature, it is often claimed that PLS-based 

SEM can achieve acceptable statistical power with small samples and non-normal data. One of 

the few ways in which these claims can be tested, and the most widely used, is to conduct 

simulated experiments employing the Monte Carlo method (Paxton et al., 2001). 

    Monte Carlo experiments aimed at assessing statistical power of SEM techniques typically 

focus on true population path coefficients (Cassel et al., 1999; Chin et al., 2003; Chiquoine & 

Hjalmarsson, 2008; Ferrarii, 2011; Paxton et al., 2001; Qureshi & Compeau, 2009). These 

coefficients are set by the researcher, and reflect the associations among latent variables and 

indicators at the population level. Monte Carlo experiments aimed at assessing statistical power 

of SEM techniques do not usually consider true sample path coefficients.  

   In Monte Carlo experiments, nonzero true population paths above a certain threshold (e.g., 

.142) are used as a basis for the creation of 𝑚 multiple samples (a.k.a. replications). This is 

illustrated in Figure 1. 
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Figure 1. True sample versus true population paths in a Monte Carlo experiment 
 

 
 
 
    Each sample is then analyzed via one or more SEM techniques, leading to rejection or 

acceptance of the hypotheses that refer to each path in the structural model. These analyses 

assume that a SEM technique of suitable power will lead to the acceptance of hypotheses 

associated with nonzero true population paths above a certain threshold for a certain percentage 

of samples; usually 80 percent. That is, a SEM technique of suitable power will lead to the 

avoidance of false negatives, or type II errors, 80 percent of the time. 

    If both indicator and latent variable scores are generated in Monte Carlo experiments, true 

sample paths can be obtained for each sample by using the sample latent variable scores as inputs 

to any SEM algorithm or software. These coefficients are the true paths with respect to each 

sample, which differ from true population paths due to sampling error. Nevertheless, these true 

sample paths are usually ignored in statistical power assessments via Monte Carlo experiments. 

    The focus on true population paths in Monte Carlo experiments aimed at testing SEM 

techniques is widespread and restricts the scope of conclusions to the general case in which: (a) a 

population is large and samples are comparatively small; (b) random sampling is employed; and 

(c) samples are small primarily because of sampling limitations; e.g., no access to all the 

individuals, groups etc. that make up the population. 
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    This can be a problem in many areas of research, and can be particularly severe in some areas, 

such as information systems research. Information systems research is often concerned with the 

effects of information and communication technologies on individuals and groups. Part of our 

discussion builds on an empirical information systems research illustration. 

    For example, if a researcher decided to study the attitudes toward mobile technologies of 

billionaire entrepreneurs under the age of 40, the population of the study would probably be very 

small. In this type of situation, a traditional Monte Carlo experiment focusing on true population 

paths could lead to a gross overestimation of the minimum sample size required to achieve a 

certain level of statistical power. The resulting minimum sample size estimate may be too large 

to be achieved in practice, possibly leading to the abandonment of an interesting research topic. 

    We argue that, in this type of situation, it is important to try to understand the performance of 

SEM techniques that are expected to perform well with small samples, such as PLS-based SEM 

techniques, vis-à-vis true sample paths. When populations are rather small, as in the example 

above, performance vis-à-vis true sample paths would arguably be a better yardstick for the 

estimation of minimum required sample sizes. 

    Even in cases where populations are not small, an assessment of a SEM technique’s 

performance vis-à-vis true sample paths, and the determination of a minimum sample size in this 

context, would allow researchers to draw conclusions that are sample-specific as opposed to 

population-general. That is, while a given sample size may not be sufficient for conclusions that 

generalize the findings of an empirical study to the entire population from which the sample is 

taken, the sample size in question may well be enough for conclusions that apply to very similar 

samples. Monte Carlo experiments considering true sample paths allow researchers to determine 

such a sample size. 

    We demonstrate here the limitations stemming from a focus on true population paths in Monte 

Carlo experiments. We conduct a Monte Carlo experiment aimed at testing PLS-based SEM 

techniques based on an illustrative model containing paths of various magnitudes, whereby we 

assess statistical power with respect to true population and true sample paths. We show that the 

sample sizes at which power is greater than .8 differ significantly when we consider true 

population and true sample paths, and that this difference increases with decreases in the 

magnitudes of the paths being considered. Finally, we illustrate empirically how these 

differences affect the conclusions we can draw from the analysis of a small sample. 
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2. Composite-based SEM: Three algorithms 

    PLS-based SEM is a form of composite-based SEM, whereby latent variables are estimated as 

exact linear combinations of their indicators (Helland, 1988). Our discussion builds on this class 

of SEM techniques because of their widespread use with small samples, which is often justified 

based on the nonparametric nature of this class of SEM techniques (Hair et al., 2011; Kock & 

Lynn, 2012). 

    Several algorithms can be used in composite-based SEM. We discuss three such algorithms in 

this section. Two of these are “true” PLS algorithms, whereby weights are assigned to composite 

indicators according to iterative procedures: PLS Regression and PLS Mode A. One is a 

simplified algorithm where all weights assume the same value: Path Analysis. This simplified 

algorithm is included in our Monte Carlo experiment later, with the goal of serving as a baseline 

algorithm. 

    All variables are assumed to be scaled to have a mean of zero and a standard deviation of 1; 

i.e., they are standardized. In all of the algorithms discussed here indicator weight estimates 𝜔���  

are initially set to arbitrary values (usually 1), based on which composite estimates 𝐶��  are 

initialized with standardized vectors of weighted sums of the indicators. 

    Then the composites are re-estimated based on (1) for PLS Mode A. In this equation the 

coefficients 𝑣�� are referred to as the “inner weights” (Lohmöller, 1989, p. 29), and 𝐴� is the 

number of composites 𝐶��  (𝑗 = 1 … 𝐴�) that are structurally adjacent to the composite 𝐶�� . The 

function 𝑆𝑡𝑑𝑧(∙) returns a standardized vector. Composites are structurally adjacent when they 

are linked by arrows in a model. 

 

𝐶�� = 𝑆𝑡𝑑𝑧�∑ 𝑣��
��
��� 𝐶���. (1) 

 

    In PLS Mode A the inner weights are set according to three main schemes, known as centroid, 

factorial, and path weighting. Inner weights are not set in PLS Regression or Path Analysis, since 

in these algorithms the structural model does not influence the estimation of indicator weights. 

    In the centroid scheme the inner weights are set as the signs of the correlations among 

structurally adjacent composites; in the factorial scheme, as the correlations among structurally 

adjacent composites; and in the path weighting scheme, as the path coefficients or correlations 



 7 

among structurally adjacent composites, depending on whether the arrows go in or out, 

respectively. 

    The path coefficient estimates 𝛽���  used in the path weighting scheme of PLS Mode A are 

obtained through the solution of (2) for endogenous composites; i.e., composites to which other 

composites point in the structural model. In this equation 𝜁�� refers to the estimated residual for 

each endogenous composite. This residual accounts for the variance that is not explained by the 

composites 𝐶��  (𝑗 = 1 … 𝑁�) pointing at the endogenous composite 𝐶�� . 

 

𝐶�� = ∑ 𝛽���
��
��� 𝐶�� + 𝜁�� . (2) 

 

    Next (3) is solved for 𝑤���  (known as “outer weights”) for PLS Regression and PLS Mode A. 

In this equation 𝑛� is the numbers of indicators 𝑥�� (𝑗 = 1 … 𝑛�) of the composite 𝐶�� , and 𝜃���  are 

the error terms for the indicators. 

 

𝑥�� = 𝑤���𝐶�� + 𝜃��� , 𝑗 = 1 …𝑛�. (3) 

 

    Following this, the composites are re-estimated based on (4), a step known as “outside 

approximation”. This and the preceding steps are carried out iteratively until the weight estimates 

𝑤���  change by less than a small fraction. 

 

𝐶�� ← 𝑆𝑡𝑑𝑧�∑ 𝑤���
��
��� 𝑥���. (4) 

 

    In the Path Analysis algorithm all of the weights 𝑤���  are set to 1 and composites are estimated 

based on (4) only once. That is, Path Analysis is a simplified non-iterative algorithm. Like PLS 

Regression and PLS Mode A, it also leads to the estimation of composites as exact linear 

combinations of their respective indicators. 

    After stable weights 𝑤���  are obtained, the final values of the path coefficient estimates 𝛽���  are 

obtained via (2). This applies to all of the algorithms discussed in this section. Since in PLS 

Regression and PLS Mode A indicator weights are proportional to indicator loadings, these 
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algorithms are generally believed to perform better than Path Analysis when indicator loadings 

are unevenly distributed. 

3. Creating data via the Monte Carlo method for power analyses 

    The power of a particular technique, such as Path Analysis, is normally assessed through a 

Monte Carlo experiment where data is created based on a pre-specified true population model. 

Such model contains true population path coefficients and loadings. To illustrate this, let us 

assume we have a population whose behavior in the context of social networking site use is 

described by the path model in Figure 2. 
 
Figure 2. Illustrative model 
 

 
Notes: 
  - 𝛽�� = true population coefficient for path pointing from latent variable 𝐹� to latent variable 𝐹�. 
  - 𝜆�� = true population loading for the jth indicator of latent variable 𝐹�. 
 
 
    This illustrative model is based on an actual study of the overall effect of social networking 

site use (𝐹�), such as use of Facebook, on job performance (𝐹�). This overall effect is 

hypothesized to be mediated by job satisfaction (𝐹�) and organizational commitment (𝐹�). 

Education level (𝐹�) is hypothesized to influence social networking site use (𝐹�). This study is 

revisited later, with a discussion of related empirical results. 
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    True population path coefficients are set to assume three values (. 142, . 387 and . 592), which 

when squared yield the thresholds for small, medium and large effect sizes (. 02, . 15 and . 35) 

proposed by Cohen (1988; 1992). The number of indicators associated with each latent variable 

is based on the actual empirical study used as a basis for the simulated experiment. True 

population loadings associated with the indicators start with the value of . 9 and go down in 

increments of . 05. True population path coefficients and loadings are similar in magnitude to 

those in the empirical study used as a basis for the simulation. 

    For simplicity, and without any impact on the generality of the discussion presented here, we 

assume that variables are standardized – i.e., scaled to have a mean of zero and a standard 

deviation of 1. 

    Let 𝜁� be the error variable that accounts for the variance in an endogenous latent variable 𝐹� 

that is not explained by the exogenous latent variables that point at 𝐹�. Let 𝐹� be one of the 𝑁� 

exogenous latent variables that point at an endogenous latent variable 𝐹�. And let 𝜃�� be the 

standardized error variable that accounts for the variance in the indicator 𝑥�� that is not explained 

by its latent variable 𝐹�.  

    In a Monte Carlo experiment where multiple replications of a model are created, error 

variables and exogenous variables can be created according to equations (5) to (7). In these 

equations 𝑅𝑛𝑑𝑛(N) is a function that returns a different normal random variable each time it is 

invoked, as a vector with N elements, and 𝑆𝑡𝑑𝑧(∙) is a function that returns a standardized 

variable. 

 

𝜁� ← 𝑆𝑡𝑑𝑧�𝑅𝑛𝑑𝑛(N)�. (5) 

𝐹� ← 𝑆𝑡𝑑𝑧�𝑅𝑛𝑑𝑛(N)�. (6) 

𝜃�� ← 𝑆𝑡𝑑𝑧�𝑅𝑛𝑑𝑛(N)�. (7) 

 

    The above assumes that simulated datasets that follow normal distributions are desired. To 

obtain non-normal data, transformations based on the normally-distributed variables can be 

employed. For example, equations (8) to (10) transform the normal variables into corresponding 

non-normal variables that follow a 𝜒� distribution with 1 degree of freedom. This is well known 
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non-normal distribution, with theoretical skewness and kurtosis (a.k.a. excess kurtosis) values of 

√8 ≅ 2.828 and 12 respectively. 

 

𝜁� ← 𝑆𝑡𝑑𝑧�𝜁���. (8) 

𝐹� ← 𝑆𝑡𝑑𝑧�𝐹���. (9) 

𝜃�� ← 𝑆𝑡𝑑𝑧�𝜃����. (10) 

 

    Once the error variables and exogenous latent variables are created, endogenous latent 

variables are created based on the true population path coefficients. This is indicated in (11), 

where 𝑅�� are the correlations among the linked latent variables. Finally, indicators are created 

based on the true population loadings, as indicated in (12). 

 

𝐹� = ∑ 𝛽��
��
��� 𝐹� + ���1 − ∑ 𝛽��𝑅��

��
��� �� 𝜁�. 

(11) 

𝑥�� = 𝜆��𝐹� + ��1 − 𝜆��
�� 𝜃��, 𝑗 = 1 …𝑛�. 

(12) 

 

    Generally a set of samples is generated for each sample size, with sample sizes varying 

incrementally to produce multiple sets of samples. The larger the set of samples created in 

connection with each sample size, the more precise is the measure of statistical power obtained 

via a Monte Carlo experiment for that particular sample size. Typically 250 or more replications 

per sample size are used. 

4. Power with respect to true population paths 

    Let 𝐾 be the set {𝑘��,𝑘��… 𝑘�� }, where 𝑘��  is the vector of parameter estimates generated for 

replication 𝑗 for a given model, based on an analysis technique, and 𝑚 is the total number of 

replications. Let Φ denote the analysis technique used (e.g., Path Analysis), and N the sample 

size used, in replication 𝑗. Let 𝛽� be true population path coefficient considered (e.g., 𝛽� =

.142), and 𝛽�  the corresponding path coefficient estimated with Φ. Let 𝐾� be the subset of 𝐾 that 

satisfies  |𝛽�| > 0 for a particular combination of Φ, N, and 𝛽�. The power of the technique Φ in 
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this scenario, with respect to the true population paths that assume the value 𝛽�, is denoted as 

𝑊�(Φ, N,𝛽�) and is given by (13), where 𝐶𝑎𝑟𝑑(𝐾�), 𝐶𝑎𝑟𝑑(𝐾), and 𝐶𝑎𝑟𝑑(𝑚) are the 

cardinalities of 𝐾�, 𝐾, and 𝑚, respectively. 

 

𝑊�(Φ, N,𝛽�) = ����(��)
����(�)

 as 𝐶𝑎𝑟𝑑(𝑚) → ∞. (13) 

 

    This power estimation method relies on true population paths only, and is the most commonly 

used in power assessments. In it the condition expressed by the inequality  |𝛽�| > 0 is tested 

through an assessment of statistical significance, which can be conducted via the calculation of a 

chance probability (a.k.a. P value) or confidence interval. 

5. Power with respect to true sample paths 

    Let 𝐾, Φ, N, 𝛽�, and 𝛽�  be defined as in the section above. Let 𝛽� be the true sample path 

corresponding to the true population path 𝛽�, calculated based on the latent variable scores (𝐹�) 

for replication 𝑗. Let 𝐾̇ be the subset of 𝐾 that satisfies the condition 𝛽� ≤ 𝛽� < 𝛽�� , where 𝛽��  is 

the next threshold greater than 𝛽� from the set of thresholds used – in our case: 

{.142, .387, .592, +∞}. Let 𝐾� be the subset of 𝐾̇ that satisfies  |𝛽�| > 0, for a particular 

combination of Φ, N, and 𝛽�. The power of the technique Φ in this scenario, with respect to the 

true sample paths corresponding to 𝛽�, is denoted as 𝑊�(Φ, N,𝛽�) and is given by (14), where 

𝐶𝑎𝑟𝑑(𝐾�) and 𝐶𝑎𝑟𝑑(𝐾̇) are the cardinalities of 𝐾� and 𝐾̇, respectively. 

 

𝑊�(Φ, N,𝛽�) = ����(��)
����(�̇)

 as 𝐶𝑎𝑟𝑑(𝑚) → ∞. (14) 

 

    Note that generally 𝑊�(Φ, N,𝛽�) > 𝑊�(Φ, N,𝛽�) because the calculation of 𝑊�(Φ, N,𝛽�) 

excludes those instances in which the condition 𝛽� ≤ 𝛽� < 𝛽��  is not satisfied due to sampling 

error. Those instances are not excluded in the calculation of 𝑊�(Φ, N,𝛽�). 

    This is a novel way of conducting a statistical power test that can be employed in the 

estimation of alternative minimum sample sizes that are more compatible with sample-specific 
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than population-general conclusions. The condition 𝛽� ≤ 𝛽� < 𝛽��  refers to a subset of ℝ that 

arises from the fact that 𝛽� ≠ 𝛽� due to sampling error. 

    An instance in which the condition 𝛽� ≤ 𝛽� < 𝛽��  is not satisfied is one in which sampling 

error leads to a true sample path whose value is markedly different from the corresponding true 

population path. Notably, this can lead to instances where 𝛽� > 𝛽�, which would be more likely 

to lead to false negatives for true population paths of low magnitude. Therefore, it is reasonable 

to expect that the gap between 𝑊�(Φ, N,𝛽�) and 𝑊�(Φ, N,𝛽�), where 𝑊�(Φ, N,𝛽�) >

𝑊�(Φ, N,𝛽�), will increase as |𝛽�| decreases. 

    Each true sample path 𝛽� is calculated directly based on the latent variable scores generated 

based on the Monte Carlo method, via a standard path analysis. As such, the true sample paths 

for a given replication 𝑗 are the same regardless of the analysis technique used. Each estimated 

sample path 𝛽� , on the other hand, is calculated based on the composite scores estimated with the 

indicator scores. Thus estimated sample paths differ based on the analysis technique employed. 

6. Monte Carlo experiment 

    This section summarizes the results of our power assessment for the illustrative model 

presented earlier with respect to true sample and true population paths. We analyzed 500 

simulated samples generated for each sample size point, with the following 11 sample sizes: 20, 

40, 60, 80, 100, 150, 200, 250, 300, 350, and 400. Each simulated sample was analyzed with the 

Path Analysis, PLS Regression, and PLS Mode A techniques.  

   We started with a fairly small sample size and went up to N=400 to ensure that we captured the 

behavior of the techniques we studied up to the point where all techniques achieved a statistical 

power of .8 or greater. Thus a total of 5,500 samples of simulated data were analyzed. The data 

was generated and analyzed with MATLAB, a widely used numeric computing tool with which 

we implemented the equations discussed in the previous sections. 

    Table 1 shows power values with respect to true sample and true population paths for each of 

the three path levels. Table 2 shows the sample sizes at which each of the techniques achieved 

power values equal to or above .8. 
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Table 1: Power with respect to true sample and true population paths 
 

    True sample  True population 
Technique  N  βP = .142 βP = .387 βP = .592 βP  = .142 βP  = .387 βP = .592 
Path Analysis 20 .080 .564 .945 .153 .439 .802 
Path Analysis 40 .263 .882 .995 .213 .736 .986 
Path Analysis 60 .440 .968 1 .272 .895 1 
Path Analysis 80 .584 .991 1 .325 .959 1 
Path Analysis 100 .674 .999 1 .370 .986 1 
Path Analysis 150 .805 1 1 .465 .999 1 
Path Analysis 200 .930 1 1 .592 1 1 
Path Analysis 250 .967 1 1 .697 1 1 
Path Analysis 300 .984 1 1 .727 1 1 
Path Analysis 350 .994 1 1 .794 1 1 
Path Analysis 400 1 1 1 .850 1 1 
PLS Regression  20  .125 .596 .910  .180 .451 .790 
PLS Regression 40 .325 .877 .992 .229 .749 .978 
PLS Regression 60 .483 .967 1 .287 .905 1 
PLS Regression 80 .629 .994 1 .341 .966 1 
PLS Regression 100 .702 .999 1 .384 .987 1 
PLS Regression 150 .814 1 1 .475 .999 1 
PLS Regression 200 .940 1 1 .596 1 1 
PLS Regression 250 .974 1 1 .697 1 1 
PLS Regression 300 .990 1 1 .732 1 1 
PLS Regression 350 .996 1 1 .797 1 1 
PLS Regression 400 .998 1 1 .856 1 1 
PLS Mode A  20  .103 .528 .904  .153 .413 .782 
PLS Mode A 40 .293 .877 .992 .211 .746 .978 
PLS Mode A 60 .445 .966 1 .263 .906 1 
PLS Mode A 80 .594 .993 1 .323 .961 1 
PLS Mode A 100 .673 .998 1 .361 .985 1 
PLS Mode A 150 .816 1 1 .470 .999 1 
PLS Mode A 200 .918 1 1 .572 1 1 
PLS Mode A 250 .977 1 1 .691 1 1 
PLS Mode A 300 .986 1 1 .727 1 1 
PLS Mode A 350 .996 1 1 .782 1 1 
PLS Mode A 400 .998 1 1 .842 1 1 
 
Table 2: Sample sizes at which power is equal to or greater than .8 
 

  True sample  True population 
Technique  βP = .142 βP = .387 βP = .592 βP = .142 βP = .387 βP = .592 
Path Analysis 149 35 < 20 356 49 < 20 
PLS Regression  144 35 < 20  353 47 22 
PLS Mode A  145 36 < 20  365 47 22 
 
 
    The values in the second table (sample sizes at which power is equal to or greater than .8) 

were obtained by simple interpolation and rounding to the next greater integer based on the 

values in the first (power values). For example, the sample size of 149, corresponding to the 
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Path Analysis technique and paths whose corresponding true population value was 𝛽� = .142 

was obtained by rounding: 

 

100 + [(150 − 100) (. 805 − .674)⁄ ](. 8 − .674) = 148.092. 

 

    The statistical significance for any estimated path coefficient 𝛽�  was assessed through a two-

tailed P value calculated based on (15), where SE� is the estimated standard error, N is the sample 

size used, and 𝐼(∙) is the two-tailed incomplete beta function. For PLS Regression and PLS 

Mode A, SE� was estimated via bootstrapping with 500 resamples. For Path Analysis, SE� was 

estimated based on the simplified assumption that the path estimates would be distributed 

according to the central limit theorem, as 1 √N⁄ ; this likely led to a slight overestimation of SE�. 

The threshold for P used was . 05. 

 

P = 𝐼�𝛽� , SE� , N�. (15) 

 

    As we can see from the results, the sample sizes at which power reaches the .8 threshold 

differed significantly with respect to true sample and true population paths, even though they did 

not differ nearly as much across analysis techniques (i.e., Path Analysis, PLS Regression, and 

PLS Mode A). As expected, the gap between minimum required sample sizes (for the .8 power 

threshold) with respect to true sample and true population paths was wider for paths of small 

magnitude, and progressively narrowed as path magnitude increased. 

    For example, for PLS Mode A and the paths whose corresponding true population value was 

𝛽� = .142 power levels equal to or greater than .8 were achieved at N=145 with respect to true 

sample paths, whereas N=365 was required to achieve the same power levels with respect to true 

population paths. For the same analysis technique (i.e., PLS Mode A), but for the higher true 

population value of 𝛽� = .387, the corresponding sample sizes were N=36 and N=47 

respectively. 
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7. Empirical illustration 

    Table 3 shows the results of our analyses of one sample of empirical data of size 193, obtained 

from individuals who were employed by organizations in the USA and who used social 

networking sites to different degrees. We used the illustrative model presented earlier, in terms 

of the hypothesized relationships, to conduct the analysis. The question-statements used for data 

collection are listed in Appendix A. These results are not presented here as part of a stand-alone 

empirical contribution; they are used to illustrate how the conclusions from the Monte Carlo 

experiment can be interpreted in the context of an empirical study. 
 
Table 3. Empirical illustration results 
 
Path Path Analysis PLS Regression PLS Mode A 
Education level (𝐶�) → social networking site use (𝐶�) 𝛽��� = .202 ** 𝛽��� = .207 ** 𝛽��� = .130 NS 
Social networking site use (𝐶�) → job satisfaction (𝐶�) 𝛽��� = .179 ** 𝛽��� = .147 * 𝛽��� = .445 *** 
Job satisfaction (𝐶�) → organizational commitment (𝐶�) 𝛽��� = .644 *** 𝛽��� = .651 *** 𝛽��� = .635 *** 
Job satisfaction (𝐶�) → job performance (𝐶�) 𝛽��� = .288 *** 𝛽��� = .290 ** 𝛽��� = .284 ** 
Organizational commitment (𝐶�) → job performance (𝐶�) 𝛽��� = .253 *** 𝛽��� = .252 ** 𝛽��� = .260 ** 
Notes: * P < .05; ** P < .01; *** P < .001; NS not significant; N=193. 
 
 
    From our Monte Carlo experiment, we know that all three composite-based SEM techniques 

achieved a power greater than .8 for the small true population path of .142 at sample sizes 150 or 

greater, with respect to true sample paths. However, sample sizes greater than 350 were required 

for that power level to be reached with respect only to the true population path of .142 and 

disregarding true sample paths. 

    Given this, we are pressed to derive different conclusions regarding the sample and the 

population from which the sample is taken. We can generally conclude based on the empirical 

results summarized above that our sample size of 193 is sufficient, in terms of statistical power, 

to provide general support for our model with respect to this sample and very similar samples. 

The only exception to this is the non-significant coefficient obtained via PLS Mode A for the 

path education level (𝐶�) → social networking site use (𝐶�). 

    That is, given the combination of sample and path magnitudes in this analysis, the results are 

generally expected to extend to contexts that are very similar to this study’s (i.e., very similar 

samples), but not necessarily to the entire population from which the sample was taken. In other 

words, given the relatively small N=193 we can derive only sample-specific conclusions. 
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    Nevertheless, we cannot conclude based on the empirical results summarized above that our 

sample size of 193 is sufficient to support our model with respect to the entire population from 

which the sample was taken. For that we would need a sample of size 350 or greater. In other 

words, we cannot derive population-general conclusions. 

8. Discussion and conclusion 

    It is strongly recommended that researchers conduct statistical power analyses based on Monte 

Carlo experiments prior to collecting and analyzing empirical data. The main goal of these power 

analyses is to find out what the minimum required sample sizes are for related empirical studies. 

Such power analyses build on true population models, which in turn are constructed by 

researchers based on expectations from past empirical research and theory. 

    Statistical power values estimated based on Monte Carlo experiments differ significantly when 

we consider true population and true sample paths. This has an effect on the estimation of 

minimum sample sizes required to achieve a certain power level (e.g., . 8). If we consider only 

true population paths, minimum sample sizes required may be grossly overestimated for paths of 

low expected magnitude. 

    The reason for this is that not calculating or using the true sample paths in statistical power 

assessments leads to an unwanted effect of sampling error in the estimation of minimum required 

sample sizes. Sampling error may lead to instances in which true sample paths are statistically 

indistinguishable from zero when the corresponding population paths are not.  

    If these instances are allowed to affect the results of a power analysis and a researcher does 

not plan on generalizing analysis results from an empirical study to an entire population, using 

the same model as that used in the Monte Carlo experiment, the minimum required sample size 

will be overestimated. The same applies to the analysis of a small population, where the sample 

may encompass the entire population, because in this case sampling error is by definition 

nonexistent. In these cases our proposed power assessment method, relying on true sample paths, 

will lead to more accurate estimates of minimum required sample sizes. 

    It is not difficult to conduct a Monte Carlo experiment to assess the power of one or more 

SEM techniques considering both true population and true sample paths. All that is needed is an 

additional analysis for each simulated sample, whereby latent variable scores are used instead of 

indicator scores. Based on the discussion presented here, it seems reasonable to contend that 
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researchers should conduct these additional analyses whenever possible, which will enable them 

to establish which sample sizes are needed for conclusions that are population-general and 

sample-specific. 

    The thresholds used in our analysis, namely {.142, .387, .592, +∞}, were chosen for 

illustration purposes. Arguably, the more thresholds, the better the precision of the minimum 

required sample sizes obtained. Nevertheless, the more thresholds, the greater will be the number 

of simulated samples generated per sample size point needed, so that a sizeable number of 

simulated samples lead to path coefficients that are within each interval. 

    Power assessments with respect to true sample paths are likely to be particularly useful in 

certain fields where constant change makes it difficult to find samples of appropriate size for 

population generalizations, and where such generalizations are unlikely to be of practical 

relevance. 

    One field where change is the norm, often being of a fast pace, is that of information systems; 

where the effects of information and communication technologies on individuals and groups are 

studied. Such technologies are constantly changing. Therefore, the results of any study are likely 

to be sample-specific in terms of their practical relevance, because the technologies that are 

actually used in practice, by the time the results of a study are published, are likely to be different 

from those studied. 

    We could not find any discussion in the statistics literature on the issue addressed here – 

different statistical power values in Monte Carlo experiments aimed at assessing PLS-based 

SEM techniques, depending on whether true population and true sample paths are considered. 

We hope that the discussion presented here contributes to bringing light to this issue, and 

stimulate future research on this and related issues. 
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Appendix A: Questionnaire used in empirical study 

    The question-statements below were used for data collection related to the indicators of the 
latent variables in the illustrative empirical study. They were answered on Likert-type scales 
going from “1 – Strongly disagree” to “5 – Strongly agree”. 

Education level (𝑭𝟏) 
• 𝐹��: Education level choices: High school, two-year college degree, four-year college degree, 

master’s degree, and doctoral degree. 

Social networking site use (𝑭𝟐) 
• 𝐹��: In the past week, on average, approximately how much time per day have you spent on 

social network sites’ accounts? 
• 𝐹��: My SNSs’ account/s are/is a part of my everyday activity. 
• 𝐹��: I am proud to tell people I’m on SNSs such as Facebook. 
• 𝐹��: SNSs have become part of my daily routine. 
• 𝐹��: I feel out of touch when I haven’t logged onto SNSs for a while. 
• 𝐹��: I feel I am part of the SNSs community. 
• 𝐹��: I would be sorry if SNSs shut down. 

Job satisfaction (𝑭𝟑) 
• 𝐹��: I am very satisfied with my current job. 
• 𝐹��: My present job gives me internal satisfaction. 
• 𝐹��: My job gives me a sense of fulfillment. 
• 𝐹��: I am very pleased with my current job. 
• 𝐹��: I will recommend this job to a friend if it is advertised /announced. 

Organizational commitment (𝑭𝟒) 
• 𝐹��: I would be very happy to spend the rest of my career with this organization. 
• 𝐹��: I feel a strong sense of belonging to my organization. 
• 𝐹��: I feel ‘emotionally attached’ to this organization. 
• 𝐹��: Even if it were to my advantage, I do not feel it would be right to leave my organization. 
• 𝐹��: I would feel guilty if I left my organization now. 

Job performance (𝑭𝟓) 
• 𝐹��: My performance in my current job is excellent. 
• 𝐹��: I am very satisfied with my performance in my current job. 
• 𝐹��: I am very happy with my performance in my current job. 
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