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Abstract 

An important source of bias in structural equation modeling (SEM) employing the partial least 

squares method (PLS) is missing data. Deletion methods, such as listwise and pairwise deletion, 

have traditionally been used to deal with missing data. These methods are perceived as leading 

to selective loss of data and significant related biases. Missing data imputation methods, on the 

other hand, do not resort to deletion. We discuss five single missing data imputation methods in 

the context of PLS-SEM employing the PLS Mode A algorithm. Among these five methods, two 

hierarchical methods are new. The results of a Monte Carlo experiment suggest that Multiple 

Regression Imputation yielded the least biased mean path coefficient estimates, followed by 

Arithmetic Mean Imputation. With respect to mean loading estimates, Arithmetic Mean 

Imputation yielded the least biased results, followed by Stochastic Hierarchical Regression 

Imputation and Hierarchical Regression Imputation. Our study suggests that single missing data 

imputation methods perform better with PLS-SEM than expected based on past research on their 

performance with other multivariate analysis techniques such as multiple regression and 

covariance-based SEM. 
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Introduction 

The method of partial least squares (PLS) has been experiencing explosive growth in the context 

of structural equation modeling (SEM), whereby latent variables are measured via indicators in 

questionnaires (Akter et al., 2017; Kock, 2016; Rigdon, 2016). Indicators frequently take the 

form of scores generated based on question-statements answered on Likert-type scales. PLS-

SEM estimates latent variables through composites, which are exact linear combinations of the 

indicators assigned to the latent variables (Kock, 2015a; 2015b). 

    A main source of bias in PLS-SEM is missing data (Newman, 2014). Among patterns of 

missing data, particularly common in behavioral research is that known as “missing at random” 

(MAR), which is actually a misnomer. This pattern occurs when the probability of a missing 

value is related to other measured variables, but unrelated to the underlying values of the variable 

that are missing. For example, if scores measuring the accuracy of a graphical representation are 

more likely to be missing for a certain type of representation than for others, then the 

corresponding missing data will follow the MAR pattern. 

    Researchers have traditionally used deletion methods, often listwise and pairwise deletion, to 

deal with missing data (Enders, 2010). Deletion methods are a source of error that may distort 

coefficients of association; where the error is introduced into the data as deletion occurs. For 

example, missing data may be associated with groups of respondents who share some 

characteristics, and whose exclusion from datasets can significantly influence the strength of 

relationships among variables. Deletion methods also reduce the sample size available for an 

analysis, and thus the statistical power of virtually any type of analysis applied to the data. A 

report by the American Psychological Association Task Force on Statistical Inference stated that 

these techniques are ‘‘among the worst methods available for practical applications’’ (Wilkinson, 

1999, p. 598). 

    Missing data imputation methods provide an alternative to deletion methods. Through 

imputation missing data elements are replaced with well informed “guesses”, obtained through 

various algorithms, leading to no reduction in sample size. We discuss five single missing data 

imputation methods in the context of PLS-SEM, with MAR data. Among these five methods, 

two are new. The performance of the methods is comparatively assessed though a Monte Carlo 

experiment. 

Illustrative Model 

We used an illustrative model to aid us in our presentation; as well as a basis for our Monte 

Carlo experiment and empirical illustration, which are discussed later. The illustrative model is 

depicted in Figure 1, and contains five latent variables, for which composites are estimated via 

PLS-SEM. The latent variables, which refer to theoretical constructs, are: communication flow 

orientation (𝐶1), usefulness in the development of information technology (IT) solutions (𝐶2), 

ease of understanding (𝐶3), accuracy (𝐶4), and impact on redesign success (𝐶5). 
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Figure 1. Illustrative model 

 

 
 

    The mathematical symbols used in the model, and in the following sections, are adapted from 

the classic path analysis, covariance-based SEM, and PLS literatures (Kline, 2010; Kock, 2016; 

Lohmöller, 1989; Wright, 1934; 1960): 𝛽𝑖𝑗 is the path coefficient for the link going from 

composite 𝐶𝑗 to composite 𝐶𝑖, 𝜆𝑖𝑗 is the loading for the jth indicator of composite 𝐶𝑖, and 𝜁𝑖 is the 

structural error associated with an endogenous composite 𝐶𝑖. With exception of communication 

flow orientation (𝐶1), a set of indicators 𝑥𝑖𝑗 is used to measure each composite 𝐶𝑖. When more 

than one indicator is used to measure a composite, each indicator is assumed to measure the 

composite with a certain degree of imprecision. 

    Communication flow optimization theory (Danesh-Pajou, 2005; Kock, 2003) is the foundation 

on which the illustrative model is built. While the theory is not the focus of our investigation, it 

is useful for readers to know the theory’s main prediction. The theory predicts that a greater 

focus on how communication takes place in business processes, in redesign efforts, is associated 

with better business process redesign outcomes. 

    Business process redesign efforts are aimed at improving the operations of organizations, 

regardless of size and industry. In them groups of employees and managers collaboratively 

analyze and redesign business processes, which are sets of interrelated activities (Kock, 2007; 

Mendling et al., 2012). Virtually any good or service is produced in organizations via a business 

process – e.g., the process of assembling a car, carried out by an automaker. 

    Communication flow orientation (𝐶1) is the degree to which a business process modeling 

approach explicitly shows how communication interactions take place in a business process. This 

latent variable can be measured through a single indicator storing either 1 or 0, for a study 

contrasting two “opposite” modeling approaches, corresponding to a high or low communication 

flow orientation of a business process modeling approach used. 
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    Usefulness in the development of IT solutions (𝐶2) is the degree to which a process modeling 

approach is useful in the development of a generic IT solution to automate the redesigned 

process. The need to automate redesigned processes with IT is almost universal in modern 

businesses. An example of question-statement that can be used for measurement of this latent 

variable is: “This process modeling approach is useful in the development of a generic IT 

solution to automate the redesigned process”. 

    Ease of understanding (𝐶3) is the degree to which a process modeling approach is perceived to 

yield a process representation that is easy to understand. An example of question-statement that 

can be used for measurement of this latent variable is: “Processes modeled using this approach 

are easy to understand”. 

    Accuracy (𝐶4) is the degree to which a process modeling approach is perceived to lead to an 

accurate representation of the process. An example of question-statement that can be used for 

measurement of this latent variable is: “This process modeling approach leads to accurate 

process representations”. 

    Finally, impact on redesign success (𝐶5) is the degree to which the process modeling 

technique used is perceived to lead to an actual improvement of the targeted business process. 

An example of question-statement that can be used for measurement of this latent variable is: 

“Using this process modeling approach is likely to contribute to the success of a process redesign 

project”. 

Missing Data Imputation Methods Analyzed 

In our analyses we focused on traditional single missing data imputation methods (Enders, 

2010), plus two methods that we have developed. These new methods can be seen as 

“hierarchical” variations of two of the traditional methods. All of the missing data imputation 

methods are summarized below. 

    All variables are assumed to be standardized. This has no effect on the implementation of the 

methods; the methods can take as inputs unstandardized variables, store means and standard 

deviations for later unstandardization, standardize the variables, apply the various operations that 

define the methods, and finally unstandardize the variables again prior to generating the outputs. 

Arithmetic Mean Imputation 

Let 𝑥𝑖 be a column vector denoting one of the 𝑘 manifest variables used in a SEM model. The 

Arithmetic Mean Imputation (MEAN) method assigns values to each missing element 𝑥̇𝑖𝑟 

according to (1), where 𝑁𝑚 is the number of missing values in 𝑥𝑖, and 𝑥̅𝑖 is the arithmetic mean 

of variable 𝑥𝑖. 

 

𝑥̇𝑖𝑟 = 𝑥̅𝑖, (1) 

𝑟 = 1 … 𝑁𝑚.  

 

    As its name implies, the Arithmetic Mean Imputation (MEAN) method replaces each missing 

element 𝑥̇𝑖𝑟 in a column of data 𝑖 within a dataset, which refers to a manifest variable, with the 

average (or arithmetic mean) of that column. This method can be seen as the simplest of the 
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imputation methods discussed here. While it can be employed by itself, this method also plays an 

ancillary role in other methods, as will be seen in the remainder of this section. 

Multiple Regression Imputation 

The Multiple Regression Imputation (MREGR) method assigns values to each missing element 

𝑥̇𝑖𝑟 according to (2), where 𝑘 is the number of manifest variables used in a model, 𝑁𝑚 is the 

number of missing values in 𝑥𝑖, and each of the elements of the matrix of estimated regression 

coefficients 𝛽̂𝑥𝑖𝑥𝑗
 is calculated through a multiple regression analysis with 𝑥𝑖 as the criterion and 

𝑥𝑗 (𝑗 = 1 … 𝑘, 𝑗 ≠ 𝑖) as the predictors. 

 

𝑥̇𝑖𝑟 = ∑ 𝛽̂𝑥𝑖𝑥𝑗
𝑥𝑗𝑟

𝑘

𝑗=1
, 

(2) 

𝑗 = 1 … 𝑘, 𝑗 ≠ 𝑖, 𝑟 = 1 … 𝑁𝑚.  

 

    In the Multiple Regression Imputation (MREGR) method each missing element 𝑥̇𝑖𝑟 is replaced 

with the corresponding expected value of 𝑥𝑖 given all of the other variables 𝑥𝑗 (𝑗 = 1 … 𝑘, 𝑗 ≠ 𝑖) 

in the dataset. The regression coefficients 𝛽̂𝑥𝑖𝑥𝑗
 for each variable 𝑥𝑖 are obtained via a multiple 

regression analysis after an Arithmetic Mean Imputation (MEAN) is applied to the dataset. 

    An alternative to using Arithmetic Mean Imputation (MEAN), which tends to lead to an 

exacerbation of the biases and that is therefore not employed here, is to conduct the multiple 

regression analysis to obtain the regression coefficients 𝛽̂𝑥𝑖𝑥𝑗
 after a listwise deletion. The use of 

deletion is particularly problematic here because the regression equation will typically have quite 

a few predictors, and thus a great deal of data may end up being lost after a listwise deletion. 

Hierarchical Regression Imputation 

This is one of the two new methods discussed here. The Hierarchical Regression Imputation 

(HREGR) method assigns values to each missing element 𝑥̇𝑖𝑟 according to (3), where 𝑘 is the 

number of manifest variables used in a model, 𝑁𝑚 is the number of missing values in 𝑥𝑖, and 

each of the elements of the matrix of estimated correlations 𝛴̂𝑥𝑖𝑥𝑗
 is calculated after a pairwise 

deletion of missing elements is conducted for each pair of variables 𝑥𝑖 and 𝑥𝑗. In this equation 

𝑚𝑎𝑥 (𝛴̂𝑥𝑖𝑥𝑗
) is the maximum estimated correlation between the manifest variable 𝑥𝑖 and any 

other manifest variable 𝑥𝑗 for which a corresponding non-missing value 𝑥𝑗𝑟 exists. 

 

𝑥̇𝑖𝑟 = 𝑚𝑎𝑥 (𝛴̂𝑥𝑖𝑥𝑗
) 𝑥𝑗𝑟 , (3) 

𝑗 = 1 … 𝑘, 𝑗 ≠ 𝑖, 𝑟 = 1 … 𝑁𝑚.  

 

    In the Hierarchical Regression Imputation (HREGR) method each missing element 𝑥̇𝑖𝑟 is 

replaced with the corresponding expected value of 𝑥𝑖 given a variable 𝑥𝑗, stored in column 𝑗 of 
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the dataset, where 𝑥𝑗 is the variable with the highest correlation with 𝑥𝑖 after a pairwise deletion 

of missing elements. 

    Here a pairwise deletion is preferred over an Arithmetic Mean Imputation (MEAN) for the 

calculation of the correlations 𝛴̂𝑥𝑖𝑥𝑗
 because it leads to less bias, as indicated by exploratory 

versions of this method that we developed and tested. In datasets with multiple variables and 

widespread missing data elements, pairwise deletions usually lead to much lesser amounts of 

data loss than listwise deletions. Nevertheless, the results of analyses conducted after pairwise 

deletions tend to be dependent on the pair-specific idiosyncrasies of missing data patterns. 

Stochastic Multiple Regression Imputation 

The Stochastic Multiple Regression Imputation (MSREG) method assigns values to each missing 

element 𝑥̇𝑖𝑟 according to (4), where 𝑘 is the number of manifest variables used in a model, 𝑁𝑚 is 

the number of missing values in 𝑥𝑖, and 𝑆𝑟𝑎𝑛𝑑𝑛( ) is a function that returns a different element 

of a standardized normally distributed random column vector each time it is invoked. 

 

𝑥̇𝑖𝑟 = ∑ 𝛽̂𝑥𝑖𝑥𝑗
𝑥𝑗𝑟

𝑘

𝑗=1
+ (√(1 − ∑ 𝛽̂𝑥𝑖𝑥𝑗

𝛴̂𝑥𝑖𝑥𝑗

𝑘

𝑗=1
)) 𝑆𝑟𝑎𝑛𝑑𝑛( ), (4) 

𝑗 = 1 … 𝑘, 𝑗 ≠ 𝑖, 𝑟 = 1 … 𝑁𝑚.  

 

    The Stochastic Multiple Regression Imputation (MSREG) method is similar to the Multiple 

Regression Imputation (MREGR) method. The key difference is that in this stochastic variety, 

implemented via the equation above, normal random error is added to the new values due to the 

assumption that not doing so can create a downward bias in standard errors. Such a bias could 

lead to an exacerbation of type I errors. The random error elements yielded by 𝑆𝑟𝑎𝑛𝑑𝑛( ) are 

weighted so that they collectively account for all of the variance in 𝑥𝑖 that is not explained by the 

predictors 𝑥𝑗 (𝑗 = 1 … 𝑘, 𝑗 ≠ 𝑖). 

    While the above assumption regarding standard error bias may be a reasonable one with 

respect to standard multiple regression and covariance-based SEM, in PLS-SEM path 

coefficients tend to present downward biases even without missing data. Therefore a downward 

bias in standard errors may compensate for the related decrease in statistical power, due to the 

downward path coefficient bias, in turn countering an exacerbation in type II errors (and a 

reduction in power). 

Stochastic Hierarchical Regression Imputation 

This is the other of the two new methods discussed here. The Stochastic Hierarchical Regression 

Imputation (HSREG) method assigns values to each missing element 𝑥̇𝑖𝑟 according to (5), 

where 𝑘 is the number of manifest variables used in a model, 𝑁𝑚 is the number of missing values 

in 𝑥𝑖, and 𝑆𝑟𝑎𝑛𝑑𝑛( ) is a function that returns a different element of a standardized normally 

distributed random column vector each time it is invoked. 
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𝑥̇𝑖𝑟 = 𝑚𝑎𝑥 (𝛴̂𝑥𝑖𝑥𝑗
) 𝑥𝑗𝑟 + (√1 − 𝑚𝑎𝑥 (𝛴̂𝑥𝑖𝑥𝑗

)
2

) 𝑆𝑟𝑎𝑛𝑑𝑛( ), (5) 

𝑗 = 1 … 𝑘, 𝑗 ≠ 𝑖, 𝑟 = 1 … 𝑁𝑚.  

 

     The Stochastic Hierarchical Regression Imputation (HSREG) method is similar to the 

Hierarchical Regression Imputation (HREGR) method. The key difference (analogously to the 

discussion above) in this stochastic variety is that normal random error is added to the new 

values due to the assumption that not doing so can create a downward bias in standard errors and 

an overall deleterious effect on type I error rates. Again, while this assumption may find general 

application in standard multiple regression and covariance-based SEM, it may not readily apply 

to PLS-SEM. 

Monte Carlo Experiment 

A Monte Carlo experiment based on the true population model shown in Figure 2 was conducted 

to assess the performance of the five missing data imputation methods discussed in the previous 

section. Performance was assessed in terms of path coefficient bias and standard error inflation. 
 

Figure 2. True population model 

 

 
 

    When creating data for our Monte Carlo experiment we varied the following conditions: 

percentage of missing data (0%, 30%, 40%, and 50%), and sample size (100, 300, and 500). This 

led to a 4 x 3 factorial design, with 12 conditions. We created an analyzed 1,000 samples for 

each of these 12 conditions; a total of 12,000 samples. 

     The PLS Mode A algorithm with the path weighting scheme (Lohmöller, 1989) was used in 

the analyses. These are the most widely used algorithm (PLS Mode A) and inner model 
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estimation scheme (path weighting) in the context of PLS-SEM. Results were obtained for 

analyses with no missing data (NMD), Arithmetic Mean Imputation (MEAN), Multiple 

Regression Imputation (MREGR), Hierarchical Regression Imputation (HREGR), Stochastic 

Multiple Regression Imputation (MSREG), and Stochastic Hierarchical Regression Imputation 

(HSREG). 

    A summarized set of results are shown in Figure 3 and Table 1, where we restrict ourselves to 

𝑁 = 300 and 30% missing data (MAR). In the figure we focus on the absolute path coefficient 

differences with respect to no missing data (NMD) estimates, to highlight the performance of the 

various missing data imputation methods. In the table, true path coefficients, mean path 

coefficient estimates, and standard errors of path coefficient estimates are shown next to one 

another. Full results, for all percentages of missing data and sample sizes included in the 

simulation, are available in Appendix A. Since all loadings are the same in the true population 

model, loading-related estimates for only one indicator of the composites are shown. This avoids 

crowding and repetition, as the same pattern of results repeats itself in connection with all 

loadings. 
 

Figure 3. Absolute path coefficient differences with respect to no missing data (NMD) estimates 

 

 
 

    The mean path coefficient estimates that are shown underlined in the table were obtained 

through the application of the PLS Mode A algorithm to datasets where no data was missing 

(NMD). Note that they generally underestimate the true path coefficients. This underestimation 

stems from the use of composites in PLS-SEM, discussed earlier, which leads to an attenuation 

of composite correlations (Nunnally & Bernstein, 1994). This correlation attenuation extends to 

the path coefficients (Kock, 2015b), leading to the observed underestimation. The opposite effect 

is observed in connection with loadings, which tend to be overestimated in PLS-SEM. 

    Multiple Regression Imputation (MREGR) yielded the least biased mean path coefficient 

estimates, followed by Arithmetic Mean Imputation (MEAN). When we look at mean loading 

estimates, Arithmetic Mean Imputation (MEAN) yielded the least biased results, followed by 

Stochastic Hierarchical Regression Imputation (HSREG) and Hierarchical Regression 

Imputation (HREGR. 
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    Compared with the no missing data condition (NMD), none of the methods induced a 

significant bias in standard errors. This is noteworthy since prior results outside the context of 

PLS-SEM have tended to show a significant downward bias in standard errors, particularly for 

non-stochastic varieties. Such downward bias in standard errors has led to concerns regarding an 

inflation in type I errors, and warnings against the use of single missing data imputation methods 

in general (Enders, 2010; Newman, 2014). 
 

Table 1. Summarized Monte Carlo experiment results (𝑁 = 300, 30% MAR data) 

 

Missing data imputation 

scheme 

NMD MEAN MREGR HREGR MSREG HSREG 

CO>GT(TruePath) .450 .450 .450 .450 .450 .450 

CO>GT(AvgPath) .390 .348 .367 .354 .333 .300 

CO>GT(SEPath) .075 .113 .110 .113 .138 .162 

CO>EU(TruePath) .400 .400 .400 .400 .400 .400 

CO>EU(AvgPath) .349 .312 .321 .313 .289 .262 

CO>EU(SEPath) .069 .101 .108 .106 .133 .151 

CO>AC(TruePath) .250 .250 .250 .250 .250 .250 

CO>AC(AvgPath) .219 .198 .206 .195 .188 .161 

CO>AC(SEPath) .062 .078 .090 .083 .100 .108 

GT>SU(TruePath) .500 .500 .500 .500 .500 .500 

GT>SU(AvgPath) .381 .357 .359 .352 .334 .312 

GT>SU(SEPath) .127 .152 .156 .158 .179 .195 

EU>SU(TruePath) .230 .230 .230 .230 .230 .230 

EU>SU(AvgPath) .192 .183 .199 .178 .188 .163 

EU>SU(SEPath) .062 .072 .077 .078 .082 .089 

AC>SU(TruePath) .200 .200 .200 .200 .200 .200 

AC>SU(AvgPath) .165 .157 .176 .154 .166 .141 

AC>SU(SEPath) .058 .067 .073 .072 .077 .081 

GT3<GT(TrueLoad) .700 .700 .700 .700 .700 .700 

GT3<GT(AvgLoad) .811 .691 .606 .649 .623 .652 

GT3<GT(SELoad) .113 .042 .120 .076 .115 .090 

Notes: NMD = no missing data; MEAN  = Arithmetic Mean Imputation; MREGR = Multiple Regression 

Imputation; HREGR = Hierarchical Regression Imputation; MSREG = Stochastic Multiple Regression Imputation; 

HSREG = Stochastic Hierarchical Regression Imputation; XX>YY = link from composite XX to YY; CO = 

communication flow orientation (𝐶1); GT = usefulness in the development of IT solutions (𝐶2); EU = ease of 

understanding (𝐶3); AC = accuracy (𝐶4); SU = impact on redesign success (𝐶5); TruePath = true path coefficient; 

AvgPath = mean path coefficient estimate; SEPath = standard error of path coefficient estimate; TrueLoad = true 

loading; AvgLoad = mean loading estimate; SELoad = standard error of loading estimate. 

 

Empirical Illustration 

Table 2 summarizes the results of an empirical field study related to the illustrative and true 

population models discussed earlier. The field study in fact served as the basis for the 

development of the illustrative and true population models. Shown next to one another are 

estimated path coefficients (top part of the table), and loadings (bottom part of the table). All 

path coefficients and loadings are shown. Except for the column “NMD”, all other columns show 

results with 30% missing data (MAR). 
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Table 2. Empirical study results 

 

Missing data 

imputation 

scheme 

NMD MEAN HREGR HSREG MREGR MSREG 

CO>GT .485 a .427 a .472 a .445 a .462 a .379 a 

CO>EU .362 a .244 a .282 a .313 a .248 a .263 a 

CO>AC .269 a .184 b .209 b .183 b .195 b .213 b 

GT>SU .506 a .531 a .536 a .527 a .532 a .493 a 

EU>SU .217 b .184 b .204 b .233 b .187 b .174 c 

AC>SU .194 b .181 b .150 c .146 c .173 c .170 c 

GT1<GT .926 .854 .938 .883 .899 .900 

GT2<GT .880 .883 .919 .887 .897 .863 

GT3<GT .893 .878 .929 .885 .907 .855 

EU1<EU .796 .740 .815 .801 .786 .742 

EU2<EU .875 .831 .853 .816 .862 .827 

EU3<EU .910 .884 .909 .901 .903 .871 

AC1<AC .916 .926 .925 .918 .926 .926 

AC2<AC .868 .812 .863 .847 .840 .794 

AC3<AC .753 .674 .723 .634 .703 .677 

SU1<SU .937 .914 .950 .913 .934 .895 

SU2<SU .947 .934 .957 .916 .949 .919 

SU3<SU .932 .913 .944 .925 .933 .908 

Notes: N = 156; a P < .001, b P < .01, c P < .05; PLS algorithm used = PLS Mode A; P values calculated via 

bootstrapping with 500 resamples; NMD = no missing data; MEAN  = Arithmetic Mean Imputation; MREGR = 

Multiple Regression Imputation; HREGR = Hierarchical Regression Imputation; MSREG = Stochastic Multiple 

Regression Imputation; HSREG = Stochastic Hierarchical Regression Imputation; XX>YY = link from variable XX 

to YY; CO = communication flow orientation (𝐶1); GT = usefulness in the development of IT solutions (𝐶2); EU = 

ease of understanding (𝐶3); AC = accuracy (𝐶4); SU = impact on redesign success (𝐶5); XX1 … XXn = indicators 

associated with composite XX. 

 

    The data for this empirical study was collected from 156 individuals who participated in 

various business process redesign projects in organizations located in Northeastern U.S.A. The 

participants employed one of two business process modeling approaches. One of the modeling 

approaches focused primarily on the communication flow within business processes. The other 

focused primarily on the chronological flow of activities. Both approaches are illustrated in 

Appendix B. Appendix C has the questionnaire used for data collection. 

    Overall, all missing data imputation methods analyzed yielded estimates consistent with 

communication flow optimization theory (Kock, 2003). No method led to biases that were severe 

enough, at 30% missing data, to generate non-significant P values. Given this, we could say that 

the empirical study results provide “real data” validation of all imputation methods, and to a 

certain extend qualified support for all of them. This is because the theory, which forms the 

underlying theoretical foundation for the model, has been validated before in multiple empirical 

studies employing different datasets and methods (Danesh-Pajou, 2005; Danesh-Pajou & Kock, 

2005; Kock et al., 2008; 2009). 

Discussion and Conclusion 

An important source of bias in PLS-SEM is missing data. Deletion methods, such as listwise and 

pairwise deletion, have traditionally been used to deal with missing data. While these methods 

are perceived as problematic because they can lead to reductions in sample size, particularly 
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problematic are the possible biases that they can introduce. For example, missing data may be 

associated with groups of respondents who share some characteristics, and whose exclusion from 

datasets can significantly influence the strength of relationships among variables. 

    We discussed and compared five single missing data imputation methods in the context of 

PLS-SEM: Arithmetic Mean Imputation (MEAN), Multiple Regression Imputation (MREGR), 

Hierarchical Regression Imputation (HREGR), Stochastic Multiple Regression Imputation 

(MSREG), and Stochastic Hierarchical Regression Imputation (HSREG). Two of these methods 

are new – the hierarchical varieties (HREGR and HSREG). The relative performance of the 

methods was assessed though a Monte Carlo experiment. 

    The results from the Monte Carlo experiment suggest that Multiple Regression Imputation 

(MREGR) yielded the least biased mean path coefficient estimates, followed by Arithmetic 

Mean Imputation (MEAN). With respect to mean loading estimates, Arithmetic Mean 

Imputation (MEAN) yielded the least biased results, followed by Stochastic Hierarchical 

Regression Imputation (HSREG) and Hierarchical Regression Imputation (HREGR). 

    None of the methods induced a significant bias in standard errors when compared with the no 

missing data condition (NMD). This is at odds with past results outside the context of PLS-SEM, 

which tended to show a significant downward bias in standard errors, particularly for non-

stochastic imputation methods. This observed downward bias in standard errors has led to 

concerns regarding type I error inflation, and admonitions against the use of single missing data 

imputation methods in general. Our results suggest that PLS-SEM may be a fertile ground for the 

application of single missing data imputation methods, although more research is needed to shed 

light as to whether this is truly the case and why. 
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Appendix A: Full Monte Carlo Experiment Results 

The full Monte Carlo experiment results are provided in the tables below. Notes: NMD = no 

missing data; MEAN  = Arithmetic Mean Imputation; MREGR = Multiple Regression 

Imputation; HREGR = Hierarchical Regression Imputation; MSREG = Stochastic Multiple 

Regression Imputation; HSREG = Stochastic Hierarchical Regression Imputation; XX>YY = 

link from composite XX to YY; CO = communication flow orientation (𝐶1); GT = usefulness in 

the development of IT solutions (𝐶2); EU = ease of understanding (𝐶3); AC = accuracy (𝐶4); SU 

= impact on redesign success (𝐶5); TruePath = true path coefficient; AvgPath = mean path 

coefficient estimate; SEPath = standard error of estimate; TrueLoad = true loading; AvgLoad = 

mean loading estimate; SELoad = standard error of estimate. 

 
Sample size 100 100 100 100 100 100 

Percentage of 

missing data 

0% 30% 30% 30% 30% 30% 

Missing data 

imputation scheme 

NMD MEAN HREGR HSREG MREGR MSREG 

CO>GT(TruePath) .450 .450 .450 .450 .450 .450 

CO>GT(AvgPath) .394 .354 .364 .308 .362 .327 

CO>GT(SEPath) .094 .129 .133 .175 .148 .171 

CO>EU(TruePath) .400 .400 .400 .400 .400 .400 

CO>EU(AvgPath) .355 .323 .326 .280 .335 .308 

CO>EU(SEPath) .096 .120 .130 .161 .145 .156 

CO>AC(TruePath) .250 .250 .250 .250 .250 .250 

CO>AC(AvgPath) .227 .205 .205 .172 .214 .196 

CO>AC(SEPath) .093 .111 .124 .140 .148 .153 

GT>SU(TruePath) .500 .500 .500 .500 .500 .500 

GT>SU(AvgPath) .384 .355 .353 .319 .351 .328 

GT>SU(SEPath) .141 .170 .178 .206 .188 .206 

EU>SU(TruePath) .230 .230 .230 .230 .230 .230 

EU>SU(AvgPath) .193 .188 .187 .172 .207 .196 

EU>SU(SEPath) .094 .103 .112 .121 .121 .129 

AC>SU(TruePath) .200 .200 .200 .200 .200 .200 

AC>SU(AvgPath) .172 .165 .167 .150 .193 .183 

AC>SU(SEPath) .091 .107 .114 .123 .130 .134 

GT3<GT(TrueLoad) .700 .700 .700 .700 .700 .700 

GT3<GT(AvgLoad) .810 .687 .645 .644 .593 .603 

GT3<GT(SELoad) .118 .072 .105 .128 .156 .165 

 
Sample size 100 100 100 100 100 100 

Percentage of 

missing data 

0% 40% 40% 40% 40% 40% 

Missing data 

imputation scheme 

NMD MEAN HREGR HSREG MREGR MSREG 

CO>GT(TruePath) .450 .450 .450 .450 .450 .450 

CO>GT(AvgPath) .394 .309 .315 .247 .307 .264 

CO>GT(SEPath) .094 .188 .193 .240 .223 .251 

CO>EU(TruePath) .400 .400 .400 .400 .400 .400 

CO>EU(AvgPath) .355 .280 .283 .225 .275 .240 

CO>EU(SEPath) .096 .185 .194 .226 .219 .239 
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Sample size 100 100 100 100 100 100 

Percentage of 

missing data 

0% 40% 40% 40% 40% 40% 

Missing data 

imputation scheme 

NMD MEAN HREGR HSREG MREGR MSREG 

CO>AC(TruePath) .250 .250 .250 .250 .250 .250 

CO>AC(AvgPath) .227 .186 .182 .145 .189 .165 

CO>AC(SEPath) .093 .170 .188 .185 .208 .211 

GT>SU(TruePath) .500 .500 .500 .500 .500 .500 

GT>SU(AvgPath) .384 .320 .324 .272 .311 .280 

GT>SU(SEPath) .141 .222 .227 .263 .246 .270 

EU>SU(TruePath) .230 .230 .230 .230 .230 .230 

EU>SU(AvgPath) .193 .191 .189 .163 .189 .178 

EU>SU(SEPath) .094 .144 .157 .163 .186 .195 

AC>SU(TruePath) .200 .200 .200 .200 .200 .200 

AC>SU(AvgPath) .172 .177 .177 .146 .186 .164 

AC>SU(SEPath) .091 .157 .172 .170 .204 .208 

GT3<GT(TrueLoad) .700 .700 .700 .700 .700 .700 

GT3<GT(AvgLoad) .810 .479 .440 .444 .395 .398 

GT3<GT(SELoad) .118 .261 .295 .306 .347 .359 

 
Sample size 100 100 100 100 100 100 

Percentage of 

missing data 

0% 50% 50% 50% 50% 50% 

Missing data 

imputation scheme 

NMD MEAN HREGR HSREG MREGR MSREG 

CO>GT(TruePath) .450 .450 .450 .450 .450 .450 

CO>GT(AvgPath) .394 .241 .248 .170 .227 .183 

CO>GT(SEPath) .094 .272 .287 .327 .323 .345 

CO>EU(TruePath) .400 .400 .400 .400 .400 .400 

CO>EU(AvgPath) .355 .215 .211 .145 .190 .159 

CO>EU(SEPath) .096 .263 .284 .308 .323 .327 

CO>AC(TruePath) .250 .250 .250 .250 .250 .250 

CO>AC(AvgPath) .227 .146 .151 .110 .136 .113 

CO>AC(SEPath) .093 .227 .242 .228 .276 .270 

GT>SU(TruePath) .500 .500 .500 .500 .500 .500 

GT>SU(AvgPath) .384 .267 .263 .208 .238 .207 

GT>SU(SEPath) .141 .292 .303 .337 .351 .359 

EU>SU(TruePath) .230 .230 .230 .230 .230 .230 

EU>SU(AvgPath) .193 .172 .168 .137 .163 .139 

EU>SU(SEPath) .094 .212 .239 .213 .264 .259 

AC>SU(TruePath) .200 .200 .200 .200 .200 .200 

AC>SU(AvgPath) .172 .152 .149 .118 .153 .135 

AC>SU(SEPath) .091 .219 .242 .213 .270 .263 

GT3<GT(TrueLoad) .700 .700 .700 .700 .700 .700 

GT3<GT(AvgLoad) .810 .284 .250 .263 .217 .214 

GT3<GT(SELoad) .118 .451 .480 .483 .511 .526 

 
Sample size 300 300 300 300 300 300 

Percentage of 

missing data 

0% 30% 30% 30% 30% 30% 

Missing data 

imputation scheme 

NMD MEAN HREGR HSREG MREGR MSREG 
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Sample size 300 300 300 300 300 300 

Percentage of 

missing data 

0% 30% 30% 30% 30% 30% 

Missing data 

imputation scheme 

NMD MEAN HREGR HSREG MREGR MSREG 

CO>GT(TruePath) .450 .450 .450 .450 .450 .450 

CO>GT(AvgPath) .390 .348 .354 .300 .367 .333 

CO>GT(SEPath) .075 .113 .113 .162 .110 .138 

CO>EU(TruePath) .400 .400 .400 .400 .400 .400 

CO>EU(AvgPath) .349 .312 .313 .262 .321 .289 

CO>EU(SEPath) .069 .101 .106 .151 .108 .133 

CO>AC(TruePath) .250 .250 .250 .250 .250 .250 

CO>AC(AvgPath) .219 .198 .195 .161 .206 .188 

CO>AC(SEPath) .062 .078 .083 .108 .090 .100 

GT>SU(TruePath) .500 .500 .500 .500 .500 .500 

GT>SU(AvgPath) .381 .357 .352 .312 .359 .334 

GT>SU(SEPath) .127 .152 .158 .195 .156 .179 

EU>SU(TruePath) .230 .230 .230 .230 .230 .230 

EU>SU(AvgPath) .192 .183 .178 .163 .199 .188 

EU>SU(SEPath) .062 .072 .078 .089 .077 .082 

AC>SU(TruePath) .200 .200 .200 .200 .200 .200 

AC>SU(AvgPath) .165 .157 .154 .141 .176 .166 

AC>SU(SEPath) .058 .067 .072 .081 .073 .077 

GT3<GT(TrueLoad) .700 .700 .700 .700 .700 .700 

GT3<GT(AvgLoad) .811 .691 .649 .652 .606 .623 

GT3<GT(SELoad) .113 .042 .076 .090 .120 .115 

 
Sample size 300 300 300 300 300 300 

Percentage of 

missing data 

0% 40% 40% 40% 40% 40% 

Missing data 

imputation scheme 

NMD MEAN HREGR HSREG MREGR MSREG 

CO>GT(TruePath) .450 .450 .450 .450 .450 .450 

CO>GT(AvgPath) .390 .309 .311 .240 .308 .264 

CO>GT(SEPath) .075 .160 .165 .224 .173 .209 

CO>EU(TruePath) .400 .400 .400 .400 .400 .400 

CO>EU(AvgPath) .349 .273 .274 .211 .271 .234 

CO>EU(SEPath) .069 .147 .152 .204 .162 .191 

CO>AC(TruePath) .250 .250 .250 .250 .250 .250 

CO>AC(AvgPath) .219 .176 .174 .132 .178 .156 

CO>AC(SEPath) .062 .113 .116 .142 .129 .138 

GT>SU(TruePath) .500 .500 .500 .500 .500 .500 

GT>SU(AvgPath) .381 .323 .320 .264 .314 .282 

GT>SU(SEPath) .127 .191 .196 .246 .207 .235 

EU>SU(TruePath) .230 .230 .230 .230 .230 .230 

EU>SU(AvgPath) .192 .186 .180 .157 .201 .184 

EU>SU(SEPath) .062 .087 .094 .101 .096 .099 

AC>SU(TruePath) .200 .200 .200 .200 .200 .200 

AC>SU(AvgPath) .165 .161 .161 .138 .180 .163 

AC>SU(SEPath) .058 .083 .085 .097 .099 .103 

GT3<GT(TrueLoad) .700 .700 .700 .700 .700 .700 

GT3<GT(AvgLoad) .811 .496 .461 .475 .423 .440 

GT3<GT(SELoad) .113 .221 .256 .253 .296 .286 
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Sample size 300 300 300 300 300 300 

Percentage of 

missing data 

0% 50% 50% 50% 50% 50% 

Missing data 

imputation scheme 

NMD MEAN HREGR HSREG MREGR MSREG 

CO>GT(TruePath) .450 .450 .450 .450 .450 .450 

CO>GT(AvgPath) .390 .243 .252 .176 .243 .193 

CO>GT(SEPath) .075 .229 .226 .288 .246 .284 

CO>EU(TruePath) .400 .400 .400 .400 .400 .400 

CO>EU(AvgPath) .349 .217 .223 .152 .213 .172 

CO>EU(SEPath) .069 .209 .208 .264 .230 .260 

CO>AC(TruePath) .250 .250 .250 .250 .250 .250 

CO>AC(AvgPath) .219 .145 .150 .099 .143 .112 

CO>AC(SEPath) .062 .150 .154 .179 .180 .194 

GT>SU(TruePath) .500 .500 .500 .500 .500 .500 

GT>SU(AvgPath) .381 .271 .273 .212 .264 .227 

GT>SU(SEPath) .127 .246 .249 .300 .263 .295 

EU>SU(TruePath) .230 .230 .230 .230 .230 .230 

EU>SU(AvgPath) .192 .183 .185 .143 .194 .168 

EU>SU(SEPath) .062 .104 .114 .130 .134 .138 

AC>SU(TruePath) .200 .200 .200 .200 .200 .200 

AC>SU(AvgPath) .165 .160 .159 .126 .171 .151 

AC>SU(SEPath) .058 .112 .123 .124 .141 .137 

GT3<GT(TrueLoad) .700 .700 .700 .700 .700 .700 

GT3<GT(AvgLoad) .811 .329 .296 .311 .256 .268 

GT3<GT(SELoad) .113 .386 .417 .412 .456 .453 

 
Sample size 500 500 500 500 500 500 

Percentage of 

missing data 

0% 30% 30% 30% 30% 30% 

Missing data 

imputation scheme 

NMD MEAN HREGR HSREG MREGR MSREG 

CO>GT(TruePath) .450 .450 .450 .450 .450 .450 

CO>GT(AvgPath) .389 .346 .352 .296 .363 .328 

CO>GT(SEPath) .070 .110 .109 .162 .104 .135 

CO>EU(TruePath) .400 .400 .400 .400 .400 .400 

CO>EU(AvgPath) .343 .308 .309 .258 .317 .286 

CO>EU(SEPath) .067 .100 .102 .149 .102 .129 

CO>AC(TruePath) .250 .250 .250 .250 .250 .250 

CO>AC(AvgPath) .219 .197 .192 .159 .204 .183 

CO>AC(SEPath) .052 .070 .077 .103 .077 .090 

GT>SU(TruePath) .500 .500 .500 .500 .500 .500 

GT>SU(AvgPath) .380 .354 .348 .309 .358 .333 

GT>SU(SEPath) .124 .151 .157 .196 .151 .175 

EU>SU(TruePath) .230 .230 .230 .230 .230 .230 

EU>SU(AvgPath) .189 .180 .176 .160 .198 .184 

EU>SU(SEPath) .055 .064 .070 .083 .065 .073 

AC>SU(TruePath) .200 .200 .200 .200 .200 .200 

AC>SU(AvgPath) .164 .154 .151 .137 .174 .164 

AC>SU(SEPath) .054 .063 .067 .077 .061 .067 

GT3<GT(TrueLoad) .700 .700 .700 .700 .700 .700 

GT3<GT(AvgLoad) .811 .692 .652 .654 .609 .627 
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Sample size 500 500 500 500 500 500 

Percentage of 

missing data 

0% 30% 30% 30% 30% 30% 

Missing data 

imputation scheme 

NMD MEAN HREGR HSREG MREGR MSREG 

GT3<GT(SELoad) .113 .035 .069 .082 .113 .106 

 
Sample size 500 500 500 500 500 500 

Percentage of 

missing data 

0% 40% 40% 40% 40% 40% 

Missing data 

imputation scheme 

NMD MEAN HREGR HSREG MREGR MSREG 

CO>GT(TruePath) .450 .450 .450 .450 .450 .450 

CO>GT(AvgPath) .389 .307 .308 .236 .307 .265 

CO>GT(SEPath) .070 .155 .158 .223 .164 .201 

CO>EU(TruePath) .400 .400 .400 .400 .400 .400 

CO>EU(AvgPath) .343 .270 .267 .205 .267 .230 

CO>EU(SEPath) .067 .145 .151 .205 .157 .188 

CO>AC(TruePath) .250 .250 .250 .250 .250 .250 

CO>AC(AvgPath) .219 .174 .171 .129 .175 .151 

CO>AC(SEPath) .052 .098 .104 .135 .109 .125 

GT>SU(TruePath) .500 .500 .500 .500 .500 .500 

GT>SU(AvgPath) .380 .321 .315 .260 .312 .280 

GT>SU(SEPath) .124 .187 .194 .246 .200 .230 

EU>SU(TruePath) .230 .230 .230 .230 .230 .230 

EU>SU(AvgPath) .189 .181 .178 .152 .194 .177 

EU>SU(SEPath) .055 .078 .082 .097 .084 .090 

AC>SU(TruePath) .200 .200 .200 .200 .200 .200 

AC>SU(AvgPath) .164 .161 .157 .134 .178 .163 

AC>SU(SEPath) .054 .072 .076 .088 .078 .082 

GT3<GT(TrueLoad) .700 .700 .700 .700 .700 .700 

GT3<GT(AvgLoad) .811 .501 .468 .486 .433 .455 

GT3<GT(SELoad) .113 .213 .245 .237 .281 .267 

 
Sample size 500 500 500 500 500 500 

Percentage of 

missing data 

0% 50% 50% 50% 50% 50% 

Missing data 

imputation scheme 

NMD MEAN HREGR HSREG MREGR MSREG 

CO>GT(TruePath) .450 .450 .450 .450 .450 .450 

CO>GT(AvgPath) .389 .245 .250 .171 .238 .193 

CO>GT(SEPath) .070 .218 .218 .288 .236 .274 

CO>EU(TruePath) .400 .400 .400 .400 .400 .400 

CO>EU(AvgPath) .343 .213 .216 .150 .209 .168 

CO>EU(SEPath) .067 .205 .206 .260 .218 .251 

CO>AC(TruePath) .250 .250 .250 .250 .250 .250 

CO>AC(AvgPath) .219 .143 .144 .098 .140 .113 

CO>AC(SEPath) .052 .133 .137 .168 .154 .168 

GT>SU(TruePath) .500 .500 .500 .500 .500 .500 

GT>SU(AvgPath) .380 .270 .270 .206 .263 .227 

GT>SU(SEPath) .124 .240 .243 .301 .254 .285 

EU>SU(TruePath) .230 .230 .230 .230 .230 .230 

EU>SU(AvgPath) .189 .172 .170 .134 .183 .158 
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Sample size 500 500 500 500 500 500 

Percentage of 

missing data 

0% 50% 50% 50% 50% 50% 

Missing data 

imputation scheme 

NMD MEAN HREGR HSREG MREGR MSREG 

EU>SU(SEPath) .055 .098 .103 .119 .105 .115 

AC>SU(TruePath) .200 .200 .200 .200 .200 .200 

AC>SU(AvgPath) .164 .157 .158 .127 .175 .151 

AC>SU(SEPath) .054 .090 .095 .103 .104 .109 

GT3<GT(TrueLoad) .700 .700 .700 .700 .700 .700 

GT3<GT(AvgLoad) .811 .339 .307 .322 .267 .285 

GT3<GT(SELoad) .113 .373 .403 .395 .443 .431 
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Appendix B: Business Process Modeling Approaches Used 

The figure below illustrates the two types of representations used in the business process 

redesign projects. In the context of our data analyses example, the one on the left was coded as 1, 

and the one on the right as 0. They correspond to high and low communication flow orientations, 

respectively, of the business process modeling approach used. 
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Appendix C: Questionnaire Used in Empirical Study 

    The question-statements below were used for latent variable measurement in the illustrative 

study. Except for communication flow orientation (𝐶1), all question-statements were answered 

on 7-point Likert-type scales.  

Communication flow orientation (𝑪𝟏) 

• 𝐶11: Coded as either 1 or 0, corresponding to high or low communication flow orientation of 

the business process modeling approach used. 

Usefulness in the development of IT solutions (𝑪𝟐) 

• 𝐶21: This process modeling approach is useful in the development of a generic IT solution to 

automate the redesigned process. 

• 𝐶22: Creating a generic IT solution to enable the redesigned process is easy based on this 

process modeling approach. 

• 𝐶23: Graphical process representations using this approach facilitate the generation of a 

generic IT solution to automate the redesigned process. 

Ease of understanding (𝑪𝟑) 

• 𝐶31: Processes modeled using this approach are easy to understand. 

• 𝐶32: Graphical representations of processes using this approach are clear. 

• 𝐶33: This process modeling approach leads to graphical models that are easy to understand. 

Accuracy (𝑪𝟒) 

• 𝐶41: This process modeling approach leads to accurate process representations. 

• 𝐶42: Models created using this approach are correct representations of a process. 

• 𝐶43: Graphical representations using this approach clearly reflect the real process. 

Impact on redesign success (𝑪𝟓) 

• 𝐶51: Using this process modeling approach is likely to contribute to the success of a process 

redesign project. 

• 𝐶52: Success chances are improved if this process modeling approach is used. 

• 𝐶53: Using the graphical process representations in this approach is likely to make process 

redesign projects more successful. 


