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ABSTRACT  

The use of the partial least squares (PLS) approach for structural equation modeling (SEM) has 
been experiencing explosive growth, particularly in the last few years. The calculation of p-
values is extensively used for hypothesis testing in PLS-SEM. Such calculation typically relies 
on standard errors estimated via bootstrapping. This leads to unstable p-values and prohibitive 
computational demands when very large samples are analyzed. We discuss two calculation 
methods relying on exponential adjustment that generate stable standard errors and p-values, 
and that have minimal computational requirements. A Monte Carlo experiment shows that the 
methods yield estimates of the actual standard errors that are generally consistent with 
bootstrapping, and often more precise. The methods are implemented as part of the software 
WarpPLS, starting in version 5.0. 

Keywords: Partial Least Squares; Structural Equation Modeling; Standard Error; p-value; Path Bias; 
Monte Carlo Simulation. 

INTRODUCTION 

The use of the partial least squares (PLS) method in the context of structural equation 
modeling (SEM) has been experiencing explosive growth among empirical researchers from a 
wide range of disciplines (Kock & Hadaya, 2018; Memon et al., 2017). This has happened in 
spite of PLS-SEM yielding approximations of model parameters that are asymptotically biased 
(Kock, 2015a). One reason for this is that biases decrease with the use of psychometrically 
sound measures (indicators). In PLS-SEM latent variables are approximated by composites, as 
opposed to factors, where the composites are exact linear combinations of indicators. The more 
indicators are available, and the higher their loadings on the latent variables, the less biased are 
the approximations of model coefficients yielded by PLS-SEM. 

Estimation of path coefficients is an important element of empirical investigations employing 
PLS-SEM, since it provides the basis for hypothesis testing. Often each path coefficient will 
refer to a hypothesis, with each hypothesis being tested through the calculation of a p-value 
associated with the path coefficient. In the frequentist framework of statistical significance 
testing used in PLS-SEM, if a p-value is below a certain threshold then the corresponding 



Kock, 2018 
 

© 2017 Journal of Applied Structural Equation Modeling                                                                                    2 

hypothesis is assumed to be supported. The threshold is usually .05, used in conjunction with a 
one-tailed linear test of a directional hypothesis (Kock, 2015b). 

Another approach employed for testing hypotheses associated with paths is to calculate a 
confidence interval for each path coefficient. If the value 0 (zero) does not fall within the 
interval, the hypothesis is supported. Otherwise the hypothesis is rejected. There has been 
much debate in the past over the possible benefits, if any, of using confidence intervals instead 
of p-values for hypothesis testing (Batterham & Hopkins, 2006; Newcombe, 1998; Poole, 1987; 
2001). Recently Kock (2016) provided a detailed applied comparison of the two approaches in 
the context of PLS-SEM, showing that they lead to very similar results in tests of hypotheses. 

In PLS-SEM the calculation of p-values for path coefficient estimates is normally conducted in 
three steps. First a standard error for the path coefficient estimate is calculated via resampling. 
By far the most widely used resampling technique in PLS-SEM is bootstrapping (Diaconis & 
Efron, 1983; Goodhue et al., 2012). The second step is to calculate a t-ratio, by dividing the path 
coefficient by the estimated standard error. The third and final step is the calculation of the p-
value based on the t-ratio, which can be done with the incomplete beta function (Thompson et 
al., 1941). A common alternative for this third step is to use a table with pre-calculated p-value 
ranges associated with various t-ratio ranges. 

As PLS-SEM use has grown, so has the availability of large datasets for analyses. The 
availability of large datasets is also often seen as having ushered in what is known as the “big 
data” era. Large datasets pose a serious challenge to resampling techniques such as 
bootstrapping. The reason is that resampling techniques create multiple replications of the 
original dataset. Frequently the number of replications is 100 or more. For a dataset with 
100,000 cases, for example, the use of 100 replications would lead to the creation of 10 million 
cases of data for analysis. On standard personal computers this would typically lead to very 
long waiting periods, with a common outcome actually being a computer “crash” before any 
analysis results can be obtained. 

Resampling techniques such as bootstrapping also present a different problem. They are 
inherently unstable. Let us illustrate this through an example, which will be further elaborated 
later through an empirical illustration. In an analysis of a sample of size 152 and employing 
bootstrapping with 500 replications, a path coefficient estimate of .217 yielded a standard error 
of .095 and a p-value of .012, while a path coefficient estimate of .194 yielded a standard error of 
.072 and a p-value of .004. Here the instability is reflected in a higher p-value for a stronger path 
coefficient (i.e., a path coefficient with greater absolute estimated value). One would expect a 
lower p-value to be yielded for a stronger path coefficient, because the chance probability of a 
path coefficient estimate decreases with its magnitude (Aczel & Sounderpandian, 2002; Kock, 
2015b). 

We discuss two p-value calculation methods that address the problems above. Both methods 
employ stable exponential adjustments through the direct application of formulas. As such, 
unlike resampling methods, they do not generate sample replications. Because of that, they can 
be used with large datasets. Moreover, neither method makes any data or model parameter 
distribution assumption. Finally, a Monte Carlo experiment shows that the methods yield 
estimates of the actual standard errors that are consistent with those obtained via 
bootstrapping, in many cases yielding more precise estimates of the actual standard errors. 

The two p-value calculation methods are implemented starting in version 5.0 of WarpPLS. 
WarpPLS is an SEM software tool that is unique in that it enables nonlinear analyses where 
best-fitting nonlinear functions are estimated for each pair of structurally linked variables in 
path models, and subsequently used (i.e., the nonlinear functions) to estimate path coefficients 
that take into account the nonlinearity. Moreover, WarpPLS provides a comprehensive set of 
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model fit and quality indices that are compatible with both composite-based and factor-based 
SEM. Starting in version 5.0 of WarpPLS, factor-based SEM algorithms have also become 
available (Kock, 2015a). Factor-based SEM algorithms conduct analyses fully accounting for 
measurement error, thus yielding parameters that are very similar to those generated by 
covariance-based SEM via full information maximum likelihood (Kock, 2017). 

ILLUSTRATIVE MODEL 

The illustrative model depicted in Figure 1 has been used in our Monte Carlo experiment and 
empirical illustration, which are discussed later. The model contains five latent variables, for 
which composites were estimated via PLS-SEM. The latent variables are communication flow 

orientation (  ), usefulness in the development of information technology (IT) solutions (  ), 

ease of understanding (  ), accuracy (  ), and impact on redesign success (  ). 

In this illustrative model     is the path coefficient for the link going from composite    to 

composite   ,     is the loading for the jth indicator of composite   , and    is the structural 

error associated with an endogenous composite   . With one exception, a set of indicators     is 

used to measure each composite   , where each indicator is assumed to measure the composite 
with a certain degree of imprecision. The exception is the case in which only one indicator is 

used, communication flow orientation (  ), where no imprecision is assumed. 

 

Figure 1. Illustrative Model 

The model is based on communication flow optimization theory (Danesh-Pajou, 2005; Kock, 
2003). Even though the theory is not the focus of our investigation, readers may be interested in 
knowing that the theory incorporates the expectation that business process redesign teams that 
place more emphasis on the improvement of the flow of communication in business processes 
would tend to achieve more successful results (in terms of business process redesign quality) 
than teams placing less emphasis on that improvement. 

Communication flow orientation (  ) is the degree to which a business process modeling 
approach explicitly shows how communication interactions take place in a business process. 

Usefulness in the development of IT solutions (  ) is the degree to which a process modeling 



Kock, 2018 
 

© 2017 Journal of Applied Structural Equation Modeling                                                                                    4 

approach is useful in the development of a generic IT solution to automate the redesigned 

process. Ease of understanding (  ) is the degree to which a process modeling approach is 

perceived to yield a process representation that is easy to understand. Accuracy (  ) is the 
degree to which a process modeling approach is perceived to lead to an accurate representation 

of the process. Finally, impact on redesign success (  ) is the degree to which the process 
modeling technique used is perceived to lead to an actual improvement of the targeted business 
process. 

STANDARD ERRORS AND P-VALUES 

The calculation of p-values is commonplace in PLS-SEM as a basis for hypothesis testing. First 
estimates of path coefficients and standard errors must be produced, which in PLS-SEM are 
used in the calculation of t-ratios, by dividing the estimated path coefficients by the estimated 
standard errors. The t-ratios are then used in the estimation of p-values. In this section we 
briefly describe the three standard error estimation methods we compared. 

Method 1: Bootstrapping.  

Bootstrapping (Diaconis & Efron, 1983) is the most widely used method for standard error 

estimation in PLS-SEM. Let   be a set of samples created based on an empirical dataset, where 

each sample in   is built by taking rows from the original dataset. Each row is taken at random 

and with replacement (i.e., the same row can be repeated), and each sample in   has the same 

size (i.e., number of rows) as the original dataset. Let    be the number of such samples. The 

standard error denoted as   , obtained via bootstrapping for a given path coefficient  , is 

calculated according to (1), where:    is the path coefficient estimate for sample  , and  ̅ is the 
mean path coefficient across all samples. 

   √
 

  
∑(    ̅)

 

  

   

  (1) 

The bootstrapping approach to estimation of standard errors can be seen as a type of Monte 
Carlo simulation approach (Robert & Casella, 2005). Many samples are created based on the 
original sample, mimicking the sample creation process normally seen in Monte Carlo 
simulations employed in the context of comparative assessments of different SEM approaches 
and techniques (see, e.g., Goodhue et al., 2012). The key difference is that typically in Monte 
Carlo simulations employed in the context of SEM technique assessments, the samples are 
created based on a true population model. 

Methods 2 and 3: Stable Exponential Adjustments 

 It follows from the central limit theorem (Aczel & Sounderpandian, 2002; Miller & Wichern, 
1977) that the standard error of a path coefficient, which is (i.e. the path coefficient) a 
standardized quantity, should be proportional to the inverse square root of the sample size. We 
also know that the standard error is a function of the magnitude of the path coefficient (Petraitis 
et al., 1996). Finally, the standard error should converge to zero as the sample size grows to 
infinity. These criteria call for standard error estimation functions that apply exponential 
adjustments to the inverse square roots of the sample sizes (Kock & Hadaya, 2018). The 
functions should also be sensitive to path coefficients’ magnitudes; magnitudes that can in turn 
be measured by the path coefficients’ absolute values. 
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Our attempts to fit functions that meet the criteria above, to both simulated and empirical data, 
led us to equations (2) and (3). They are meant to be used for the estimation of the standard 

error of a path coefficient   in a PLS-SEM model, for a given empirical sample. In these 

equations,   is the sample size, and the symbol   denotes Euler's number (given by 

∑    ⁄ 
           ). As it will be seen shortly in our Monte Carlo experiment, the first 

equation yields a lower bound estimate of the standard error (  ) associated with  , and the 

second an upper bound estimate (  ). 
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√ 
)
  (2) 
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√ 
)
  (3) 

Function fitting exercises often lead to fractional constants. The use of Euler's number ( ) in 

the equations above, as opposed to fractional constants that are close to   in value, reflects our 
attempt to achieve a certain measure of mathematical elegance in their formulation. While this 
may appear to be a rather subjective criterion, its importance has often been highlighted by pure 
and applied mathematicians (Osborne, 1984; Poincaré, 2000). 

As it will also be seen shortly in our presentation of the results of a Monte Carlo experiment, 
the standard error estimates yielded by the equations above seem to be consistent with the 
estimates obtained via bootstrapping, and in many cases provide better approximations of the 
actual standard errors. Better approximations occurred more often with the upper bound 

estimate (  ) than with the lower bound estimate (  ). 

MONTE CARLO EXPERIMENT 

A Monte Carlo experiment based on the true population model show in Figure 2 was conducted 
to assess the performance of the three standard error estimation methods discussed in the 
previous section. Performance was assessed in terms of statistical power and closeness to the 
actual standard errors obtained through the analyses of simulated samples. This Monte Carlo 
experiment was conducted as part of extensive internal tests of version 5.0 of WarpPLS. 

 

Figure 2. True population Model 



Kock, 2018 
 

© 2017 Journal of Applied Structural Equation Modeling                                                                                    6 

 

We created an analyzed 1,000 samples for each of the following sample sizes: 50, 100, 200, 300, 
and 500. The PLS Mode A algorithm with the path weighting scheme (Lohmöller, 1989) was 
used in the analyses. These are the most widely used algorithm (PLS Mode A) and inner model 
estimation scheme (path weighting) in the context of PLS-SEM. 

Table 1. Summarized Monte Carlo Experiment Results 
Method BOOT STBL2 STBL3 BOOT STBL2 STBL3 
Sample size 50 50 50 300 300 300 
CO>GT(TruePath) .450 .450 .450 .450 .450 .450 
CO>GT(AvgPath) .383 .383 .383 .388 .388 .388 
CO>GT(Power) .905 .954 .946 1 1 1 
CO>GT(SEPath) .125 .125 .125 .076 .076 .076 
CO>GT(EstSEPath) .120 .115 .122 .047 .053 .054 
CO>EU(TruePath) .400 .400 .400 .400 .400 .400 
CO>EU(AvgPath) .347 .347 .347 .347 .347 .347 
CO>EU(Power) .781 .900 .867 1 1 1 
CO>EU(SEPath) .131 .131 .131 .072 .072 .072 
CO>EU(EstSEPath) .133 .116 .124 .049 .053 .055 
CO>AC(TruePath) .250 .250 .250 .250 .250 .250 
CO>AC(AvgPath) .224 .224 .224 .218 .218 .218 
CO>AC(Power) .419 .611 .559 .985 .995 .994 
CO>AC(SEPath) .141 .141 .141 .061 .061 .061 
CO>AC(EstSEPath) .166 .118 .129 .054 .054 .056 
GT>SU(TruePath) .500 .500 .500 .500 .500 .500 
GT>SU(AvgPath) .333 .333 .333 .347 .347 .347 
GT>SU(Power) .711 .863 .823 1 1 1 
GT>SU(SEPath) .206 .206 .206 .160 .160 .160 
GT>SU(EstSEPath) .146 .116 .125 .052 .053 .055 
EU>SU(TruePath) .230 .230 .230 .230 .230 .230 
EU>SU(AvgPath) .175 .175 .175 .163 .163 .163 
EU>SU(Power) .254 .410 .356 .917 .921 .906 
EU>SU(SEPath) .131 .131 .131 .085 .085 .085 
EU>SU(EstSEPath) .157 .119 .132 .054 .054 .056 
AC>SU(TruePath) .200 .200 .200 .200 .200 .200 
AC>SU(AvgPath) .159 .159 .159 .147 .147 .147 
AC>SU(Power) .240 .405 .335 .866 .868 .849 
AC>SU(SEPath) .137 .137 .137 .073 .073 .073 
AC>SU(EstSEPath) .165 .119 .132 .053 .054 .056 

Notes: BOOT = Method 1: Bootstrapping; STBL2 = Method 2: Stable exponential adjustment (with      in equation); STBL3 = Method 3: 

Stable exponential adjustment (with      in equation); XX>YY = link from composite XX to YY; CO = communication flow orientation (  ); 
GT = usefulness in the development of IT solutions (  ); EU = ease of understanding (  ); AC = accuracy (  ); SU = impact on redesign 

success (  ); TruePath = true path coefficient; AvgPath = mean path coefficient estimate; Power = statistical power; SEPath = standard error 
of path coefficient estimate; EstSEPath = method-specific standard error of path coefficient estimate. 

A summarized set of results is shown in Table 1, where we restrict ourselves to sample sizes 50 
and 300. True path coefficients, mean path coefficient estimates, statistical power values, 
standard errors of path coefficient estimates, and method-specific standard errors of path 
coefficient estimates are shown next to one another. Full results, for all sample sizes included in 
the simulation, are available in Appendix A. 

Path coefficient estimates are used in the estimation of standard errors based on the stable 
methods (STBL2 and STBL3); i.e., the method-specific standard errors. As we can see, the mean 
path coefficient estimates differ from the true path coefficients across different sample sizes, and 
generally underestimate the true path coefficients. This underestimation stems from the use of 
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composites in PLS-SEM, which in turn leads to a composite correlation attenuation (Nunnally & 
Bernstein, 1994) that “propagates” to the path coefficients (Kock, 2015a). 

Generally the method-specific standard error of path coefficient estimates obtained via STBL3 
were the closest to the actual (or true) standard errors of path coefficient estimates. This 
suggests that standard errors estimated via STBL3 are not only stable when compared with 
those estimated via BOOT, but also more accurate. Moreover, both STBL2 and STBL3 led to 
greater statistical power than BOOT at small sample sizes. Power tends to be compromised the 
most with small sample sizes, and to invariably increase as sample sizes go up regardless of the 
standard error and p-value calculation method used. 

Interestingly, our results suggest that the actual standard errors do not depend on the number 
of competing structural paths pointing at a composite. The results imply that the actual 
standard errors depend primarily on the sample size and magnitude of the estimated path 
coefficients. This goes counter to the suggestion by Goodhue et al. (2012) to use Cohen’s (1988; 
1992) power tables to estimate minimum sample sizes in PLS-SEM, since in those tables 
minimum required sample sizes increase with number of predictors. A more advisable strategy 
would be to use the equations provided here, and by Kock & Hadaya (2018), to estimate 
minimum sample sizes. 

EMPIRICAL ILLUSTRATION 

Table 2 summarizes the results of an empirical study. The study served as the basis for the 
development of the illustrative and true population models discussed earlier. Shown next to one 
another are estimated path coefficients, method-specific standard errors of path coefficient 
estimates, and p-values. 

The data for this empirical study was collected from 156 individuals involved in business 
process redesign projects in Northeastern U.S.A. The participants employed one of two 
business process modeling approaches; one focused on the communication flow within business 
processes, and the other focused on the chronological flow of activities. These are depicted in 
Appendix B. The questionnaire used for data collection is provided in Appendix C. 

Overall, all three p-value calculation methods yielded estimates consistent with communication 
flow optimization theory (Kock, 2003). The theory forms the underlying theoretical foundation 
for the model, and has been validated before through other empirical studies using different 
datasets (Danesh-Pajou, 2005; Danesh-Pajou & Kock, 2005; Kock et al., 2008). Given this, the 
empirical study results summarized above lend further “real data” validation of the two new p-
value calculation methods. 

Table 2. Empirical Study Results 

Method BOOT STBL2 STBL3 
CO>GT(EstPath) .485 .485 .485 
CO>GT(EstSEPath) .057 .070 .072 
CO>GT(p) <.001 <.001 <.001 

CO>EU(EstPath) .362 .362 .362 
CO>EU(EstSEPath) .061 .071 .074 
CO>EU(p) <.001 <.001 <.001 

CO>AC(EstPath) .269 .269 .269 
CO>AC(EstSEPath) .075 .072 .076 
CO>AC(p) <.001 <.001 <.001 

GT>SU(EstPath) .506 .506 .506 
GT>SU(EstSEPath) .079 .070 .072 
GT>SU(p) <.001 <.001 <.001 
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EU>SU(EstPath) .217 .217 .217 
EU>SU(EstSEPath) .095 .072 .076 
EU>SU(p) .012 .002 .003 

AC>SU(EstPath) .194 .194 .194 
AC>SU(EstSEPath) .072 .073 .077 
AC>SU(p) .004 .004 .006 
Notes: N = 156; BOOT = Method 1: Bootstrapping; number of bootstrapping samples (replications) used = 500; STBL2 = Method 

2: Stable exponential adjustment (    ); STBL3 = Method 3: Stable exponential adjustment (    ); XX>YY = link from composite 

XX to composite YY; CO = communication flow orientation (  ); GT = usefulness in the development of IT solutions (  ); EU = 

ease of understanding (  ); AC = accuracy (  ); SU = impact on redesign success (  ); EstPath = estimated path coefficient; 

EstSEPath = method-specific standard error of path coefficient estimate; p = p-value. 

DISCUSSION AND CONCLUSION 

The use of PLS-SEM has been experiencing explosive growth. Estimation of path coefficients 
plays a key role in empirical investigations employing PLS-SEM. Frequently each path 
coefficient will refer to a hypothesis, and each hypothesis will be tested through the calculation 
of a p-value associated with the path coefficient. The calculation of p-values is normally 
conducted in three steps: (1) a standard error for the path coefficient estimate is obtained via 
bootstrapping; (2) a t-ratio is obtained by dividing the path coefficient estimate by the standard 
error; and (3) the p-value is calculated through the incomplete beta function, or obtained from a 
table, based on the t-ratio. 

Large datasets pose a serious challenge to bootstrapping in particular, and resampling 
techniques in general, because these techniques create multiple replications of the original 
dataset. Moreover, resampling techniques such as bootstrapping are inherently unstable; often 
leading to higher p-values for stronger path coefficients, and lower p-values for weaker path 
coefficients. This type of instability defies commonsense and is puzzling to empirical 
researchers, as one would expect p-values to reflect chance probabilities of path coefficients, and 
thus to go down as path coefficients become stronger. 

We have discussed two p-value calculation methods that seem to successfully address both of 
the problems above. Both methods rely on stable exponential adjustments, which are obtained 
through the direct application of formulas. Neither method generates replications of the original 
dataset. Moreover, neither method makes data or model parameter distribution assumptions. As 
we have demonstrated through a Monte Carlo experiment, the methods generally yield 
compatible and often more precise estimates of the actual standard errors than bootstrapping. 
Additionally, we have shown that the methods yield estimates consistent with a theoretical 
framework that has been previously validated through various empirical studies. 

Users of WarpPLS, starting in version 5.0, are able to test the methods for themselves. Also, we 
hope that this research note will provide enough details for implementations, in numerical 
programming environments such as R and GNU Octave, to be developed and tested under 
various conditions. We welcome comments, suggestions, and corrections. 
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APPENDIX A: FULL MONTE CARLO EXPERIMENT RESULTS 

The full Monte Carlo experiment results are provided in the table below. Notes: BOOT = Method 1 (bootstrapping); STBL2 = Method 2 (stable exponential 

adjustment with      in equation); STBL3 = Method 3 (stable exponential adjustment with      in equation); XX>YY = link from composite XX to YY; CO = 

communication flow orientation (  ); GT = usefulness in the development of IT solutions (  ); EU = ease of understanding (  ); AC = accuracy (  ); SU = 

impact on redesign success (  ); TruePath = true path coefficient; AvgPath = mean path coefficient estimate; Power = statistical power; SEPath = standard 
error of path coefficient estimate; EstSEPath = method-specific standard error of path estimate. 

Method BOOT STBL2 STBL3 BOOT STBL2 STBL3 BOOT STBL2 STBL3 BOOT STBL2 STBL3 BOOT STBL2 STBL3 

Sample size 50 50 50 100 100 100 200 200 200 300 300 300 500 500 500 

CO>GT(TruePath) .450 .450 .450 .450 .450 .450 .450 .450 .450 .450 .450 .450 .450 .450 .450 

CO>GT(AvgPath) .383 .383 .383 .387 .387 .387 .389 .389 .389 .388 .388 .388 .388 .388 .388 

CO>GT(Power) .905 .954 .946 .999 .999 .999 1 1 1 1 1 1 1 1 1 

CO>GT(SEPath) .125 .125 .125 .101 .101 .101 .082 .082 .082 .076 .076 .076 .071 .071 .071 

CO>GT(EstSEPath) .120 .115 .122 .081 .086 .090 .058 .064 .066 .047 .053 .054 .037 .042 .043 

CO>EU(TruePath) .400 .400 .400 .400 .400 .400 .400 .400 .400 .400 .400 .400 .400 .400 .400 

CO>EU(AvgPath) .347 .347 .347 .354 .354 .354 .347 .347 .347 .347 .347 .347 .346 .346 .346 

CO>EU(Power) .781 .900 .867 .978 .992 .988 1 1 1 1 1 1 1 1 1 

CO>EU(SEPath) .131 .131 .131 .091 .091 .091 .078 .078 .078 .072 .072 .072 .065 .065 .065 

CO>EU(EstSEPath) .133 .116 .124 .084 .087 .091 .060 .064 .066 .049 .053 .055 .038 .042 .043 

CO>AC(TruePath) .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 .250 

CO>AC(AvgPath) .224 .224 .224 .223 .223 .223 .219 .219 .219 .218 .218 .218 .215 .215 .215 

CO>AC(Power) .419 .611 .559 .687 .806 .777 .908 .944 .936 .985 .995 .994 .997 .998 .998 

CO>AC(SEPath) .141 .141 .141 .098 .098 .098 .073 .073 .073 .061 .061 .061 .055 .055 .055 

CO>AC(EstSEPath) .166 .118 .129 .103 .088 .094 .068 .065 .068 .054 .054 .056 .042 .042 .044 

GT>SU(TruePath) .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 

GT>SU(AvgPath) .333 .333 .333 .343 .343 .343 .343 .343 .343 .347 .347 .347 .350 .350 .350 

GT>SU(Power) .711 .863 .823 .972 .985 .979 1 1 1 1 1 1 1 1 1 

GT>SU(SEPath) .206 .206 .206 .177 .177 .177 .168 .168 .168 .160 .160 .160 .154 .154 .154 

GT>SU(EstSEPath) .146 .116 .125 .092 .087 .091 .064 .064 .066 .052 .053 .055 .040 .042 .043 

EU>SU(TruePath) .230 .230 .230 .230 .230 .230 .230 .230 .230 .230 .230 .230 .230 .230 .230 

EU>SU(AvgPath) .175 .175 .175 .165 .165 .165 .163 .163 .163 .163 .163 .163 .164 .164 .164 

EU>SU(Power) .254 .410 .356 .503 .564 .524 .794 .810 .784 .917 .921 .906 .989 .992 .987 

EU>SU(SEPath) .131 .131 .131 .106 .106 .106 .091 .091 .091 .085 .085 .085 .078 .078 .078 

EU>SU(EstSEPath) .157 .119 .132 .098 .089 .096 .067 .065 .069 .054 .054 .056 .041 .042 .044 

AC>SU(TruePath) .200 .200 .200 .200 .200 .200 .200 .200 .200 .200 .200 .200 .200 .200 .200 

AC>SU(AvgPath) .159 .159 .159 .159 .159 .159 .150 .150 .150 .147 .147 .147 .148 .148 .148 

AC>SU(Power) .240 .405 .335 .482 .565 .503 .702 .751 .703 .866 .868 .849 .979 .971 .965 

AC>SU(SEPath) .137 .137 .137 .095 .095 .095 .079 .079 .079 .073 .073 .073 .065 .065 .065 

AC>SU(EstSEPath) .165 .119 .132 .101 .089 .096 .066 .065 .069 .053 .054 .056 .040 .042 .044 
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APPENDIX B: BUSINESS PROCESS MODELING APPROACHES USED 

The two types of business process representations used in the empirical study, referring to high a low 
communication flow orientations, are exemplified in the figure below. In our data analyses, the representation on 
the left was coded as 1, as it refers to a high communication flow orientation; and the one on the right as 0, as it 
refers to a low communication flow orientation. 
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APPENDIX C: QUESTIONNAIRE USED IN EMPIRICAL STUDY 

The latent constructs associated with the composites in the illustrative study were measured through the 
question-statements below. With one exception, all question-statements were answered on 7-point Likert-type 

scales. The exception was communication flow orientation (  ), coded as either 1 or 0. 

Communication flow orientation (  ) 

    : Coded as either 1 or 0, corresponding to high or low communication flow orientation of the business 
process modeling approach used. 

Usefulness in the development of IT solutions (  ) 

    : This process modeling approach is useful in the development of a generic IT solution to automate the 
redesigned process. 

    : Creating a generic IT solution to enable the redesigned process is easy based on this process 
modeling approach. 

    : Graphical process representations using this approach facilitate the generation of a generic IT 
solution to automate the redesigned process. 

 

Ease of understanding (  ) 

    : Processes modeled using this approach are easy to understand. 

    : Graphical representations of processes using this approach are clear. 

    : This process modeling approach leads to graphical models that are easy to understand. 
 

Accuracy (  ) 

    : This process modeling approach leads to accurate process representations. 

    : Models created using this approach are correct representations of a process. 

    : Graphical representations using this approach clearly reflect the real process. 
 

Impact on redesign success (  ) 

    : Using this process modeling approach is likely to contribute to the success of a process redesign 
project. 

    : Success chances are improved if this process modeling approach is used. 

    : Using the graphical process representations in this approach is likely to make process redesign 
projects more successful. 

 

 


