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Abstract 

 
Partial least squares-based structural equation modeling (PLS-SEM) is extensively used in the 
field of information systems, as well as in many other fields where multivariate statistical 
methods are employed. One of the most fundamental issues in PLS-SEM is that of minimum 
sample size estimation. The “10-times rule” has been a favorite due to its simplicity of 
application, even though it tends to yield imprecise estimates. We propose two related methods, 
based on mathematical equations, as alternatives for minimum sample size estimation in PLS-
SEM: the inverse square root method, and the gamma-exponential method. Based on three 
Monte Carlo experiments, we demonstrate that both methods are fairly accurate. The inverse 
square root method is particularly attractive in terms of its simplicity of application. 
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Introduction 

    The field of information systems (IS) is closely linked with the development, software 
implementation, and use of the partial least squares (PLS) technique (Chin, 1998; Chin et al., 
2003; Kock, 2010; Wold, 1980). This technique has been extensively used in IS (Bradley et al., 
2012; Goodhue et al., 2012), a practice that has extended to other fields over the years, to 
analyze path models with variables that are measured indirectly through other variables (Chin, 
1998; Hair et al., 2011; 2014; Lohmöller, 1989). These indirectly measured variables are 
generally known as latent variables (Kline, 1998; Kock & Lynn, 2012). The approach to 
analyzing path models with latent variables is broadly known as structural equation modeling 
(SEM). Thus the acronym “PLS-SEM” is used here to refer to SEM employing PLS. 
    One of the most fundamental issues in PLS-SEM is that of minimum sample size estimation. 
A widely used minimum sample size estimation method in PLS-SEM is the “10-times rule” 
method (Hair et al., 2011), which builds on the assumption that the sample size should be greater 
than 10 times the maximum number of inner or outer model links pointing at any latent variable 
in the model. While this method’s simplicity of application makes it a favorite among PLS-SEM 
users, it has been shown in the past to lead to inaccurate estimates (Goodhue et al., 2012). 
    We propose two related methods, based on mathematical equations, for minimum sample size 
estimation in PLS-SEM. The first method is called the inverse square root method, because it 
uses the inverse square root of a sample’s size for standard error estimation – an important step 
in minimum sample size estimation. The second method is called the gamma-exponential 
method, since it relies on gamma and exponential smoothing function corrections applied to the 
first method. Based on Monte Carlo experiments, we show that both methods are fairly accurate, 
with the first method being also particularly attractive in terms of its simplicity of application. 
    The methods we propose here should be seen as heuristic methods; that is, as practical 
methods that are not guaranteed to yield optimal estimates. We believe that they are valuable 
time-saving tools to be used in the early cyclical phases of research design, and that can be 
significantly more precise than comparable early-stage research heuristics currently used by 
researchers. More specifically, they are first-step methods that researchers can employ to address 
issues related to statistical power and minimum sample size requirements (Cohen, 1988; 1992; 
Goodhue et al., 2012; Kock, 2016). 
    We use a unique study in the field of IS to illustrate our discussion of minimum sample size 
estimation in PLS-SEM. The study targeted was authored by Majchrzak, Beath, Lim, and Chin 
(MBLC), and published in the journal MIS Quarterly in 2005 (Majchrzak et al., 2005). MBLC’s 
study, which investigated a collaborative approach for IS design, apparently has the distinction 
of being the PLS-SEM study published in an elite IS research journal with the smallest sample 
size ever. It employed a sample size of 17. 

MBLC’s study 

    MBLC’s study focused on the impact that a cooperative learning strategy called collaborative 
elaboration, developed by educational psychologists, had on client learning and ultimately on 
short- and long-term outcomes in the context of IS design projects. Figure 1 shows the model 
that they used, with the main results of their analyses. The path estimation algorithm they 
employed was PLS Mode A (Lohmöller, 1989), and the P value calculation method was 
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bootstrapping (Diaconis & Efron, 1983; Efron et al., 2004). This algorithm and P value 
calculation method are by far the most widely used in PLS-SEM. 
 
Figure 1: The model in MBLC’s study with results 
 

 
 
 
    The latent variables shown as ovals were measured reflectively through multiple indicators, 
primarily on Likert-type scales with 5 points. The question-statements associated with each 
indicator were answered with respect to project meetings. Cooperative interdependence (CI) was 
measured based on 2 indicators and assessed the degree to which the tasks planned for the 
meeting were in fact accomplished. Collaborative elaboration (CE) was measured based on 6 
indicators and assessed the degree to which clients and developers elaborated on their respective 
views about their projects. Client learning (CL) was measured based on 3 indicators and assessed 
the degree to which clients changed their views about the IS project requirements. Developers’ 
communication quality (CQ) was measured based on 7 indicators and assessed the degree to 
which developers were good communicators. Long-term outcomes (LO) was measured based on 
4 indicators and assessed the degree to which clients expanded their knowledge about IS and 
their development. Short-term outcomes (SO) was measured based on 4 indicators and assessed 
the degree to which the project would lead to a successful IS implementation. 
    MBLC collected data from 17 project teams comprising 68 developers and 17 clients. Each 
team had 4 developers and 1 client. The 17 teams met three times during the project, which 
lasted 12 weeks, and which culminated with the development of a IS prototype. Immediately 
following each of the three meetings, the clients were surveyed about the degree of CI exhibited 
during the meeting, the use of CE by the developers and themselves, as well as the extent to 
which CL occurred. The assessments of CI, CE and CL were then averaged across the 3 
meetings in order to obtain richer and more stable measures. In addition to the meeting 
assessments, the clients were also surveyed on the outcomes of the IS design phase (LO and SO) 
and CQ at the conclusion of the 12-week project. 
    MBLC’s study was based on a solid theoretical development, and, as mentioned before, was 
published in the journal MIS Quarterly, which has long been considered a very selective elite 
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academic IS journal. We use their study as a basis to contrast our proposed methods for 
minimum required sample size estimation against existing comparison methods. 

Power, effect size, and minimum sample size 

    Statistical power (Cohen, 1988; 1992; Goodhue et al., 2012; Kock, 2016; Muthén & Muthén, 
2002), often referred to simply as “power”, is a statistical test’s probability of avoiding type II 
errors, or false negatives. Power is often estimated for a particular coefficient of association and 
sample size, for samples drawn from a population, at a given significance level (usually P < .05). 
For example, let us consider a PLS-SEM test employing PLS Mode A and bootstrapping. Let us 
assume that such a test is able to recognize a path coefficient as statistically significant, where 
the path coefficient is associated with a “real” effect at the population level of magnitude .2; 
which would be referred to as the “true” path coefficient. Let us also assume that the test 
correctly recognizes the path coefficient as significant 83 percent of the time when samples of 
size 150 are randomly taken from the population. Under these circumstances, we would conclude 
that the power of the test is 83 percent, or .83. 
    The effect size (Cohen, 1988; 1992; Kock, 2014b) is a measure of the magnitude of an effect 
that is independent of the size of the sample analyzed. Two main measures of effect size are 
commonly used in PLS-SEM. The most widely used is Cohen’s 𝑓� coefficient (Cohen, 1988; 
1992), which is calculated as ∆𝑅� (1 − 𝑅�)⁄ , where ∆𝑅� is the incremental contribution of a 
predictor latent variable to the 𝑅� of the criterion latent variable to which it points. The other 
measure of effect size commonly used in PLS-SEM is the absolute contribution of the predictor 
latent variable (Kock, 2014b; Mandal et al., 2012), namely the numerator ∆𝑅� of Cohen’s 𝑓� 
equation, without the denominator correction. This second measure tends to yield lower results, 
thus being a more conservative effect size estimate. By convention, effect sizes of 0.02, 0.15, and 
0.35 are respectively termed small, medium, and large (Cohen, 1992; Kock, 2014b). 
    The minimum sample size at which a PLS-SEM test achieves an acceptable level of power 
(usually .8) depends on the effect size associated with the path coefficient under consideration 
(Cohen, 1988; 1992; Goodhue et al., 2012; Kock, 2014b). The higher is the magnitude of a path 
coefficient at the population level, the higher is usually its effect size, and the greater is the 
probability that a true effect will be properly detected with a small sample. Therefore strong path 
coefficients at the population level, whether they are negative or positive, tend to require very 
small sample sizes for their proper identification. So, if a researcher knows that all of the path 
coefficients of a model will be strong prior to collecting empirical data, leading to large effect 
sizes, the researcher may consider using a small sample size in a PLS-SEM analysis. As we will 
see later, we can use the notion of effect size for a general minimum sample size 
recommendation that does not rely on predictions about path strength. 
    More often than not PLS-SEM is presented as being a desirable multivariate data analysis 
method due to its remarkable ability to achieve acceptable power at very small sample sizes 
(Hair et al., 2011; 2014). While this may be true for models containing only strong path 
coefficients and large effect sizes, it is not true for models with path coefficients of more modest 
magnitudes, and certainly not true for models with fairly weak path coefficients. (At points in 
our discussion we deviate somewhat from strict technical statistical jargon, for simplicity. For 
example, in the previous sentence we refer to “weak” path coefficients, meaning positive or 
negative path coefficients whose absolute values are low.) It will be demonstrated here that PLS-
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SEM’s power is consistent with what one would expect from ordinary least squares regression, 
and probably other methods with similar mathematical underpinnings. 

Comparison methods for minimum sample size estimation 

    In this section we discuss three methods for minimum sample size estimation in PLS-SEM 
that we use as a basis for comparison when we evaluate our proposed methods. The first method 
presented here relies on Monte Carlo simulations (Paxton et al., 2001; Robert & Casella, 2013). 
The second method, the 10-times rule method (Goodhue et al., 2012; Hair et al., 2011), is the 
most widely used in PLS-SEM, in the field of IS as well as other fields. The third method, the 
minimum R-squared method, has been proposed by Hair et al. (2014, p. 21) as an alternative to 
the 10-times rule method. 

The Monte Carlo simulation method 
    Employing the Monte Carlo simulation (Kock, 2016; Paxton et al., 2001; Robert & Casella, 
2013) method for minimum sample size estimation in PLS-SEM requires the researcher to set a 
number of sample size points (e.g., 15, 20, 30 and 40), generate a number of samples (e.g., 1000) 
for each sample size point, calculate the percentages of samples in which significant effects (e.g., 
for which P < .05) were found for each sample size point (the power associated with each sample 
size), and estimate via interpolation the minimum sample size at which power reaches the 
desired threshold (i.e., .8). Table 1 illustrates this process through a set of results for four sample 
size points. 
    The table shows the power values calculated for each sample size for the CL→LO link in the 
model used in MBLC’s study, whose path coefficient was estimated at .397. The process has to 
be performed individually for each path coefficient in a PLS-SEM model. From the table, we can 
see that the power threshold of .8 is reached for a sample size 𝑁 where 20 < 𝑁 < 30. Through 
simple linear interpolation we calculate the smallest positive integer greater than 
 

20 + (30 − 20) (.��.���)
(.����.���)

, which is 28.  

 
    Thus the minimum required sample size is estimated via this method to be 28. Note that this 
method relies on a well informed choice of sample size points, which in this example are: 15, 20, 
30 and 40. Another set of sample size points may not encompass the sample size for which the 
power threshold of .8 is reached; for example: 100, 200, 300 and 400. 
 
Table 1: The Monte Carlo simulation method 
 
N Power 
15 .477 
20 .646 
30 .847 
40 .919 
 
 
    Therefore, the Monte Carlo simulation method often requires two or more simulations. The 
initial simulations are experimental, to define an appropriate set of sample size points. These 
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would be followed by a final simulation, whereby one would estimate via interpolation the 
minimum sample size at which power reaches the desired threshold of .8. 
    The samples (e.g., 1000) generated for each sample size point via the Monte Carlo simulation 
method are based on a population model defined by the researcher. The process of building 
samples in the Monte Carlo simulation method also relies on common factor model assumptions 
(Kline, 1998; Kock, 2016). This process is explained in more detail in Appendix A. The Monte 
Carlo simulation method is a complex way by which minimum sample sizes can be determined, 
and for which technical methodological expertise is required. 
    As we can see, minimum sample size estimation via the Monte Carlo simulation method may 
be a very time consuming alternative, even for experienced methodological researchers with 
good computer programming skills. Nevertheless, it is a fairly precise method for minimum 
sample size estimation, and in fact the preferred method for that purpose. As such, we use it to 
obtain baseline estimates against which other methods are compared. 

The 10-times rule method 
    The most widely used minimum sample size estimation method in PLS-SEM, in the field of IS 
as well as other fields, is the “10-times rule” method (Hair et al., 2011; Peng & Lai, 2012). 
Among the variations of this method, the most commonly seen is based on the rule that the 
sample size should be greater than 10 times the maximum number of inner or outer model links 
pointing at any latent variable in the model (Goodhue et al., 2012). 
    Unlike in the Monte Carlo simulation method, minimum sample size estimation via the 10-
times rule method does not depend on the magnitude of the path coefficients in the model. For 
example, in the model used in MBLC’s study, the 10-times rule method leads to the minimum 
sample size estimation of 20, regardless of the strengths of the path coefficients. This is because 
the maximum number of model links pointing at any variable in the model is 2, which multiplied 
by 10 yields 20. As we will see later, this method can lead to grossly inaccurate estimations of 
minimum required sample size. 

The minimum R-squared method 
    In their pioneering book on PLS-SEM, Hair et al. (2014, p. 21) discuss an alternative to the 
10-times rule for minimum sample size estimation. We refer to this method as the “minimum R-
squared method”, because the minimum 𝑅� in the model is prominently used for minimum 
sample size estimation. This method, which builds on Cohen’s (1988; 1992) power tables for 
least squares regression, relies on a table listing minimum required sample sizes based on three 
elements. 
    The first element of the minimum R-squared method is the maximum number of arrows 
pointing at a latent variable (a.k.a. construct) in a model. The second is the significance level 
used. The third is the minimum 𝑅� in the model. Table 2 is a reduced version of the table 
presented by Hair et al. (2014, p. 21). This reduced version focuses on the significance level of 
.05, which is the most commonly used significance level in the field of IS, and assumes that 
power is set at .8. 
    For example, in the model used in MBLC’s study, the maximum number of arrows pointing at 
a latent variable is 2, and the minimum 𝑅� in the model is .549. There is no cell in the table for 
the minimum R-squared method for which these two values intersect, but the closest cell shows a 
minimum sample size of 33, which we use as the estimate. As we can see, this method appears to 
be an improvement over the 10-times rule method, as it takes as an input at least one additional 
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element beyond the network of links in the model. However, this method (i.e., the minimum R-
squared method) can also lead to grossly inaccurate estimations of minimum required sample 
size, which we will see later. 
 
Table 2: Table for the minimum R-squared method 
 
Maximum number 
of arrows pointing 

at a construct 

Minimum 𝑹𝟐 
in the model 

.10 .25 .50 .75 
2 110 52 33 26 
3 124 59 38 30 
4 137 65 42 33 
5 147 70 45 36 
6 157 75 48 39 
7 166 80 51 41 
8 174 84 54 44 
9 181 88 57 46 

10 189 91 59 48 
 
 

Our proposed methods for minimum sample size estimation 

    In this section we discuss two related methods, based on mathematical equations, for 
minimum sample size estimation in PLS-SEM. Neither method relies on Monte Carlo 
simulations or on elements that make up the 10 times rule or the minimum R-squared methods. 
The first method, called the inverse square root method, uses the inverse square root of a 
sample’s size for standard error estimation – hence its name. The second method, called the 
gamma-exponential method, relies on gamma and exponential smoothing function corrections 
applied to the standard error estimation employed in the first method. 

The inverse square root method 
    Whenever one or more researchers analyze samples taken from a population using PLS-SEM, 
each analysis generates various path coefficients. Each path coefficient (𝛽) will have a standard 
error (𝑆) associated with it. If we plot the distribution of the ratio 𝛽 𝑆⁄ , also indicating the 
location of a critical T ratio (Kock, 2015; Weakliem, 2016) for a specific significance level 
chosen, we will obtain a graph that will have the general shape shown in Figure 2. For each 
instance where the ratio 𝛽 𝑆⁄  surpasses the critical T ratio, the effect associated with the path 
coefficient 𝛽 will be correctly deemed as statistically significant. This assumes that the path 
coefficient refers to an effect that exists at the population level – a “true” effect. 
    The magnitude of the ratio 𝛽 𝑆⁄  increases with increases in the magnitude of the path 
coefficient 𝛽 and decreases in the standard error 𝑆. This standard error decreases with increases 
in sample size, as will be seen shortly below. Therefore, with increases in the magnitude of the 
path coefficient and of the sample size analyzed, the probability that the ratio 𝛽 𝑆⁄  will surpass 
the critical T ratio will increase. As a result, the likelihood that an effect that does exist at the 
population level will be mistakenly rejected will decrease. In other words, the power of the test 
will increase. 
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Figure 2: Distribution of the ratio 𝜷 𝑺⁄  
 

 
Note: T = critical T ratio for a specific significance level chosen. 
 
 
    As we can see from the figure, the power of a test associated with a given path coefficient for 
which a sign has been hypothesized can be defined as the probability that the ratio |𝛽| 𝑆⁄  will be 
greater than the critical T ratio for a specific significance level chosen (Cohen, 1988; Goodhue et 
al., 2012; Kock, 2015). Here |𝛽| is the absolute value of 𝛽, as a path coefficient strength’s 
influence on power is exerted whether the coefficient is positive or negative. The significance 
level normally chosen in the field of IS is .05 (i.e., P < .05), for which the critical T ratio can be 
denoted as T.��. This can be expressed mathematically as follows. 
 

𝑊 = 𝑃 �
|𝛽|
𝑆

> T.���. 
(1) 

 
    Statistical power is denoted as 𝑊 in (1), and 𝑃(∙) is the probability function. If we set power 
to be above a given level, most commonly .8 in IS research, the above can be expressed 
employing a cumulative probability function Φ(∙) for the standard normal distribution. 
Assuming that path coefficients are normally distributed, we can say that power will be greater 
than .8 when the cumulative distribution function for the standard normal distribution indicated 
in (2) is greater than .8. 
 

Φ�
|𝛽|
𝑆
− T.��� > .8. 

(2) 

 
    The assumption that path coefficients are normally distributed generally holds for PLS-SEM, 
because coefficients calculated based on sample sets taken randomly from a population tend to 
be distributed in conformity with the central limit theorem (Kipnis & Varadhan, 1986; Miller & 
Wichern, 1977). 
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    Taking (2) as a basis, we obtain (3) in terms of the standardized score associated with the 
value .8 of the cumulative distribution function for the normal distribution (𝑧.�.). To obtain (3) 
we also take into consideration the property that T.�� = 𝑧.��. 
 

|𝛽|
𝑆
− T.�� > 𝑧.� → 

 

|𝛽|
𝑆

> T.�� + 𝑧.� → 
 

|𝛽|
𝑆

> 𝑧.�� + 𝑧.�. 
(3) 

 
    Any given z-score 𝑧� can be calculated based on a standard normal distribution, which is a 
normal distribution with a mean of 0 and a standard deviation of 1. The score is a value 
associated with the probability x that a random variable takes on a value that is equal to or less 
than 𝑧�. In MATLAB it is obtained using the function norminv(x,0,1). In Excel it is obtained 
using the function NORMINV(x,0,1) or the function NORMSINV(x). 
    An estimate 𝑆� of the true standard error (𝑆) can be produced through (4). This estimate lends 
the name to the method presented here, the inverse square root method, and is known to be 
biased (Gurland & Tripathi, 1971; Kock, 2014a), consistently underestimating the corresponding 
true value at very small samples (i.e., 1 < 𝑁 ≤ 10), and consistently overestimating it at greater 
sample sizes (i.e., 𝑁 > 10). Shortly we will discuss two approaches to correct this bias, which 
are combined in our second proposed minimum sample size estimation method, the gamma-
exponential method. 
 

𝑆� =
1
√𝑁

. (4) 

 
    Employing the Excel function NORMSINV(x) we obtain the values for 𝑧.�� and 𝑧.�, or 
NORMSINV(.95) and NORMSINV(.8), which are respectively 1.645 and 0.842. The sum 
𝑧.�� + 𝑧.� is thus 2.486. Combining (3) and (4), with |𝛽|��� replacing |𝛽| and representing the 
absolute value of the statistically significant path coefficient with the minimum magnitude in the 
model, we then have: 
 

|𝛽|����𝑁� > 𝑧.�� + 𝑧.� →  

𝑁� > �
𝑧.�� + 𝑧.�

|𝛽|���
�
�
→  

𝑁� > �
2.486
|𝛽|���

�
�

. (5) 
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    Based on our proposed inverse square root method, the minimum sample size is estimated as 
the smallest positive integer that satisfies (5). As such, it can be calculated by rounding the result 
of the calculation of the right side of the equation to the next integer. In MATLAB it can be 
obtained using the function ceil((2.486/bmin)^2), where bmin is a variable that stores the value 
of |𝛽|���. In Excel it can be obtained using the function ROUNDUP((2.486/bmin)^2,0), where 
bmin is the name of a cell that stores the value of |𝛽|���. 

The gamma-exponential method 
    As we noted earlier, our estimate 𝑆� of the true standard error (𝑆), obtained through the formula 
1 √𝑁⁄ , is known to be biased. A classic gamma function correction of the bias for very small 
sample sizes (i.e., 1 < 𝑁 ≤ 10) was proposed by Gurland & Tripathi (1971): 
 

𝑆� =
1

𝑐√𝑁
 ,  

 
    where 
 

𝑐 = ����
�

 
������ �

�����
 , and Γ(∙) is the gamma function.  

 
    With the gamma function correction proposed by Gurland & Tripathi’s (1971), the resulting 
equation (6) to obtain the minimum required sample size 𝑁� becomes more complex. This 
equation can be solved by means of a computer program that starts with 𝑁� = 1 and progressive 
increments the value of 𝑁� to 2, 3 etc. until the smallest positive integer that satisfies the equation 
is obtained. In MATLAB the value of Γ(𝑥) is obtained using the function gamma(x). In Excel it 
is obtained using the two-function formula EXP(GAMMALN(x+1)). 
 

|𝛽|����𝑁��
𝑁� − 1

2
 
Γ �𝑁

� − 1
2 �

Γ �𝑁
�
2�

> 2.486. (6) 

 
    The gamma function correction equation has no effect, in terms of minimum required sample 
size estimation, for 𝑁 > 10. The reason for this is that the correction coefficient 𝑐 quickly 
converges to 1 for 𝑁 > 10. An exponential smoothing function correction of the standard error 
bias was proposed and validated by Kock (2014a) in the context of PLS-SEM for sample sizes 
greater than those covered by the gamma function correction (i.e., 𝑁 > 10): 
 

𝑆� =
1
√𝑁

𝑒
���|�|

√�
�
.  
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    With this exponential smoothing function correction, the equation (7) to obtain the minimum 
required sample size 𝑁� also ends up being more complex. As with the gamma function 
correction equation, this equation can be solved with a computer program that starts with 𝑁� = 1 
and progressive increments its value to 2, 3 etc. until the smallest positive integer that satisfies 
the equation is obtained. In MATLAB the value of 𝑒� is obtained using the function exp(x). In 
Excel it is obtained using the function EXP(x). 
 

|𝛽|����𝑁�𝑒
��|�|���

���
�

> 2.486. (7) 

 
    We developed an Excel spreadsheet with Visual Basic code, discussed in Appendix B, to 
obtain corrected estimates based on equations (6) and (7). This enabled us to implement the 
gamma-exponential method, by combining gamma and exponential smoothing function 
corrections applied to the standard error estimation employed in the inverse square root method. 
Therefore, the gamma-exponential method can be seen as a refinement of the inverse square root 
method. 

Monte Carlo experiments 

    In this section we discuss three Monte Carlo experiments, which we have implemented with 
MATLAB. Both employ the Monte Carlo simulation approach discussed in Appendix A. In 
these Monte Carlo experiments, 1000 samples were created and analyzed for each sample size. 
Each Monte Carlo experiment was conducted at least twice; i.e., at least two instances of each 
Monte Carlo experiment were conducted, with all of the corresponding results compiled and 
summarized. The results obtained across different instances of the same Monte Carlo experiment 
were virtually identical. This consistency in the results was primarily due to the large number of 
samples (i.e., 1000) created and analyzed for each sample size. 
    The first Monte Carlo experiment builds on the results from MBLC’s study to develop its 
population model. As such, the true path coefficients are rather strong; which, as will be seen, 
lead to small minimum sample size estimates. To illustrate the influence of the path coefficients’ 
magnitudes on minimum sample size estimation, the second Monte Carlo experiment uses the 
paths of the model in MBLC’s study, but with all path coefficients reduced by .25. The third 
Monte Carlo experiment has path coefficients varying from .1 to .35, thus further illustrating the 
performance of the various minimum sample size estimation methods under more extreme 
conditions (e.g., a very small path coefficient) than the two previous experiments. In these Monte 
Carlo experiments the PLS-SEM analyses employ the PLS Mode A algorithm and the 
bootstrapping method for P value estimation; these are discussed in appendices C and D. 

First Monte Carlo experiment 
    Figures 3 to 5 show graphs relating power to sample size for each of the paths of the model in 
MBLC’s study. The sample size points shown (i.e., 15, 20 … 50) were chosen to allow us to 
estimate the minimum required sample size, as well as to illustrate how the power values vary 
based on sample size and path coefficient magnitude. 
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Figure 3: Paths CI→CL (left, βp=.506) and CE→CL (right, βp=.536) 
 

 
 

 
Figure 4: Paths CL→LO (left, βp=.397) and CQ→LO (right, βp=.525) 
 

 
 

 
Figure 5: Paths CL→SO (left, βp=.435) and CQ→SO (right, βp=.498) 
 

 
 

 
 
    The population model had the same coefficients as those in MBLC’s study’s results. The 
power values shown are the percentages of path coefficients for which a significant effect was 
found, based on the significance level of .05 (i.e., P < .05) normally chosen in the field of IS. The 
P value calculation method employed was bootstrapping with 500 resamples. 
    As we can see, power values varied based on sample size and path coefficient magnitude. 
Power values increased as both sample sizes and path coefficient strengths increased. Therefore, 
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the minimum required sample size for the entire PLS-SEM analysis was the one at which the 
power of .8 was achieved for the path with the smallest magnitude, namely CL→LO (βp=.397), 
indicated in the respective graph. Based on the graphs above, the minimum required sample size 
for the entire PLS-SEM analysis was estimated based on the Monte Carlo simulation to be 28. 
    Table 3 shows the estimates of the minimum required sample size based on the Monte Carlo 
simulation, the 10-times rule, as well as the R-squared, inverse square root and gamma-
exponential methods. The Monte Carlo simulation estimate of 28 stands in for the true minimum 
required sample size. As we can see, the closest estimate to this true minimum required sample 
size is the gamma-exponential method estimate of 26. 
 
Table 3: Performance of different estimation methods 
 
 

Method Minimum required sample size 
Monte Carlo simulation 28 
10-times rule 20 
Minimum R-squared 33 
Inverse square root 40 
Gamma-exponential 26 
 
 
    Arguably all of the methods, except for the 10-times rule, led to minimum sample size 
estimates that would not lead to power levels drastically below the acceptable threshold. If used 
in an empirical study, the 10-times rule would lead to a sample size whose power would be 
approximately .65, which is well below the threshold of .8 for the .05 significance level. The 
gamma-exponential method would lead to a small underestimation: a sample size whose power 
would be just under .8 for the .05 significance level. 
    If used in an empirical study, the minimum R-squared and inverse square root methods would 
lead to relatively small and “harmless” overestimations of the true minimum required sample 
size needed. Arguably these overestimations would be harmless because they would lead to 
power values greater than the threshold of .8 for the .05 significance level – that is, more 
statistical power – without placing a significant demand on researchers for sample sizes much 
larger than necessary. 

Second Monte Carlo experiment 
    Figures 6 to 8 show graphs relating power to sample size for each of the paths of the model in 
MBLC’s study, but with all path coefficients reduced by .25. As with the first Monte Carlo 
experiment, the sample size points shown (i.e., 100, 200 … 400) were chosen to allow us to 
estimate the minimum required sample size, as well as to illustrate how the power values vary 
based on sample size and path coefficient magnitude. 
    Unlike the population model employed in the first Monte Carlo experiment, here the 
coefficients are much smaller than those in MBLC’s study’s results. Except for this key 
difference, the procedures to generate the numbers on the graphs are the same as those in the first 
Monte Carlo experiment. The power values shown are the percentages of path coefficients for 
which a significant effect was found, based on the significance level of .05. As before, P values 
were calculated through bootstrapping with 500 resamples. 
    Consistently with the first Monte Carlo experiment, power values varied based on sample size 
and path coefficient magnitude; increasing with both sample size and path coefficient magnitude. 
As expected, the minimum required sample size for the entire PLS-SEM analysis was the one at 
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which the power of .8 was achieved for the path with the smallest magnitude, namely CL→LO 
(βp=.147). Based on the graphs above, the minimum required sample size for the entire PLS-
SEM analysis was estimated to be 265 based on the Monte Carlo simulation. 
 
Figure 6: Paths CI→CL (left, βp=.256) and CE→CL (right, βp=.286) 
 

 
 

 
Figure 7: Paths CL→LO (left, βp=.147) and CQ→LO (right, βp=.275) 
 

 
 

 
Figure 8: Paths CL→SO (left, βp=.185) and CQ→SO (right, βp=.248) 
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Table 4: Performance of different estimation methods 
 
 

Method Minimum required sample size 
Monte Carlo simulation 265 
10-times rule 20 
Minimum R-squared 110 
Inverse square root 287 
Gamma-exponential 273 
 
 
    Table 4 shows the estimates of the minimum required sample size based on the Monte Carlo 
simulation, the 10-times rule, as well as the minimum R-squared, inverse square root and 
gamma-exponential methods. The minimum R-squared obtained in this second experiment was 
slightly lower than .1, which was used to produce the estimate employing the minimum R-
squared method. As before, the Monte Carlo simulation estimate of 265 stands in for the true 
minimum required sample size. Again, as before, the closest estimate to this true minimum 
required sample size is the gamma-exponential method estimate of 273. 
    Here we can see that the 10-times rule and the R-squared method estimates were way off 
mark, significantly underestimating the true minimum required sample size. This was 
particularly true of the 10-times rule. If used in an empirical study, either of these methods would 
lead to sample sizes whose power would be well below the threshold of .8 for the .05 
significance level. 
    When employed in an empirical study, the gamma-exponential and inverse square root 
methods would lead to relatively small and harmless overestimations of the true minimum 
required sample size needed. The overestimations would lead to power values greater than the 
threshold of .8 for the .05 significance level, arguably without placing a significant demand on 
researchers for sample sizes much larger than necessary. Even the estimate of 287, obtained via 
the inverse square root method, would require only 22 additional data points beyond the 265 
necessary for the power threshold of .8 to be achieved. 

Third Monte Carlo experiment 
    Figures 9 to 11 show graphs relating power to sample size for each of the paths of the model 
in MBLC’s study, but with the path coefficients starting at the very small value of .1 and 
incrementally going up to .35. The sample size points shown (30, 50, 100 … 700) were chosen to 
allow us to estimate power values and the minimum required sample size under somewhat 
extreme conditions; starting with a very small path coefficient of .1 and with a very small sample 
size of 30. The sample size points were also chosen to illustrate how the power values 
incrementally grow based on path coefficient magnitude, as well as based on sample size. 
    We can see from the graphs, as expected from our mathematical reasoning presented earlier, 
that the path with the smallest magnitude CI→CL (βp=.1) is the one that drove up the minimum 
required sample size. We also notice something interesting with this path, and also with the small 
path CE→CL (βp=.15): a slightly anomalous behavior in the area involving the first two sample 
size points (i.e., 30 and 50). It seems that at these small sample sizes the power values for the 
two weakest paths are a bit higher than they should be. There reason for this is that the PLS 
Mode A algorithm we used in our PLS-SEM analyses tends to overestimate very weak paths at 
very small samples, by “capitalizing on error” (see, e.g., Goodhue et al., 2007). 
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Figure 9: Paths CI→CL (left, βp=.100) and CE→CL (right, βp=.150) 
 

 
 

 
Figure 10: Paths CL→LO (left, βp=.200) and CQ→LO (right, βp=.250) 
 

 
 

 
Figure 11: Paths CL→SO (left, βp=.300) and CQ→SO (right, βp=.350) 
 

 
 

 
 
    Capitalization on error is illustrated by the average path coefficient estimated in our Monte 
Carlo simulation for the path CI→CL (βp=.1) at sample size 30, which was .108. This value is a 
bit higher than the true value of .1. This phenomenon may be at the very source of the mistaken 
belief that PLS-SEM has a remarkable ability to achieve acceptable power at very small sample 
sizes (Hair et al., 2011; 2014). Our results show that, even with capitalization on error, the power 
achieved for the small path CI→CL (βp=.1) was too low at the small sample size of 30. It was 
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lower than .2, and thus well below the generally acceptable level of .8 for P < .05 (Cohen, 1988; 
1992; Goodhue et al., 2012; Kock, 2016). 
    Table 5 shows the estimates of the minimum required sample size based on the various 
methods used in the two previous Monte Carlo experiments. The minimum R-squared obtained 
in this third experiment was much lower than .1, which was used to produce the estimate 
employing the minimum R-squared method. As with the two previous experiments, the Monte 
Carlo simulation estimate of 599 stands in for the true minimum required sample size. Again, as 
before, the closest estimate to this true minimum required sample size is the gamma-exponential 
method estimate of 605. 
 
Table 5: Performance of different estimation methods 
 
 

Method Minimum required sample size 
Monte Carlo simulation 599 
10-times rule 20 
Minimum R-squared 110 
Inverse square root 619 
Gamma-exponential 605 
 
 
    As with the second Monte Carlo experiment, we can see that the 10-times rule and the R-
squared method estimates were again way off mark, significantly underestimating the true 
minimum required sample size. If used in an empirical study, either of these methods would lead 
to sample sizes whose power would be unacceptably low; well below the threshold of .8 for the 
.05 significance level. Even the sample size of 110 obtained through the minimum R-squared 
method would lead to a power level below .3; and this sample size is considerably greater than 
the sample size of 20 suggested by the 10-times rule. We can also see that the inverse square root 
and gamma-exponential methods yielded minimum sample size estimates that are fairly 
consistent with the one obtained via the Monte Carlo simulation method. 

Additional Monte Carlo experiments 
    As part of our ongoing research on minimum required sample sizes in PLS-SEM, we have 
conducted a number of additional Monte Carlo experiments. These experiments included a 
variety of models, some simpler and others more complex than the model in MBLC’s study. The 
results of these Monte Carlo experiments have been largely consistent with those of the three 
experiments presented above. 
    Several of the additional experiments that we have conducted included non-normal data. In 
some cases the level of non-normality was considerable; e.g., datasets created to have skewness 
and excess kurtosis values of 2.828 and 12 respectively. Consistently with past claims and 
related research (Chin, 1998; Hair et al., 2011; 2014; Kock, 2016), we found PLS-SEM to be 
fairly robust to deviations from normality, to the point that the Monte Carlo experiments yielded 
results that were virtually the same with both normal and non-normal data. Further analysis 
suggested that the underlying reasons for this are that least squares regression methods in general 
are quite robust to deviations from normality, and that so is bootstrapping. This is explained in 
more detail in Appendix E, with examples. 
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Discussion 

    In this section we discuss several issues in connection with minimum sample size estimation. 
We also provide several recommendations, primarily aimed at PLS-SEM users who are not 
methodological researchers. Among the issues addressed in this section are the method that 
arguably should be used for minimum sample size estimation, and minimum sample size 
estimation after and before data collection and analysis. 

Which method should one use for minimum sample size estimation? 
    It is noteworthy that the gamma-exponential method, which is supposed to improve upon the 
precision of the inverse square root method, appears to: (a) slightly underestimate the minimum 
require sample size for small samples (e.g., 15 ≥ 𝑁 < 50); and (b) slightly overestimate it for 
larger samples (e.g., 𝑁 ≥ 100). Does this mean that the gamma-exponential method yields 
incorrect estimates? 
    To answer this question we have also calculated the actual standard errors, as the actual 
standard deviations of the path coefficients, in the Monte Carlo experiments. These were 
calculated in addition to the standard error estimates yielded by bootstrapping and the gamma-
exponential method corrections. As it turns out, the standard error estimates yielded by the 
gamma-exponential method corrections were closer to the actual values than those generated by 
bootstrapping. 
    For example, for the path CL→LO in the first Monte Carlo experiment (βp=.397) at 𝑁 = 15 
the actual standard error was .181, the bootstrapping estimate was .225, and the gamma-
exponential method estimate was .2. For the same path CL→LO in the second Monte Carlo 
experiment (βp=.147) at 𝑁 = 100 the actual standard error was .096, the bootstrapping estimate 
was .093, and the gamma-exponential method estimate was .096. These are consistent with the 
patterns of apparent imprecision that we observed, namely the slight underestimations and 
overestimations at different sample sizes. 
    In other words, the gamma-exponential method seems to yield the most precise estimates of 
standard errors, and thus minimum sample size estimates that are closest to the true values than 
any of the other methods discussed in this paper. This applies even to the Monte Carlo 
simulation method, because our implementation of this method relied on bootstrapping, which is 
the standard for PLS-SEM. This implementation decision was not made by mistake, as we 
attempted to mimic actual analyses conducted by empirical researchers employing PLS-SEM. It 
would be impossible to estimate actual standard errors in empirical PLS-SEM studies, since the 
true population values are not known. 
    Nevertheless, the gamma-exponential method is much more complex in its application 
(relying on a computer program) than the inverse square root method. The latter, in addition to 
being simpler (relying on a simple equation), is also fairly precise, leading to small 
overestimations that place light demands on researchers in terms of data points over the true 
minimum sample sizes required. Furthermore, the inverse square root method is “safe” in its 
slight imprecision, as it seems to always lead to small overestimations of the minimum sample 
sizes required. 
    Given the above, our recommendation for PLS-SEM users who are not methodological 
researchers is that they use the inverse square root method for minimum sample size estimation. 
They will be generating estimates that are both fairly precise and safe (slight overestimations), 
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with both normal and non-normal data. Their estimates will always be a little larger than the true 
minimum sample sizes required, but not by much. 

Minimum sample size estimation after data collection and analysis 
    When minimum sample size estimation is conducted after data collection and analysis, its 
results can be used as a basis for additional data collection, as well as adjustments in the analysis 
and in the hypothesis testing assumptions. Minimum sample size estimation after data collection 
and analysis is known as retrospective estimation; as opposed to prospective estimation, 
conducted before data collection and analysis. Although there is debate on this topic, the latter 
(prospective) approach is generally recommended (Gerard et al., 1998; Nakagawa & Foster, 
2004). 
    Additional data collection involves not only collecting additional data points, but also re-
testing the model with the new dataset to ensure that the path coefficient with the minimum 
absolute magnitude has not decreased. Let us assume that a researcher collects 100 data points to 
test a PLS-SEM model, and finds that the path coefficient with the minimum absolute magnitude 
in the model is .237. Using the inverse square root method, the minimum required sample size is 
estimated to be 111. The researcher then proceeds to collect 11 additional data points and re-tests 
the model. If the path coefficient with the minimum absolute magnitude in the model is still .237 
or higher, then the minimum sample size requirement is met. 
    Instead of collecting additional data points, the researcher may rely on adjustments in the 
analysis and in the hypothesis testing assumptions. Taking the example above as a basis, instead 
of collecting 11 additional data points the researcher may simplify the model somewhat by 
removing one or more competing links (i.e., links from multiple predictors to one criterion latent 
variable), particularly links competing with the link (or path) whose coefficient is .237. Clearly 
this should be informed by theory and past research; otherwise the empirical study becomes a 
data-fitting exercise. 
    Let us say that the researcher removed one link competing with the link whose path coefficient 
is .237. This removal would have a good chance of increasing the path coefficient with the 
minimum absolute magnitude, because each additional competing link tends to decrease the path 
coefficients for other competing links. Let us say that the path coefficient with the minimum 
absolute magnitude is .286 after the removal of one competing link. Using the inverse square 
root method, the minimum required sample size is estimated to be 76. This minimum required 
sample size is already met by the 100 data points originally collected. In this case, a 
simplification of the research model obviates the need for additional data collection. 
    An alternative to simplifying the model, which does not involve collecting more data either, is 
to regard a path coefficient that is too low in the context of a given sample size to be non-
significant regardless of the corresponding P value. For example, let us assume that, with 100 
data points, the two path coefficients with the smallest absolute magnitudes are .237 and .253, 
both found to be significant at P < .05 in an empirical study. Using the inverse square root 
method, the minimum required sample sizes associated with these two coefficients would 
respectively be 111 (as noted before) and 97. Here the researcher would regard the analysis to 
have failed to support the hypothesis associated with the .237 path, and succeeded in its support 
of the hypothesis associated with the .253 path. 
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Minimum sample size estimation before data collection and analysis 
    Minimum sample size estimation before data collection and analysis, or prospective 
estimation, is generally recommended over the retrospective approach of estimation after data 
collection and analysis (Gerard et al., 1998; Nakagawa & Foster, 2004). In prospective 
estimation, the researcher must decide at the outset the acceptable value of the path coefficient 
with the minimum absolute magnitude. This is likely to drive hypothesis testing beyond 
considerations regarding P values. In this context, an important question is: What is a reasonable 
acceptable value of the path coefficient with the minimum absolute magnitude in a model?  
    Based on Cohen’s (1988; 1992) power assessment guidelines, a reasonable answer to this 
question would be a value that would satisfy 𝛽� (1 − 𝛽�)⁄ > .02 in a very simple model with 
only one predictor and one criterion latent variable. In other words, the effect size measured via 
Cohen’s 𝑓� coefficient in a model with only two variables X and Y, linked as X→Y, would have 
to be greater than Cohen’s (1988; 1992) minimum acceptable effect size of .02. 
    More complex models would tend to lead to lower effect sizes, because such models would 
likely include more competing links. Given this, we could set as our target an effect size that is 
twice Cohen’s (1988; 1992) minimum acceptable, namely an effect size of .04. Our continuing 
research on this topic, including a variety of targeted Monte Carlo simulations, suggests that this 
rule of thumb covers the vast majority of models; including fairly complex models, as long as 
they are free of vertical and lateral collinearity (Kock & Lynn, 2012). The corresponding 
inequality for this proposed rule of thumb would be 𝛽� (1 − 𝛽�)⁄ > .04, whose solution is 
𝛽 ≥ .197. 
    Using the inverse square root method, the above would lead to a minimum required sample 
size of 160. Given this, another general rule of thumb could be proposed, this one as an answer 
to the following question: What is a reasonable value for minimum sample size, if we do not 
know in advance the value of the path coefficient with the minimum absolute magnitude? The 
answer would be 160, based on the inverse square root method. Based on the gamma-exponential 
method, the answer would be 146. 
    A different approach for prospective minimum sample size estimation is to set the acceptable 
value of the path coefficient with the minimum absolute magnitude based on past empirical 
research or the results of a pilot study. Either of these could suggest a large path coefficient of 
minimum absolute magnitude, which would lead to a relatively small sample size requirement. 
The danger here is in underestimating the minimum required sample size, which would call for 
conservative prospective estimations of the path coefficient of minimum absolute magnitude. 
    For example, if past empirical research or a pilot study suggests a path coefficient of minimum 
absolute magnitude of .35, the inverse square root method would yield a minimum required 
sample size of 51. Still, after having collected and analyzed 51 data points in an empirical study, 
a researcher would have to make sure that the path coefficient of minimum absolute magnitude 
was not lower than the expected .35. (A path coefficient of minimum absolute magnitude equal 
to or higher than .35 would have been acceptable.) If the path coefficient of minimum absolute 
magnitude turned out to be lower than the expected .35, the researcher would have to rely on 
approaches similar to those discussed earlier in connection with retrospective estimation (e.g., 
additional data collection). 

Additional issues 
    The results of our third Monte Carlo experiment illustrated the phenomenon of capitalization 
on error, whereby a small path coefficient of .1 was overestimated by the PLS Mode A algorithm 
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we used in our PLS-SEM analyses. This clearly occurred for the sample size of 30, and seems to 
be a reflection of a general pattern that occurs with the PLS Mode A algorithm under certain 
conditions. Notable among those conditions are: (a) very small path coefficients (e.g., .1), and (b) 
very small sample sizes (e.g., 30). 
    Our results suggest that the methods we propose here for minimum sample size estimation are 
not affected by capitalization on error. The main reason for this is that our proposed methods 
tend to generate minimum sample size estimates for small path coefficients that are far above the 
sample sizes at which capitalization on error occurs. The fact that our methods focus on high 
power values (i.e., greater than .8) for minimum sample size estimation is a key element in 
avoiding bias due to capitalization on error. If we had tried to develop methods to estimate 
minimum sample sizes for low power values (e.g., .2), capitalization on error might become an 
issue. 
    Collecting and analyzing data at multiple levels of analysis can have an impact on minimum 
sample size estimation; e.g., collecting data at the individual and team levels. We see this in 
MBLC’s study, where data from 17 project teams comprising 68 developers and 17 clients was 
collected, and where each group had 4 developers and 1 client. MBLC collected and analyzed 
data at the team level of analysis, which led to a rather small sample size of 17, and team 
aggregation of the individual data. If they had considered the individual team member to be the 
unit of analysis, the sample size would have been 85, but the analysis would have to become 
more complex in order to control for the effect of team membership on various hypothesized 
relationships. Another aspect that this type of analysis would arguably have to control for is 
whether the individual is a developer or a client. The topic of multi-level data collection and 
analysis is beyond the scope of the discussion presented here. Nevertheless, we provide in 
Appendix F a basic discussion of this topic in the context of MBLC’s study. 

Conclusion 

    IS researchers have been at the forefront of the development, software implementation, and 
use of PLS-SEM (Aguirre-Urreta & Marakas, 2013; Chin, 1998; Chin et al., 2003; Kock, 2010). 
One of the most fundamental issues in PLS-SEM is that of minimum sample size estimation, 
where the “10-times rule” method has been a favorite (Hair et al., 2011) due to its simplicity of 
application – it builds on the rule that the sample size should be greater than 10 times the 
maximum number of inner or outer model links pointing at any latent variable in the model. 
    In spite of the 10-times rule method’s simplicity of application, it has been shown in the past 
to lead to inaccurate estimates (Goodhue et al., 2012). We proposed two related methods, based 
on mathematical equations, as alternatives for minimum sample size estimation in PLS-SEM: the 
inverse square root method, and the gamma-exponential method. Based on three Monte Carlo 
experiments, we demonstrated that both methods are fairly accurate. We also showed that the 
first method is particularly attractive in terms of its simplicity of application. 
    As demonstrated through our analyses and related discussion, the gamma-exponential method 
is much more complex in its application (relying on a computer program) than the inverse square 
root method. The latter, in addition to being simpler (relying on a simple equation), is also fairly 
precise, leading to small overestimations; and “safe” in its slight imprecision, apparently always 
leading to small overestimations of the minimum sample sizes required. 
    Consistently with these findings, it is our recommendation for PLS-SEM users who are not 
methodological researchers that they use the inverse square root method for minimum sample 
size estimation at the early stages of their research design. By doing so, those researchers will 
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generate estimates that are both fairly precise and safe, with both normal and non-normal data. 
Our analyses suggest that their estimates will always be somewhat larger than the true minimum 
sample sizes required, but not by much, placing light demands on data collection beyond what 
would actually be needed. 
    The field of IS brings together researchers with a wide variety of skills and interests; counting 
among them methodological researchers, software developers, and expert users of 
methodological tools. The multidisciplinary nature of the field is perhaps one of its defining 
characteristics, and may be one of the reasons why IS has become a reference for other fields 
(Baskerville & Myers, 2002; Grover et al., 2006). Not surprisingly, IS researchers have provided 
the impetus for the widespread use of PLS-SEM (Chin, 1998; Chin et al., 2003; Kock, 2010), 
and IS researchers have also been at the forefront of questioning some of the claims in 
connection with PLS-SEM (Aguirre-Urreta & Marakas, 2013; Goodhue et al., 2012). It is our 
hope that this paper will contribute to this tradition of scholarly debate. 
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Appendix A: Monte Carlo simulations 

    In a Monte Carlo simulation the samples generated for each sample size point are based on a 
population model defined by the researcher, and build on common factor model assumptions, 
whose basic mathematical underpinnings are discussed in this appendix. For simplicity, and 
without any impact on the generality of the discussion presented here, we assume that variables 
are standardized – i.e., scaled to have a mean of zero and a standard deviation of 1. 
    Let 𝜁� be the error variable that accounts for the variance in an endogenous latent variable 𝐹� 
that is not explained by the predictor latent variables that point at 𝐹�. Let 𝐹� be one of the 𝑁� 
predictor latent variables that point at an endogenous latent variable 𝐹�. And let 𝜃�� be the 
standardized error variable that accounts for the variance in the indicator 𝑥�� that is not explained 
by its latent variable 𝐹�. 
    In a Monte Carlo simulation where multiple replications of a model are created (e.g., 1000 
replications, or samples), error variables and exogenous variables can be created according to 
equations (A.1) to (A.3). In these equations 𝑅𝑛𝑑𝑛(𝑁) is a function that returns a different 
normal random variable each time it is invoked, as a vector with N elements (where N is the 
sample size), and 𝑆𝑡𝑑𝑧(∙) is a function that returns a standardized variable. 
 

𝜁� ← 𝑆𝑡𝑑𝑧�𝑅𝑛𝑑𝑛(𝑁)�. (A.1) 
𝐹� ← 𝑆𝑡𝑑𝑧�𝑅𝑛𝑑𝑛(𝑁)�. (A.2) 
𝜃�� ← 𝑆𝑡𝑑𝑧�𝑅𝑛𝑑𝑛(𝑁)�. (A.3) 

 
    This assumes that simulated samples that follow normal distributions are desired. To obtain 
non-normal samples, transformations based on the normally-distributed variables can be 
employed. For example, equations (A.4) to (A.6) transform the normal variables into 
corresponding non-normal variables that follow a 𝜒� distribution with 1 degree of freedom; a 
distribution with theoretical skewness and excess kurtosis values of 2.828 and 12 respectively. 
 

𝜁� ← 𝑆𝑡𝑑𝑧�𝜁���. (A.4) 
𝐹� ← 𝑆𝑡𝑑𝑧�𝐹���. (A.5) 
𝜃�� ← 𝑆𝑡𝑑𝑧�𝜃����. (A.6) 

 
    After the error variables and exogenous latent variables are created, endogenous latent 
variables are produced based on the true population path coefficients defined beforehand by the 
researcher. This is indicated in (A.7), where 𝑅�� are the correlations among the linked latent 
variables. Finally, indicators are created based on the true population loadings based on (A.8). 
 

𝐹� = ∑ 𝛽��
��
��� 𝐹� + ���1 − ∑ 𝛽��𝑅��

��
��� �� 𝜁�. 

(A.7) 

𝑥�� = 𝜆��𝐹� + ��1 − 𝜆��
�� 𝜃��, 𝑗 = 1 …𝑛�. 

(A.8) 
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    Normally a set of samples (e.g., 1000 samples) is generated through the above steps for each 
sample size, with sample sizes varying incrementally. Generally speaking, a larger set of samples 
created in connection with each sample size (e.g., 1000 instead of 100), will lead to more precise 
and replicable measures of statistical power obtained via a Monte Carlo simulation for that 
particular sample size. 
    The above discussion refers to one of two main Monte Carlo simulation approaches, whereby 
both latent variables and indicators are generated. This approach has been commonly used in 
methodological PLS-SEM investigations published in IS and statistics outlets (Chin et al., 2012; 
Goodhue et al., 2012; Kock, 2016). 
    In the other main Monte Carlo simulation approach only indicators are generated (see, e.g., 
Mattson, 1997). This latter approach is based on the Cholesky factorization technique (Schnabel 
& Eskow, 1990), and has the disadvantage of not giving methodological researchers access to 
latent variable scores. Such scores may be needed in the estimation of certain model coefficients 
such as vertical and lateral collinearity variance inflation factors (Kock & Lynn, 2012), and are 
useful in the generation of non-normal data (Goodhue et al., 2012; Kock, 2016).  
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Appendix B: Excel spreadsheet with Visual Basic code 

    Figure B.1 shows the Excel spreadsheet that we have developed to implement the gamma-
exponential method, by combining gamma and exponential smoothing function corrections 
applied to the standard error estimation employed in the inverse square root method. This Excel 
spreadsheet also shows the estimate obtained via the inverse square root method, for 
completeness. 
 
Figure B.1: Excel spreadsheet 
 

 
 
 
 

    As noted before, the T ratio for a chosen P value threshold is calculated as the z-score 
associated with 1 minus the P value threshold (e.g., T.�� = 𝑧.��). In Excel a z-score associated 
with any value x is obtained using the function NORMINV(x,0,1) or the function 
NORMSINV(x). 
    Exhibit B.1 shows the Visual Basic code associated with the spreadsheet. We have developed 
this code so that, whenever any of the cells in yellow in the Excel spreadsheet changes, new 
values for the minimum required sample sizes are calculated. The code employs cell labels (e.g., 
T, z etc.) instead of standard cell references (e.g., B3, B4 etc.) in the “Range” object calls. The 
cell labels used are indicated on the spreadsheet next to their respective values. 
 
Exhibit B.1: Visual Basic code 
 
 
Private Sub Worksheet_Change(ByVal Target As Range) 
 
    If Not Intersect(Target, Range("bmin, P, W")) Is Nothing Then 
        Calc_N_EXPSnGAMM 
    End If 
 
End Sub 
 
Sub Calc_N_EXPSnGAMM() 
 
    Dim T As Double 
    Dim z As Double 
    Dim b As Double 
    Dim cN As Long 
     
    T = Range("T").Value 
    z = Range("z").Value 
    b = Range("bmin").Value 
    cN = 1 
     
    Do While Abs(b) * cN ^ 0.5 * Exp((Exp(1) * Abs(b)) / cN ^ 0.5) <= T + z 
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        cN = cN + 1 
     
    Loop 
     
    If cN <= 10 Then 
     
        cN = 1 
             
        Do While Abs(b) * cN ^ 0.5 * ((cN - 1) / 2) ^ 0.5 * Exp(WorksheetFunction.GammaLn(cN / 2)) / 
Exp(WorksheetFunction.GammaLn((cN + 1) / 2)) <= T + z 
     
           cN = cN + 1 
        
        Loop 
 
    End If 
     
 
    Range("N_EXPS_GAMM").Value = cN 
 
End Sub 
 
 
 
    The Visual Basic code is split into two main functions: “Worksheet_Change” and 
“Calc_N_EXPSnGAMM”. The code under “Calc_N_EXPSnGAMM” implements only the 
gamma-exponential method. The inverse square root method is implemented without any Visual 
Basic code, simply through the formula: ROUNDUP(((T+z)/ABS(bmin))^2,0).  
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Appendix C: PLS Mode A 

    Various PLS-SEM algorithms have been developed based on Wold’s (1980) original design, 
of which an extensive discussion is provided by Lohmöller (1989). By far the most widely used 
of these algorithms is PLS Mode A. This is an iterative algorithm where indicator weight 
estimates 𝑤��� are initially set to 1, and latent variable estimates 𝐹�� are initialized with a 
standardized vector of the summed indicators. Then the values of  𝐹�� are re-estimated as 
 

𝐹�� ≔ 𝑆𝑡𝑑𝑧�∑ 𝑣���
��
��� 𝐹���. (C.1) 

 
    The step implemented via (C.1) is known as the “inside approximation”, where 𝑆𝑡𝑑𝑧(∙) is a 
function that returns a standardized column vector with 𝑁 rows (where 𝑁 is the sample size), and 
𝐴� is the number of latent variables 𝐹�� (𝑗 = 1 … 𝐴�) that are “neighbors” of the latent variable 𝐹��. 
Latent variables are referred to as neighbors when they are linked to one another by arrows, 
either by pointing at or being pointed at by neighbor latent variables. 
    The weights 𝑣��� are referred to as the “inner weights” (Lohmöller, 1989), and are estimated via 
three main schemes: centroid, factorial, and path weighting. In the centroid scheme the inner 
weights are set according to (C.2), as the signs (−1 or +1) of the estimated correlations among 
neighbor latent variables. In the factorial scheme the inner weights are set according to (C.3), as 
the correlations among neighbor latent variables. In the path weighting scheme the inner weights 
are set according to (C.4), as the path coefficients or correlations among neighbor latent 
variables, depending on whether the arrows go in or out respectively. 
 

𝑣��� ≔ 𝑆𝑖𝑔𝑛 �𝛴�������. (C.2) 

𝑣��� ≔ 𝛴������. (C.3) 

�
𝑣��� ≔ 𝛽��� , if 𝐹��  points at 𝐹�� ,

 𝑣��� ≔ 𝛴������ , if 𝐹�� points at 𝐹�� .
� 

(C.4) 

 
    Next the PLS Mode A algorithm proceeds by estimating what are known as the “outer 
weights”; which is done by solving (C.5) for 𝑤���, where: 𝑁� is the total number of latent 
variables in the model, 𝑛� is the number of indicators associated with latent variable 𝐹�, and 𝜖�̂� is 
the indicator error for the latent variable’s jth indicator. This step yields estimates of the loadings 
of the indicators on their respective latent variables. 
 

𝑥�� = 𝐹��𝑤��� + 𝜖�̂�, 𝑖 = 1 … 𝑁�, 𝑗 = 1 … 𝑛�. (C.5) 
 
    The PLS Mode A algorithm subsequently proceeds by estimating the latent variables as 
indicated in (C.6), through the step known as “outside approximation”. 
 

𝐹�� ≔ 𝑆𝑡𝑑𝑧�∑ 𝑤���
��
��� 𝑥���. (C.6) 
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    The foregoing steps are conducted iteratively until the outer weights 𝑤��� change by less than a 
small fraction. Then path coefficients are estimated by solving (C.7) for 𝛽���. This essentially 
entails the solution of multiple ordinary least square regressions in “mini-models” with 𝐹�� 
predictor latent variables (𝑗 = 1 … 𝑁�) pointing at each 𝐹�� criterion latent variable. 
 

𝐹�� = ∑ 𝛽���
��
��� 𝐹�� + 𝜁��. (C.7) 

 
    Here 𝛽��� is the estimated standardized partial regression (a.k.a. path) coefficient for the 
criterion-predictor relationship between 𝐹� and 𝐹��, 𝑁� is the number of predictors pointing at 𝐹� in 
the model, and 𝜁�� is the structural residual accounting for the variance in 𝐹�� that is not explained 
by the estimates of the latent variables that point at it in the model.  
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Appendix D: Bootstrapping 

    Bootstrapping (Diaconis & Efron, 1983) is the most widely used method for standard error 
estimation in PLS-SEM. Through the bootstrapping method, a standard error is generated for 
each path coefficient in a model, and then typically used to generate a T ratio, by dividing the 
path coefficient by the standard error. Next a P value is obtained for the T ratio using the 
incomplete beta function or a table relating P values to T ratios. 
    In PLS-SEM bootstrapping is typically applied to an empirical dataset, with the goal of 
creating multiple samples based on that dataset. Let 𝒮 be a set of samples created based on an 
empirical dataset, where each sample in 𝒮 is built by taking rows at random and with 
replacement (i.e., the same row can be repeated) from the original dataset.  
    Each sample in 𝒮 has the same size (i.e., number of rows) as the original dataset. The set of 
samples denoted by 𝒮 is also known in PLS-SEM as the resample set. In practical applications, 
the size of this resample set, or number of samples in 𝒮, often varies from 100 to 500. Let 𝑁� 
denote the size of this resample set, or the number of samples in 𝒮. 
    The standard error estimate denoted as 𝑆��, obtained via bootstrapping for a given path 
coefficient 𝛽, is calculated according to (D.1), where: 𝛽� is the path coefficient estimate for 
sample 𝑖, and �̅� is the mean path coefficient across all samples. This is essentially the standard 
deviation of 𝛽. 
 

𝑆�� = � 1
𝑁�
��𝛽� − �̅���
��

���

. (D.1) 

 
    The bootstrapping approach to estimation of standard errors in PLS-SEM can be seen as a type 
of Monte Carlo simulation approach (Robert & Casella, 2013). Mimicking the sample creation 
process typically seen in Monte Carlo simulations, in bootstrapping many samples are created for 
subsequent analysis. But bootstrapping should not be confused with the Monte Carlo simulation 
method discussed earlier; in fact, bootstrapping is used as part of the simulations used in the 
Monte Carlo experiments. 
    The key difference between the two methods is that normally in Monte Carlo simulations the 
samples are created based on a true population model. In bootstrapping, on the other hand, an 
empirical dataset is used as a basis, from which multiple samples are created by taking rows at 
random and with replacement from the empirical dataset.  
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Appendix E: Non-normal data 

    Figure E.1 shows two histograms. The one on the left is for a standardized normally 
distributed variable, where skewness (indicated as “Skew.” below the histogram) and excess 
kurtosis (indicated as “Kurt.”) both approach zero. The histogram on the right shows a variable 
that follows a non-normal distribution, namely a 𝜒� distribution with 1 degree of freedom. The 
variable on the right was created based on a transformation applied to the variable on the left, by 
squaring and standardizing it. This variable is in fact severely non-normal, with skewness of 2.80 
and excess kurtosis of 10.98. 
 
Figure E.1: Histograms of normal and non-normal data 
 

 
 
 
    Figure E.2 shows data points and regression lines for three samples, where a predictor variable 
(X) is plotted on the horizontal axis and a criterion variable (Y) on the vertical axis. This figure is 
based on a simple model with only two variables, where 𝑌 = 𝛽��𝑋 + 𝜀. This model’s simplicity 
does not detract from its usefulness in our making our point regarding the robustness of least 
squares regression in the presence of non-normal data.  
    We also model the structural error (𝜀), to avoid non-normality propagation losses (Kock, 
2016). In the figure we have the following: (left) both the predictor latent variable (X) and 
structural error (𝜀) are normal; (middle) the predictor (X) is non-normal but the structural error 
(𝜀) is normal; and (right) both the predictor (X) and structural error (𝜀) are non-normal. The data 
was created assuming the population model value of 𝛽�� = .3. To minimize the bias due to 
sampling error, we used a sample size of 10000. 
    As can be inferred from the three graphs, the estimated least squares regression coefficient 
equals . 3, which is the value of the corresponding population model coefficient, for each of the 
three cases. That is, even though the distribution of points shows a clear progression toward 
increasing non-normality as we move from left to right, we see no variation in the estimated least 
squares regression coefficients. In other words, we see no regression coefficient bias due to the 
different data distributions. 
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Figure E.2: Least squares regression coefficients with normal and non-normal data 
 

 
Notes: scales are standardized; left - predictor latent variable and error are normal; middle - predictor is non-normal 
but error is normal; right - predictor and error are non-normal. 
 
 
   Figure E.3 shows the distributions of least squares regression coefficients obtained via 
bootstrapping, in the form of histograms. The sample size here was set to 300, and the number of 
resamples to 500. The order of the graphs is the same as in the previous figure, with the same 
respective patterns of non-normality. Note that in all three histograms the values for skewness 
and excess kurtosis both approach zero, suggesting normality. 
 
Figure E.3: Distributions of least squares regression coefficients obtained via bootstrapping 
 

 
Notes: histograms show the distribution of least squares regression coefficients; the order of the graphs is the same 
as in the previous figure. 
 
 
    This figure demonstrates a remarkable property of bootstrapping, which is that it tends to yield 
normal distributions of estimates of the true least squares regression coefficient 𝛽�� in variable 
associations of the type 𝑌 = 𝛽��𝑋 + 𝜀 regardless of nature of the distributions of the variables 𝑌, 
𝑋 and 𝜀. Our continuing research on this topic, including a number of more complex simulations, 
leads us to conclude that this is generally true for more complex models as well, including 
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typical PLS-SEM models used in empirical IS studies. This property of bootstrapping together 
with the robustness of least squares regression coefficients in the presence of non-normality are, 
in our view, the main underlying reasons why PLS-SEM in general is quite robust to deviations 
from normality. 
    More research is needed to ascertain whether the above properties are retained in a recent 
development related to PLS-SEM: the consistent PLS technique (Dijkstra & Henseler, 2015). 
This new technique corrects certain parameters estimated via PLS Mode A employing the 
centroid scheme (Lohmöller, 1989); but does not generate latent variable scores or weights, 
which may be an obstacle to its widespread adoption without further developments aimed at 
consistently estimating those values. Those values are critical inputs for a number of tests now 
widely used in PLS-SEM, such as full collinearity and measurement invariance tests (Kock, 
2014b; Kock & Lynn, 2012; Rasoolimanesh et al., 2016; Schmiedel et al., 2014). 
    Among the parameters corrected by consistent PLS are path coefficients, which tend to be 
underestimated by PLS Mode A and are used in our proposed minimum sample size estimation 
methods. However, it should be noted that in their practical example of the application of the 
consistent PLS technique to an empirical study in the field of IS, where they employed 
bootstrapping as we have done here, Dijkstra & Henseler (2015, p. 310) concluded that: “With 
regard to the two path coefficients, the differences between the estimates were rather small.” 
This comment refers to path coefficient estimates generated via PLS Mode A and those corrected 
with the consistent PLS technique. The reason for the small difference is that psychometrically 
sound measures were used, leading to high reliabilities. Using psychometrically sound measures 
leading to high reliabilities is typically expected in well-executed empirical studies. 
  



 35 

Appendix F: Multi-level data 

    Multi-level data is often found in the field of IS (see, e.g., Hardin et al., 2006) and it can have 
an impact on minimum sample size estimation. MBLC’s study is an example of this. Data from 
17 project teams comprising 68 developers and 17 clients was collected, where each group had 4 
developers and 1 client. If we consider the team to be the unit of analysis, the sample size is 17. 
If we consider the individual team member to be the unit of analysis, the sample size is 85. 
Choosing the team as the unit of analysis requires some form of aggregation of team members’ 
data at the team level (Klein & Kozlowski, 2000). 
    When multi-level data is available, a researcher may choose a level of analysis where there is 
no aggregation, such as the team member in MBLC’s study, to obtain a larger sample. However, 
this leads to potential sources of bias, which must be addressed by the researcher. One alternative 
is to include additional variables that enable the researcher to control for the effects of group 
membership on each endogenous latent variable (Grilli & Rampichini, 2011). A frequently used 
option to implement this, which is not without problems (as discussed below), is to include 
variables storing the group means associated with existing variables (Grilli & Rampichini, 2011; 
Jak et al., 2013). This is illustrated in Figure F.1, for MBLC’s study, where: TCI is a variable 
that stores the average cooperative interdependence (CI) in each team; TCE stores average 
collaborative elaboration (CE); TCL stores average client learning (CL); and TCQ stores average 
developers’ communication quality (CQ). 
 
Figure F.1: Including variables storing group means 
 

 
 
 
    This approach is akin to that of including control variables into a model so that the results can 
be said to hold “regardless” of the effects of those variables; in this case, regardless of the 
influences arising from group membership. The inclusion of variables storing the group means 
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associated with existing variables would tend to decrease the path coefficients in the model, 
since they involve the insertion of competing links. An outcome of this would likely be a 
decrease in the path coefficient with the minimum absolute magnitude in the model. 
Nevertheless, such a decrease may not be enough to require a sample size greater than the one 
originally employed. 
    For example, let us consider a variation of MBLC’s study where data at the team member 
level was used, yielding a sample size of 85. In this scenario, let us assume that no variables 
storing the group means were included, and that the path coefficient with the minimum absolute 
magnitude in the model was found to be .4. This is conservatively assumed to be only slightly 
higher than the coefficient of .397 for CL→LO obtained in the actual study; because there is 
more variation at the team member than at the team level of analysis, and thus less attenuation of 
path coefficients with respect to the true values (Kock, 2015; Lohmöller, 1989; Wold, 1980). 
    Let us now assume that the variables storing the group means – namely TCI, TCE, TCL and 
TCQ – are included in the model. The addition of TCL and TCQ alone is likely to bring down 
the path coefficient of minimum absolute magnitude in the model; let us assume it does, 
decreasing it from .4 to .3. This would be due to competing links being added to the model. 
Using the inverse square root method, the new path coefficient of minimum absolute magnitude 
in the model of .3 would lead to a minimum required sample size of 69. This requirement is met 
with a sample size of 85 at the team member level of analysis. That is, in this case it would have 
been advantageous, in terms of statistical power, to use a unit of analysis leading to a larger 
sample size; even though that decision would have made the model more complex due to the 
inclusion of additional variables storing the group means. 
    Being akin to controlling for the effect of demographic variables (e.g., controlling for the 
effect of gender), the approach of including variables storing group means is not without 
problems. A simple illustration where grouping is conducted demographically can help readers 
understand the approach more intuitively; and also help readers understand some of the 
approach’s weaknesses. Let us assume that the 85 participants in MBLC’s study were assigned 
to one of only two teams, one with only males and the other with females. Let us also assume 
that TCI, TCE, TCL and TCQ would each store two sets of different values for males and 
females. In this case, all of these four variables would end up being perfectly collinear with one 
another (i.e., absolute correlations of 1), and thus the model should only include one “group 
control” variable if collinearity were to be avoided. We could call this single group control 
variable GR (an acronym for gender); a variable with only two values (e.g., 1=female and 
0=male). This new variable GR would replace the other four variables (i.e., TCI, TCE, TCL and 
TCQ) and point to all of the endogenous variables in the model: CL, LO and SO. 
    The illustration above highlights one of the problems with the approach of including variables 
storing group means: the fewer the number of groups available, the more likely it is that 
collinearity will occur. A high enough level of collinearity may significantly distort path 
coefficients, even if it is not perfect collinearity. For instance, with the original configuration in 
MBLC’s study we might find, after a full collinearity test, that TCI and TCE are highly collinear 
(or redundant), and that so are TCL and TCQ; with full collinearity variance inflation factors 
above 5 for these variables (Kock & Lynn, 2012). To avert bias due to collinearity, at least one 
further step would have to be conducted. In this case, a researcher might use only one variable 
from each collinear pair; e.g., TCI in place of the pair TCI and TCE, and TCL in place of TCL 
and TCQ. Alternatively, the researcher might create two second-order variables (let us call them 
TCIE and TCLQ), and use only these second order latent variables in the model (see, e.g., 
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Rasoolimanesh et al., 2016; Schmiedel et al., 2014). These second-order variables would 
respectively have as indicators: TCI and TCE, and TCL and TCQ. 
    Controlling for the effect of group membership by including variables storing group means 
may lead to another problem. Since it makes no assumptions about causal associations at the 
population level, it ignores the possibility of endogeneity (Chintagunta, 2001; Shaver, 1998) 
involving the variables storing group means. Let us consider the link TCI→CL for example. It 
allows us to estimate the path coefficient associated with the link CI→CL controlling for the 
effect of TCI, assuming that TCI and CI may be correlated. However, at the population level the 
correlation between TCI and CI may be due to the existence of a causal association 
instrumentally expressed by the link TCI→CI. If this is the case, TCI would also affect LO 
indirectly, through the network of links that connect these two variables. This would call for the 
inclusion of another direct link into the model: TCI→LO. Without this latter link, the path 
coefficient for the link CL→LO might be distorted by endogeneity; i.e., the correlation between 
TCI and the structural error term for the endogenous latent variable LO would not be accounted 
for. 
    Nevertheless, it is reasonable to assume that not including the direct link TCI→LO into the 
model would have a relatively minor biasing effect because the indirect effect of TCI on LO 
through the network of links that connect these two variables would likely be small. This is due 
to the fact that indirect effects in general tend to be small, because their magnitude is 
proportional to products of fractional coefficients, with each product significantly reducing the 
magnitude of the indirect effect. 
    The topic of multi-level data collection and analysis is complex and multi-faceted. The 
discussion presented here highlights key issues, and illustrates how multi-level data can 
influence minimum sample size estimation. Including variables storing group means is not 
without problems, as we have seen above. For broader discussions on the topic and alternative 
approaches, the reader is referred to Klein & Kozlowski (2000), Preacher et al. (2010), 
Raudenbush & Bryk (2002), Snijders & Bosker (1999), and van Mierlo et al. (2009). 
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