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ABSTRACT 

The most fundamental problem currently associated with structural equation modeling 
employing the partial least squares method is that it does not properly account for measurement 
error, which often leads to path coefficient estimates that asymptotically converge to values of 
lower magnitude than the true values. This attenuation phenomenon affects applications in the 
field of business data analytics; and is in fact a characteristic of composite-based models in 
general, where latent variables are modeled as exact linear combinations of their indicators. The 
underestimation is often of around 10% per path in models that meet generally accepted 
measurement quality assessment criteria. We propose a numeric solution to this problem, which 
we call the factor-based partial least squares regression (FPLSR) algorithm, whereby variation 
lost in composites is restored in proportion to measurement error and amount of attenuation. Six 
variations of the solution are developed based on different reliability measures, and contrasted 
in Monte Carlo simulations. Our solution is nonparametric and seems to perform generally well 
with small samples and severely non-normal data. 
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INTRODUCTION 

    Structural equation modeling (SEM) is extensively used in many areas of research, including 

various business disciplines, as well as the social and behavioral sciences (Kline, 2010; Kock, 

2014; Schumacker & Lomax, 2004). The techniques underlying SEM are relevant for the 

incipient field of business data analytics (Abdelhafez, 2014; Cech et al., 2014; Lee et al., 2014; 

Liu & Shi, 2015; Wang & Zhou, 2014). SEM employs latent variables, which are measured 

indirectly through “observed” or “manifest” variables, in sets associated with latent variables that 

are normally called “indicators”. This measurement includes error. Latent variables typically 

refer to perception-based constructs (e.g., satisfaction with one’s job). Indicators normally store 

numeric answers to sets of questions in questionnaires, each set designed to refer to a latent 

variable, and expected to measure it with a certain degree of imprecision. 

    Many SEM methods have been proposed over the years. Two main classes of methods have 

gained wider acceptance: covariance-based and PLS-based SEM (Hair et al., 2011; Kline, 2010; 

Kock, 2014; Kock & Lynn, 2012). Covariance-based SEM, often viewed as the classic form of 

SEM, builds on strong parametric assumptions (e.g., multivariate normality) and relies on the 

minimization of differences between indicator covariance matrices. 

    PLS-based SEM is generally nonparametric in design, building largely on techniques that 

make no distributional assumptions. It has a few advantages over covariance-based SEM, such as 

virtually always converging to solutions; even in complex models, with small sample sizes, and 

severely non-normal data (Hair et al., 2011; Tenenhaus et al., 2005). Also, PLS-based SEM 

generates latent variable scores, which can be used in further analyses – e.g., analyses that 

attempt to uncover and model nonlinear relationships among latent variables (Brewer et al., 

2012; Guo et al., 2011; Kock, 2010). Finally, leading software tools for conducting PLS-based 

SEM (e.g., WarpPLS) tend to be viewed as fairly easy to use by a wide range of researchers. 

    However, PLS-based SEM builds latent variables as exact linear combinations of their 

indicators, without explicitly accounting for measurement error. Strictly speaking, these are not 

really latent variables, but “composites” (McDonald, 1996). Because of this, some argue that 

PLS-based SEM should not be referred to as an “SEM” technique, while others ignore this as 

just a semantic issue (Hair et al., 2011). This is one of the reasons why PLS-based SEM is 

sometimes referred to as “PLS path modeling” (Tenenhaus et al., 2005). 
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    Because PLS-based SEM does not explicitly account for measurement error, it often yields 

path coefficient estimates that asymptotically converge to values of lower magnitude than the 

true values as sample sizes grow to infinity. Since path coefficients are proportional to 

correlations, the amount of underestimation for each path can be approximated through the 

correlation attenuation factor (Nunnally & Bernstein, 1994), expressed in (1). In this equation, 

𝑟�𝐶� ,𝐶�� is the attenuated correlation between composites that refer to two correlated latent 

variables 𝐹� and 𝐹�; 𝑟�𝐹� ,𝐹�� is the correlation between the latent variables, and 𝛼� and 𝛼� are the 

true reliabilities associated with the latent variables. We use the symbols 𝐹� and 𝐶� throughout to 

refer to latent variables (or factors) and associated composites, respectively. 

 

𝑟�𝐶� ,𝐶�� = 𝑟�𝐹� ,𝐹���𝛼�𝛼� . (1) 

 

    With all its advantages, this path attenuation problem is arguably the “Achilles heel” of PLS-

based SEM. Unlike in covariance-based SEM, PLS path estimates tend to converge to absolute 

values lower than the corresponding absolute true values as sample sizes grow to infinity when a 

finite number of indicators per latent variable is used. The path coefficients will only converge to 

the true values if the number of indicators used to measure each factor is also infinite, a property 

known as “consistency at large” (Cassel et al., 1999). 

    The top part of Figure 1 shows the results of an analysis that illustrates this path bias problem 

of PLS-based SEM. It does so in a way that brings to the fore an additional path bias 

complication, related to total effects. This illustrative analysis is based on a study of the effect of 

empathetic management (EM) on job performance (JP), which is mediated by intermediate 

effects on job satisfaction (JS) and job innovativeness (JI). 

    This study is not presented here as a stand-alone empirical contribution; it is used as an 

illustration and as the basis for our Monte Carlo simulations, discussed later. The bottom part 

shows paths corrected based on (1), where Cronbach’s alpha coefficients were used as estimates 

of reliabilities. At the top, path biases are shown as percentages and within parentheses under the 

PLS-estimated paths. These path biases are based on the corrected paths shown at the bottom. 

    The data was collected from 257 employees in the southwest region of one of the largest 

private motor coach charter and schedule service providers in the United States. The latent 

variables were measured based on question-statements that were previously validated based on 
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other studies, and that also passed validity and reliability criteria in the study in question. This 

illustrative analysis supports the idea that employee performance is significantly associated with 

the degree of use of a management style that demonstrates care about the employees’ well being 

(Mayfield & Mayfield, 2009; Mayfield et al, 1998). 
 
Figure 1: Estimated attenuation biases and their impact on direct and total effects 
 

 
Notes: actual PLS regression path estimates at the top; paths corrected for attenuation bias at the bottom; path biases 
shown within parentheses at the top, estimated based on corrected paths at the bottom; coefficients at the far right 
are total effects. 
 
 
    The effect of empathetic management (EM) on job performance (JP) appears to be mediated 

by intermediate effects on job satisfaction (JS) and job innovativeness (JI), and is thus given by 

the total effect (coefficients shown at the far right, next to double-lined arrows). The PLS-

estimated and corrected total effect coefficients also illustrate a facet of the path bias effect of 

PLS that makes it more problematic than it looks at first glance; and also more problematic than 

it has been implied by some researchers primarily based on analyses of direct effects (see, e.g., 

Cassel et al., 1999). The direct effect path biases can have a cumulative effect on total effects, 

making the total effect biases much greater than the average direct effect bias. In this illustrative 

analysis, the total effect bias (-20.5%) is more than twice as large as the average direct effect bias 

(-8.9%). This gap can be considerably larger in more complex models. 
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    We propose a numeric solution to the path coefficient underestimation problem of PLS-based 

SEM. Our solution, referred to as the factor-based PLS regression (FPLSR) algorithm, builds on 

path estimates generated by PLS regression (Wold et al., 2001). It works by essentially restoring 

measurement error after a PLS-based SEM analysis is completed. Our solution relies on 

estimates of reliabilities. Given this, we develop six FPLSR variations based on different 

reliability measures and contrast them in Monte Carlo simulations. The best performer is the one 

that employs Cronbach’s alpha as the reliability measure associated with composites. Our 

solution is nonparametric and seems to perform well with small samples and severely non-

normal data. 

    Our solution does not rely on parameter correction methods. Examples of solutions that rely 

on parameter correction methods are the Cronbach alpha disattenuation (Goodhue et al., 2012), 

illustrated in the example above, and the consistent PLS (Dijkstra & Schermelleh-Engel, 2014) 

solutions. Generally speaking, parameter correction solutions adjust parameters estimated by 

classic PLS methods with the goal of obtaining asymptotically unbiased parameters such as path 

coefficients. Since the FPLSR algorithm yields estimates of factors, and those are used as a basis 

for estimation of path coefficients, no corrections are needed.  

    Factor estimation is a characteristic that makes the FPLSR algorithm unique and particularly 

useful. With factor estimates researchers can employ tests that have been gaining widespread 

use, and that cannot be conducted without factor estimates. Two notable examples are: (a) full 

collinearity tests, which concurrently assess both lateral and vertical collinearity among factors 

(Kock & Lynn, 2012); and (b) nonlinear analyses where best-fitting nonlinear functions are 

estimated for each pair of linked factors, and subsequently used to estimate path coefficients that 

take into account the nonlinearity (Guo et al., 2011; Kock, 2010; Moqbel et al., 2013). 

PLS-BASED SEM: MAIN ALGORITHMS AND MODES 

    Four main composite-based estimation algorithms that can be used to analyze models with 

latent variables are described in this section: PLS mode A (PLSA), PLS mode B (PLSB), PLS 

regression (PLSR), and standard path analysis (PATH). The latter, PATH, yields composites 

through a non-iterative procedure; thus it is not, strictly speaking, a PLS algorithm. These 

algorithms have either been described by or follow directly from Lohmöller (1989), who builds 
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on earlier work by Herman Wold (see, e.g., Wold, 1974). PLSA is the most commonly used in 

PLS-based SEM. 

   In all algorithms, indicator weight estimates 𝜔���  are initially set (usually to 1), and composite 

estimates 𝐶��  are initialized with a standardized vector of the summed indicators. Then the 

composites are re-estimated based on (2) for PLSA and PLSB; where 𝑣�� are referred to as the 

“inner weights” (Lohmöller, 1989, p. 29), and 𝐴� is the number of composites 𝐶��  (𝑗 = 1 … 𝐴�) 

that are structurally adjacent to the composite 𝐶�� . Composites are structurally adjacent when they 

refer to latent variables that are linked by arrows in the structural model, whether the arrows go 

in or out. The function 𝑆𝑡𝑑𝑧(∙) returns a standardized vector. Inner weights are not calculated for 

PLSR or PATH, as in these two algorithms the indicator weights estimation (PLSR) and direct 

setting (PATH) do not rely on the estimation of inner weights. 

 

𝐶�� = 𝑆𝑡𝑑𝑧 ��𝑣��

��

���

𝐶���. 
 

(2) 

 

    In PLSA and PLSB the inner weights 𝑣�� are estimated according to three main schemes: 

centroid, factorial, and path weighting. The weights 𝑣�� are set as the: (a) signs of the correlations 

among structurally adjacent composites, in the centroid scheme; (b) correlations among 

structurally adjacent composites, in the factorial scheme; or (c) path coefficients or correlations 

among structurally adjacent composites, depending on whether the arrows go in or out 

respectively, in the path weighting scheme. 

    In the path weighting scheme, which is the most widely used, path coefficient estimates 𝛽���  are 

obtained through the solution of (3) for endogenous composites; i.e., composites that have 

arrows pointing at them in the structural model. Here 𝜁� refers to the residual for each 

endogenous composite, which accounts for the variance that is not explained by the predictor 

composites 𝐶��  (𝑗 = 1 … 𝑁�) that point at the endogenous composite 𝐶�� . 

 

𝐶�� = �𝛽���
��

���

𝐶�� + 𝜁� . 
 

(3) 
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    Then the following equations are solved for 𝜔���  (known as “outer weights”), depending on 

which algorithm is used: (4) is solved in PLSB, and (5) is solved in PLSA and PLSR. In (4) 𝑛� is 

the numbers of indicators 𝑥�� (𝑗 = 1 … 𝑛�) of the composite 𝐶�� . Following this, the composites 

are re-estimated based on (6), a step known as “outside approximation”. These and the preceding 

steps are carried out iteratively until the weight estimates 𝜔���  change by less than a small 

fraction. 

 

𝐶�� = �𝜔���
��

���

𝑥�� + 𝜀�� . 
 

(4) 

𝑥�� = 𝜔���𝐶�� + 𝜃��� . (5) 

𝐶�� ← 𝑆𝑡𝑑𝑧 ��𝜔���
��

���

𝑥���. 
 

(6) 

 

 

    In PATH all of the weights 𝜔���  are set to 1 and (6) is solved only once. This yields composite 

estimates that aggregate indicators in an equally-weighted and non-iterative fashion. Given 

standardization, in PATH the composite estimates are the same for any positive or negative 

weight assigned to indicators (e.g., .3), as long as all the indicator weights are the same. Setting 

all weights to 1 is equivalent to estimating composites based on the sums of their indicators. 

MEASUREMENT ERROR AND THE ATTENUATION BIAS 

    Figure 2 shows two correlated factors 𝐹� and 𝐹� with three indicators each. Even though the 

indicators “reflect” their common factors (top part of figure), the factors can also be seen as 

aggregations of their respective indicators and measurement errors (bottom part of figure). In 

each factor the measurement error is uncorrelated with the factor’s indicators.  

    Note that even though reflective measurement is assumed, weights do exist and factors can be 

seen as akin to “composites” that aggregate both indicators and measurement errors. The 

measurement error that is thus aggregated in each factor could be viewed as an “extra” indicator 
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that: (a) is uncorrelated with the actual indicators; and (b) accounts for the variance in the factor 

that is not explained by the actual indicators. 
 
Figure 2: Measurement errors for any pair of correlated factors 
 

 
Note: factors (latent variables) are represented within ovals; the equivalent graph for composites would have the 
errors 𝜀� and 𝜀� removed. 
 
 
    This arrangement is expressed for each factor in (7) and (8), where 𝜆�� are the factor-indicator 

loadings, 𝜔�� are the factor-indicator weights, and 𝑛� is the number of indicators associated with 

the factor. The indicator measurement errors 𝜃�� arise from the fact that each indicator measures 

its factor with some degree of imprecision. The measurement error 𝜀� is due to the errors 𝜃��, 

essentially being an aggregated version of those errors. It is the measurement error 𝜀� that is “left 

out”, or not properly accounted for, when composites are generated in PLS-based SEM. 

 

𝑥�� = 𝜆��𝐹� + 𝜃�� . (7) 

𝐹� = �𝜔��

��

���

𝑥�� + 𝜀� . 
 

(8) 

 

    The two correlated factors 𝐹� and 𝐹� can be expressed as in (9) and (10); where 𝐶� and 𝐶� are 

the true composites associated with the factors, 𝜔�� and 𝜔�� are the weights of the true 

composites, 𝜖� and 𝜖� are the “base” standardized measurement errors that make up 𝜀� and 𝜀�, 
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and 𝜔�� and 𝜔�� are the measurement error weights. The true reliabilities 𝛼� and 𝛼� equal the 

corresponding true composite weights squared: 𝜔��� and 𝜔��
� (Nunnally & Bernstein, 1994). 

Since the standardized base measurement errors and true composites are uncorrelated, it follows 

that the measurement error weights 𝜔�� and 𝜔�� equal �1 − 𝛼� and �1 − 𝛼� respectively. 

 

𝐹� = 𝜔��𝐶� + 𝜔��𝜖�. (9) 

𝐹� = 𝜔��𝐶� + 𝜔��𝜖�. (10) 

 

    The factors 𝐹� and 𝐹� are correlated. Therefore their composites and measurement errors are 

necessarily cross-correlated, even though composites and measurement errors that refer to the 

same factor are uncorrelated. That is, even though 𝑟(𝐶� , 𝜖�) = 0; we have 𝑟�𝐶� , 𝜖�� ≠ 0, 

𝑟�𝐶� ,𝐶�� ≠ 0 and 𝑟�𝜖� , 𝜖�� ≠ 0. These nonzero cross-correlations are represented in Figure 3. 

 
Figure 3: Cross-correlation of measurement errors and composites 
 

 
Note: factors, composites, and measurement errors are cross-correlated; but composites and measurement errors that 
refer to the same factor are not. 
 
 
    The idea that measurement errors can give rise to an increase in the strength of the correlations 

between two factors is counterintuitive at first. Generally speaking, the presence of error tends to 

lead to a decrease in the strength of correlations. The discussion above, however, illustrates why 

the measurement errors associated with the factors 𝐹� and 𝐹� are important in making the 
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strength of the correlation between the factors greater than the strength of the correlation 

between the corresponding composites.  

    The nonzero correlations 𝑟(𝐶�, 𝜖�), 𝑟(𝐶�, 𝜖�) and 𝑟(𝜖�, 𝜖�) contribute additively, together with 

 𝑟(𝐶�,𝐶�), to the correlation between the factors 𝑟(𝐹�,𝐹�). This is why the absolute correlation 

|𝑟(𝐶�,𝐶�)| between the true composites is lower than the absolute correlation |𝑟(𝐹�,𝐹�)| between 

the factors, and ultimately why PLS-based SEM tends to underestimate path coefficients. 

VARIATION SHARED AND VARIATION REMOVED 

    Figure 4 schematically introduces the concepts of “variation shared” and “variation removed”, 

which lead to the property that |𝑟(𝐹�,𝐹�)| > |𝑟(𝐶�,𝐶�)|. There is more variation shared between 

the factors than between the composites, which causes the correlation between the composites to 

be attenuated when compared with the correlation between the factors. This variation is shared 

both ways, from one factor to the other: 𝑣(𝐹� ← 𝐹�) and 𝑣(𝐹� ← 𝐹�); and from one composite to 

the other: 𝑣(𝐶� ← 𝐶�) and 𝑣(𝐶� ← 𝐶�). 
 
Figure 4: Variation shared and variation removed 
 

 
Note: left – variation shared between factors due to cross-correlations between measurement errors and composites; 
right – shared variation removed due to removal of measurement errors. 
 
 
    Each factor’s measurement error is uncorrelated with the factor’s true composite. Therefore, it 

is clear that the true source of the variation shared between the factors is the shared composite 
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variation. If the true composites associated with any two factors are uncorrelated with each other 

then the factors will also be uncorrelated. In other words, all “useful” variation emanates from 

the true composites. Therefore, any loss in shared variation due to composite-based estimation 

not properly accounting for measurement error can be recovered from the composites. 

    Let 𝑋 and 𝑌 be two standardized random variables that are correlated with each other. We can 

always increase the strength of the correlation between 𝑋 and 𝑌 by performing the operation 

indicated in the left side of (11); where 𝑎� and 𝑎� are positive or negative real numbers, 

depending on whether the initial correlation between 𝑋 and 𝑌 is positive or negative. We refer to 

this as “sharing variation” between 𝑋 and 𝑌. The amount of variation shared between 𝑋 and 𝑌 is 

a function of 𝑎� and 𝑎�. 

 

|𝑟{𝑆𝑡𝑑𝑧(𝑋 + 𝑎�𝑌), 𝑆𝑡𝑑𝑧(𝑌 + 𝑎�𝑋)}| > |𝑟(𝑋,𝑌)|. (11) 

 

    Therefore, we can restore the variation removed from any two correlated composites 𝐶� and 

𝐶�, caused by the removal of correlated measurement errors, by numerically finding appropriate 

values of 𝑎� and 𝑎� that satisfy (12). This would essentially lead to the recovery of the original 

factors 𝐹� and 𝐹� from their true composites. 

 

𝑟{𝑆𝑡𝑑𝑧(𝐶� + 𝑎�𝐶�), 𝑆𝑡𝑑𝑧(𝐶� + 𝑎�𝐶�)} = 𝑟(𝐹�,𝐹�). (12) 

 

    From the preceding discussion, it is clear that 𝑎� and 𝑎� should be proportional to the 

measurement error weights 𝜔�� and 𝜔�� associated with their factors; e.g., a composite derived 

from a factor that is measured without error should not receive variation from a correlated 

composite. We can also see that 𝑎� and 𝑎� should be proportional to the differences between the 

factors’ and composites’ correlations; e.g., if the correlation between composites equals the 

correlation between factors, no additional variation should be shared between composites. These 

properties can be expressed more generally, for any pair of composites and factors, through (13) 

and (14). 

 

𝑎� ∝ 𝜔�� . (13) 
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𝑎� ∝ 𝑟�𝐹� ,𝐹�� − 𝑟�𝐶� ,𝐶��. (14) 

 

    Equation (15) follows from (13) and (14). In this equation, 𝑘 is a positive real number that in a 

numeric fitting algorithm would be expected to minimize the difference between the left and 

right sides of (12). 

 

𝑎� = 𝑘𝜔���𝑟�𝐹� ,𝐹�� − 𝑟�𝐶� ,𝐶���. (15) 

 

    There is a different value for the product 𝜔���𝑟�𝐹� ,𝐹�� − 𝑟�𝐶� ,𝐶��� for each composite of each 

pair of correlated composites, and thus a different value of 𝑎�. Given this, 𝑘 is assumed to stand 

for a model-wide adjustment quantity that fits a matrix of correlations among composites to the 

matrix of correlations among factors via a nonparametric equivalent of the expectation-

maximization algorithm employed in covariance-based SEM (Moon, 1996; Zhang et al., 2001). 

THE PROPOSED FPLSR ALGORITHM AND ITS VARIATIONS 

    PLSR is equivalent to the commonly used PLSA algorithm; with the exclusion of what is 

known as PLSA’s “inside approximation”. In this approximation, weights are assigned to 

structural paths according to three main schemes – path weighting, centroid, and factorial. This 

approximation has the effect of creating an interdependence between the inner and outer weights. 

    Given the absence of the “inside approximation”, PLSR yields solutions in which the 

hypothesized structural model does not influence the estimation of weights. This arguably makes 

PLSR a more “conservative” model assessment algorithm than PLSA (Kock & Mayfield, 2015), 

since the researcher does not know the true model prior to the analysis. That is, in PLSR the 

hypothesized links among factors do not influence the estimation of the composites. For this 

reason we decided to use PLSR, over other composite-based estimation algorithms, as the basis 

for our implementation of the proposed FPLSR algorithm. 

    The steps of the FPLSR algorithm start after PLSR is completed as described earlier. Once 

stable estimates of composites are obtained via PLSR, the correlation matrices 𝑃 and 𝑆 are 

produced; their elements are indicated as 𝑝�� and 𝑠�� respectively. The elements of 𝑆 are obtained 
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via (16). The elements of 𝑃 are obtained via the application of (17) to the non-diagonal elements 

of 𝑆, which performs an attenuation correction based on (1). 

 

𝑠�� = 𝑟�𝐶�� ,𝐶���. (16) 

𝑝�� =
𝑠��

�𝛼��𝛼��
 . (17) 

 

    The matrix 𝑃 stores estimates of the correlations 𝑟�𝐹� ,𝐹�� among population factors; whereas 

the matrix 𝑆 stores the correlations  𝑟�𝐶�� ,𝐶��� among the composites initially estimated through 

the PLSR algorithm. As can be seen, reliability estimates are at the core of our solution. Given 

this, we conducted preliminary exploratory analyses and subsequently developed the six 

variations in Table 1 for the estimation of the reliabilities 𝛼��  and 𝛼�� . These variations are in turn 

based on the two most likely candidates for reliability estimates – the Cronbach’s alpha and 

composite reliability coefficients (Aguirre-Urreta et al., 2013; Cronbach, 1951; Peterson & Kim, 

2013; Nunnally & Bernstein, 1994; Tenenhaus et al., 2005). In the current study, each of these 

variations were tested through Monte Carlo simulations. As it will be seen later, the FPLSR-CA 

variation, building directly on Cronbach’s alpha, was the best performer. 

    In the FPLSR-CA variation, Cronbach’s alpha is used directly, without modification, for each 

factor’s estimated reliability. In the FPLSR-CR variation, the composite reliability is used 

directly. In the FPLSR-AM variation, the arithmetic mean of the Cronbach’s alpha and the 

composite reliability is used. In the FPLSR-SA and FPLSR-SR variations, weighted averages 

skewed toward the Cronbach’s alpha and the composite reliability are used, respectively. In the 

FPLSR-GM variation, the geometric mean of the Cronbach’s alpha and the composite reliability 

is used. 

    Once the matrices 𝑃 and 𝑆 are generated, each of the composites of a pair of composites 𝐶��  

and 𝐶��  that refers to a non-diagonal element of 𝑆 is iteratively adjusted according to (18). This 

equation assumes, following our previous discussion, that the adjustment increments are 

proportional to the weights 𝜔�� of the measurement errors 𝜖� (estimated as �1 − 𝛼�� ) and the 

differences between the values of the non-attenuated and attenuated correlations 𝑝�� − 𝑠��. The 
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elements of the correlation matrix 𝑆 are re-calculated as indicated in (16) after each adjustment 

of all of the composites. 

 

𝐶�� ← 𝑆𝑡𝑑𝑧�𝐶�� + 𝑘�1 − 𝛼�� �𝑝�� − 𝑠���𝐶���. (18) 

 
 
Table 1: The six FPLSR variations tested 
 

Variation Reliability estimate (𝛼�� ) used 

FPLSR-CA 𝛼̇ 

FPLSR-CR 𝜌̇ 

FPLSR-AM 𝛼̇ + 𝜌̇
2

 

FPLSR-SA 2𝛼̇ + 𝜌̇
3

 

FPLSR-SR 𝛼̇ + 2𝜌̇
3

 

FPLSR-GM �𝛼̇𝜌̇ 

Notes: 𝛼̇ = Cronbach’s alpha for composite; 𝜌̇ = composite reliability. 
 
 
    The value of 𝑘 is initially set to 1/2, given that it refers to one of two parts of the variation 

shared between two composites. As iterations progress, the value of 𝑘 is reduced to 𝑘 2⁄ , 𝑘 4⁄  

and so on. These reductions are carried out whenever the sum of the absolute differences 

between the elements of 𝑃 and 𝑆 becomes negative. Whenever an adjustment in 𝑘 is made, the 

values of 𝑆 are restored to their most recent values. The iterations continue until the sum of the 

absolute differences between the elements of 𝑃 and 𝑆 changes by less than a small fraction. After 

these steps are concluded, estimates of the path coefficients 𝛽���  are obtained via (19), where 𝜁��  

refers to the residual for each estimated endogenous factor. 
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𝐹�� = �𝛽���
��

���

𝐹�� + 𝜁�� . 
 

(19) 

 

    Through this iterative procedure 𝑆 is fitted to 𝑃. This is an entirely numeric and distribution-

free solution to the path coefficient underestimation problem of PLS-based SEM. As such, this 

solution is “true to the PLS tradition”, also making no assumptions regarding probability limits 

of coefficients. It has the effect of restoring the measurement error that is present in (8) but not 

properly accounted for in (6), by variation sharing among pairs of correlated composites. As 

such, it generates estimates for factor scores 𝐹�� that are no longer composites since they now 

incorporate measurement error. 

MONTE CARLO SIMULATIONS 

    Monte Carlo simulations (Paxton et al., 2001; Reinartz et al., 2002; Robert & Casella, 2005) 

were conducted in order to assess our proposed algorithm. Factor scores were generated directly 

based on a true population model, and indicator scores were subsequently generated based on 

those factor scores (Goodhue et al., 2012; Mattson, 1997). In these simulations, estimated path 

coefficients were averaged for sets of 1000 samples (replications). Each set of 1000 samples was 

generated based on the true population model shown in Figure 5 for the following sample sizes: 

50, 100, 200, 300, 400 and 800. 

    This true population model is based on the actual study mentioned earlier of the effect of 

empathetic management (EM) on job performance (JP) via intermediate effects on job 

satisfaction (JS) and job innovativeness (JI). True population path coefficients (.532, .260 etc.) 

are shown next to arrows, and true population loadings (.900, .850 etc.) are shown next to 

indicators. 

    Simulation results generated based on the following algorithms and algorithm variations were 

contrasted: PATH, PLSA, PLSR, FPLSR-CA, FPLSR-CR, FPLSR-AM, FPLSR-SA, FPLSR-

SR, and FPLSR-GM. PLSB was not included because the latent variables are assumed to be 

reflectively measured, and this algorithm is generally recommended when formative 

measurement is employed (Lohmöller, 1989). 
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Figure 5: True population model used in Monte Carlo simulations 
 

 
Note: the paths in this true model are based on those in the previous illustrative analysis. 
 
 
    Normal and non-normal data were generated. The non-normal data were created based on the 

power method (Headrick, 2002; 2010) to yield samples with probability limit skewness and 

excess kurtosis values of 2.828 and 12 respectively. Non-normal latent variable scores and 

related error terms were created independently from one another to ensure proper non-normality 

propagation (Kock, 2016). Skewness and excess kurtosis were calculated for all factors and 

indicators in each of the generated samples to ensure that sample non-normality propagation 

from factors to indicators occurred properly. 

    Table 2 shows a summarized set of results, for sample sizes 50 and 300 only. These results 

include true values of path coefficients, values of path coefficients estimated by the algorithms, 

and standard deviations of estimates (a.k.a. standard errors). These summarized results are both 

consistent with and representative of the complete set of results for all of the sample sizes 

considered. Therefore the complete results are not shown; showing them here would be 

repetitive. Of the six FPLSR variations, FPLSR-CA was the best performer, and thus only its 

estimates are shown under the “FPLSR” columns. Both mean path coefficients (rows labeled 

“Mean”) and standard deviations for path coefficients (rows labeled “SD”) are provided. 

    These results provide a clear picture of the performance of our proposed FPLSR algorithm 

with respect to path coefficient bias. The path coefficients generated through this algorithm 
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(variation FPLSR-CA, using Cronbach’s alpha) display fairly small biases even with small 

sample sizes and severely non-normal data. 
 
Table 2: Summarized Monte Carlo simulation results 
 
   Normal data  Non-normal data 
  N=50 N=50 
 True  PATH PLSA PLSR FPLSR  PATH PLSA PLSR FPLSR 
EM→JS (Mean) .532  .477 .498 .479 .530  .482 .503 .484 .536 
EM→JS (SD)   .113 .101 .112 .108  .112 .099 .111 .110 
JS→JI (Mean) .409  .366 .382 .367 .410  .363 .379 .364 .406 
JS→JI (SD)   .119 .113 .119 .123  .123 .117 .122 .126 
JS→JP (Mean) .260  .251 .257 .252 .262  .245 .251 .246 .255 
JS→JP (SD)   .118 .121 .117 .135  .124 .125 .123 .143 
JI→JP (Mean) .519  .465 .487 .469 .516  .469 .491 .473 .521 
JI→JP (SD)   .111 .102 .109 .113  .118 .110 .116 .124 
   N=300  N=300 
 True  PATH PLSA PLSR FPLSR  PATH PLSA PLSR FPLSR 
EM→JS (Mean) .532  .479 .485 .481 .532  .480 .485 .481 .532 
EM→JS (SD)   .065 .059 .063 .040  .066 .062 .065 .044 
JS→JI (Mean) .409  .367 .372 .368 .411  .365 .370 .367 .409 
JS→JI (SD)   .063 .060 .062 .052  .062 .059 .061 .049 
JS→JP (Mean) .260  .251 .253 .252 .261  .248 .251 .249 .257 
JS→JP (SD)   .047 .047 .047 .053  .048 .048 .048 .053 
JI→JP (Mean) .519  .471 .479 .475 .522  .471 .479 .475 .522 
JI→JP (SD)   .062 .056 .059 .046  .063 .057 .060 .047 
Notes: “Mean” = mean path coefficient; “SD” = standard deviation of path coefficient (a.k.a. standard error); values 
under the “True” columns are true path coefficients; values under the “FPLSR” columns refer to the FPLSR-CA 
variation. 
 
 
     At N=50 the standard deviations for the path coefficients increased slightly for FPLSR (with 

respect to PLSR) in some cases, and decreased slightly in others. At larger sample sizes, these 

standard deviations consistently decreased. This suggests that the “cost” of the proposed 

attenuation bias correction is relatively small in terms of variability of path estimates with small 

samples, and that with larger samples we no longer have a “cost” but a “bonus”.  

    Even in the cases where standard deviations increased, more often than not the increases were 

offset by increases in the ratios: estimated path coefficient ÷ standard deviation. This is 

noteworthy because the likelihood of avoiding false negatives is positively correlated with these 

ratios, and thus so is statistical power. Stated differently, the FPLSR algorithm appears to present 

the highest power among the algorithms at low sample sizes, whether the data is normally 

distributed or not. 

    Figure 6 includes four graphs showing the differences between true and estimated path 

coefficient values; for sample sizes 50 and 300, as well as normal and non-normal data. The bars 
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at the top-right regions of the graphs, for the FPLSR algorithm, clearly illustrate its remarkable 

performance in terms of path coefficient estimation precision. 
 
Figure 6: Differences between true and estimated values 
 

 
Note: bars at top-right region (FPLSR) not visible = perfect matches among estimated and true values. 
 
 
    In those cases where the bars at top-right regions of the graphs in the figure are not visible we 

have perfect matches among estimated and true path coefficient values. As we can see, the 

performance of the FPLSR algorithm is far superior to that of the other algorithms even with 

small samples (N=50) and non-normal data. 

    On average the FPLSR algorithm converged after 6 iterations; slightly more than the 5 

iterations needed on average for the PLSR algorithm. Combined, the sequence PLSR and FPLSR 

converged to viable solutions in approximately 11 iterations on average, which can be seen as an 

indication of good computational efficiency. 

EMPIRICAL ILLUSTRATION 

    We return to our illustrative study mentioned earlier of the effect of empathetic management 

(EM) on job performance (JP), which is mediated by intermediate effects on job satisfaction (JS) 
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and job innovativeness (JI). In this section we provide a full empirical illustration. As noted 

before, the data was collected from 257 employees in the southwest region of one of the largest 

private motor coach charter and schedule service providers in the United States. The question-

statements used for data collection are listed in Appendix A. 

    Figure 7 shows the results of our empirical illustrative analysis, using the PLSR and FPLSR 

algorithms. For FPLSR, the FPLSR-CA variation is used. Actual PLSR path estimates are shown 

at the top. The bottom part shows actual FPLSR path estimates. Path biases are shown as 

percentages and within parentheses under the PLSR-estimated paths. As can be seen, individual 

path biases have a cumulative effect on the total effect bias, as expected based on our previous 

discussion of these biases. The average bias associated with direct effects is -6.3%. The total 

effect bias is over twice as large, at -15.6%. 
 
Figure 7: Results from empirical illustrative analysis 
 

 
Notes: actual PLSR path estimates at the top; actual FPLSR path estimates at the bottom; FPLSR refers to the 
FPLSR-CA variation; path biases shown within parentheses at the top; coefficients at the far right are total effects. 
 
 
    We can see that all paths had negative biases associated with them, as expected, with the 

exception of one – the path from job satisfaction (JS) to job performance (JP). The absolute 

value of the coefficient estimated for this path was actually higher with PLSR than with our new 
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proposed FPLSR algorithm. For the other paths, the results were fairly compatible with 

expectations based on our previous discussion. 

    The anomalous path from job satisfaction (JS) to job performance (JP), which displays a 

positive bias, illustrates the fact that there is no guarantee that FPLSR-estimated path coefficients 

will always be of greater magnitude than PLSR-estimated paths, for each and every sample 

drawn from a population. They will be greater on average, when many samples are considered, 

but not necessarily in each individual sample among the many samples considered. 

    Sampling error and specific sample characteristics may cause path coefficients to deviate from 

common factor model true values (MacCallum & Tucker, 1991). Deviations may include 

nonzero correlations among structural error terms, which influence correlations among 

composites, and consequently affect individual path biases. Such nonzero correlations can be 

seen as indications of hidden confounders that have not been incorporated into the structural 

model – i.e., they can be seen as indications that the structural model is incomplete. 

    This seems to be the case in our empirical data, where the correlation between the structural 

residuals for job satisfaction (JS) and job innovativeness (JI) is -.036. This correlation, which 

would have been zero in a population model associated with Monte Carlo-generated samples, 

affects the calculation of path coefficients for the links JS→JI and JS→JP. Since job satisfaction 

(JS) and job innovativeness (JI) compete for the explained variance in job performance (JP), this 

nonzero correlation between the structural residuals would tend to decrease the path coefficients 

for the links JS→JI and JS→JP, compared with the corresponding common factor model true 

values. This could explain why the FPLSR-estimated values are .237 and .513, and their 

corresponding common factor model true values are .260 and .519. 

    It is also interesting to note that job satisfaction (JS) and job performance (JP) appear to be 

non-normally distributed, which might have compounded the residuals correlation effect. These 

are suggested by two tests of normality that take as inputs skewness and excess kurtosis values, 

the classic Jarque-Bera test (Jarque & Bera, 1980; Bera & Jarque, 1981) and Gel & Gastwirth’s 

(2008) robust modification of this test; both of which indicated statistically significantly non-

normality for job satisfaction (JS) and job performance (JP). For job satisfaction (JS) skewness is 

-.521 and excess kurtosis -.591. For job performance (JP) skewness is .134 and excess kurtosis    

-1.104. 
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DISCUSSION 

    In addition to biased path coefficients, loadings are also biased in PLS-based SEM (Reinartz et 

al., 2009). PLS algorithms tend to yield loadings that are more uniformly distributed than the true 

population loadings, leading on average to a slight absolute overestimation. In this investigation 

we focused on the solution of the path coefficient strength underestimation problem of PLS-

based SEM. We purposefully avoided the issue of loadings’ bias, which we view as a separate 

issue that is definitely worth tackling but that is nevertheless beyond the scope of this 

investigation. 

    Based on exploratory analyses that we have conducted as part of this study and other studies, 

it appears that the issue of loadings’ bias (and, by extension, weights’ bias) is the result of 

nonlinearity among weights and loadings. That is, in data created assuming the common factor 

model, the relationship between true weights and loadings appears to be nonlinear, with a shape 

that seems to conform to a logistic function – a type of function that is also found prominently in 

item response theory models (Hambleton et al., 1991; Waller et al., 2013). PLS algorithms 

assume by design that weights and loadings are linearly related, and in fact “force” linearity 

among weights and loadings in the results. 

    Our solution does not rely on parameter correction methods such as the Cronbach alpha 

disattenuation (Goodhue et al., 2012) and the consistent PLS (Dijkstra & Schermelleh-Engel, 

2014) methods. These methods adjust parameters estimated by classic PLS methods in order to 

remove bias or make the parameters consistent. Our approach differs from these correction 

methods in that it yields estimates of factors, from which path coefficients are obtained directly 

via path analyses. These path coefficients are expected to be estimates of the corresponding true 

population values. Because of this, in our approach no corrections are needed. 

    While we contrasted results with normal and severely non-normal data in our analyses, also 

varying sample size and using a model with path coefficients of different magnitudes, our 

simulations were limited in scope by the utilization of one single model. More simulations are 

needed to validate our proposed solution, employing other models. These should include models 

that are significantly more complex than the one we used, particularly with respect to the 

network of links among latent variables. 
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    More research is also needed to explore the effects that the variation sharing approach we 

employed may have on true nonlinear relationships among latent variables. While our approach 

does not assume that the relationships among composites are linear, it is possible that it may 

distort underlying nonlinear relationships. The reason for this is that as variation sharing 

increases the absolute correlations among pairs of estimated composites grows toward unity, a 

point at which perfect linearity is achieved. 

    It is not entirely clear whether a significant distortion would occur at the adjustment levels 

needed to correct for attenuation when psychometrically sound factor indicators are available 

(i.e., with relatively high loadings). Here variation shared would normally be relatively small. 

And, if distortion would occur, it is not clear whether it would have a significant impact on 

nonlinear path coefficient estimation. We conducted preliminary exploratory analyses with the 

model used in our Monte Carlo simulations including one nonlinear relationship of each of the 

following types: quadratic, exponential, logarithmic, and logistic. These exploratory analyses 

suggest that the impact on curve shape and nonlinear path coefficient estimation is likely to be 

minimal at the adjustment levels needed to correct for attenuation. We intend to pursue this issue 

further, and recommend it as future research. 

CONCLUSION 

    A variety of SEM methods have been proposed over the years. Two main classes of methods 

emerged and became more dominant over time in terms of wider academic acceptance. One is 

covariance-based and the other is PLS-based SEM. Covariance-based SEM, the classic type of 

SEM, makes strong parametric assumptions (e.g., multivariate normality) and converges to 

solutions via the minimization of differences between indicator covariance matrices. PLS-based 

SEM builds largely on techniques that make no distribution assumptions, and virtually always 

converges to solutions relatively fast; even in complex models, with small sample sizes, and 

severely non-normal data. 

    PLS-based SEM implements latent variables as composites, which are exact linear 

combinations of their indicators. In doing so, it does not explicitly account for measurement 

error. Because of this PLS-based SEM algorithms generate path coefficient estimates that tend to 

asymptotically converge to values of lower magnitude than the true values, as sample sizes grow 

to infinity. This is arguably the “Achilles heel” of PLS-based SEM, which we addressed by 
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proposing a numeric solution, called the factor-based PLS regression (FPLSR) algorithm. Our 

solution builds on composite estimates generated by PLS regression, which we use as a basis to 

obtain estimates of the true factors. These estimates explicitly account for measurement error. 

    Reliability estimates are at the core of our solution. Therefore we developed six FPLSR 

variations based on various estimates of reliability measures, itself based on the Cronbach’s 

alpha and composite reliability coefficients, and contrasted them in Monte Carlo simulations. 

The best performer among the variations used Cronbach’s alpha directly, without any 

modification, as the reliability measure associated with composites. Our solution is clearly 

nonparametric, making no distributional assumptions, and seems to perform generally well with 

small samples and severely non-normal data. 

    We are aware that serious questions have been raised regarding Cronbach’s alpha’s 

psychometric properties (Sijtsma, 2009), and that our results may be seen as countering those 

criticisms. This is not exactly the case. It should be noted that our solution uses the Cronbach’s 

alpha coefficients associated with latent variables as a basis for the estimation of what are 

fundamentally the latent variables’ measurement error weights. As such, our solution makes no 

direct assumptions about the main purported psychometric properties of the Cronbach’s alpha 

coefficient that have been the target of criticism (Sijtsma, 2009). This is an important distinction 

in light of measurement error theory (Nunnally & Bernstein, 1994), where the Cronbach’s alpha 

coefficient plays a prominent role. 

    We believe that the nagging problem of path strength underestimation has so far hampered 

PLS-based SEM broader use among business, social, and behavioral researchers. This has 

occurred in spite of PLS-based SEM’s many advantages, among which is that leading software 

implementations (e.g., WarpPLS) tend to be viewed as fairly easy to use by a wide variety of 

researchers. It is our hope that this study will help pave the way for much more extensive use of 

PLS-based SEM. 

    We are confident that this study will provide the basis for more targeted research in the future 

on related topics, which may further establish PLS-based SEM as a viable form of SEM that is 

complementary to and at the same footing as its classic counterpart – covariance-based SEM. It 

is our belief that this can be achieved while retaining PLS-based SEM advantages; notably being 

generally nonparametric in design, and building largely on distribution-free techniques. 
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APPENDIX A: QUESTIONS USED IN ILLUSTRATIVE ANALYSIS 

    The question-statements below were used for latent variable measurement in the study 
depicted in the illustrate analysis. Question-statements were answered on 5-point Likert-type 
scales. 

Empathetic management (EM) 
• EM1: My supervisor gives me praise for my good work. 
• EM2: My supervisor shows me encouragement for my work efforts. 
• EM3: My supervisor shows concern about my job satisfaction. 
• EM4: My supervisor expresses his/her support for my professional development. 
• EM5: My supervisor shows trust in me. 

Job satisfaction (JS) 
• JS1: I always feel satisfied with my job. 
• JS2: I like my job. 
• JS3: I do not want to change my job. 
• JS4: I like my job more than others. 
• JS5: I like telling people about my job. 

Job innovativeness (JI) 
• JI1: I try new ideas and approaches to problems. 
• JI2: I welcome uncertainty and unusual circumstances related to my tasks. 
• JI3: I can be counted on to find a new use for existing methods or equipment. 
• JI4: I demonstrate originality. 
• JI5: I provide critical input toward a new solution. 

Job performance (JP) 
• JP1: Which of the following selections best describes how your supervisor rated you on your 

last formal performance evaluation? 
• JP2: How does your level of production quantity compare to that of your colleagues’ 

productivity levels? 
• JP3: How does the quality of your products or services compare to your colleagues’ output? 
• JP4: How efficiently do you work compared to your colleagues? In other words, how well do 

you use available resources (money, people, equipment, etc.)? 
• JP5: Compared to your colleagues, how good are you at preventing or minimizing potential 

work problems before they occur? 
• JP6: Compared to your colleagues, how effective are you with keeping up with changes that 

could affect the way you work? 
• JP7: How quickly do you adjust to work changes compared to your colleagues? 
• JP8: How well would you rate yourself compared to your colleagues in adjusting to new 

work changes? 
• JP9: How well do you handle work place emergencies (such as crisis deadlines, unexpected 

personnel issues, resources allocation problems, etc.) compared to your colleagues? 
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