
Vol.:(0123456789)1 3

Cognition, Technology & Work (2018) 20:489–504 
https://doi.org/10.1007/s10111-018-0479-x

ORIGINAL ARTICLE

Do older programmers perform as well as young ones? Exploring 
the intermediate effects of stress and programming experience

Ned Kock1   · Murad Moqbel2 · Yusun Jung3 · Thant Syn3

Received: 29 August 2017 / Accepted: 25 March 2018 / Published online: 16 April 2018 
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
There is a widespread perception that older adults are underperformers when compared with younger adults in tasks that 
involve intense use of technology, such as computer programming. Building on schema theory, we developed a research 
model that contradicts this perception. To provide an initial test of the model, we conducted a computer programming 
experiment involving 140 student participants majoring in technology-related areas with ages ranging from 19 to 54 years. 
The participants were asked to develop, under some time pressure, a simple software application. The results of our analyses 
suggest that age was positively associated with programming experience and perceived stress, that programming experi-
ence was positively associated with programming performance, and that perceived stress was negatively associated with 
programming performance. A moderating effect analysis suggests that as programming experience increased, the association 
between perceived stress and programming performance weakened; going from strongly negative toward neutral. This hap-
pened even as age was controlled for. When taken together, these results suggest that the widespread perception that older 
adults are underperformers is unwarranted. With enough programming experience, older programmers generally perform 
no better or worse than young ones.

Keywords  Age · Computer programming · Laboratory experiment · Structural equation modeling · Factor-based PLS

1  Introduction

The perception that older individuals are less adept at per-
forming activities relying on information technology (IT) in 
both personal and professional contexts is widespread (Czaja 
1995; Kraft 2012; Perry et al. 2003) and is often referred to 
by the terms “ageism” and “digital ageism” (Garstka et al. 
2004; Magsamen-Conrad et al. 2015; Oh et al. 2016; Vau-
clair et al. 2016). Employment practices that are influenced 
by this perception are frequently considered illegal. This is 
codified in a variety of laws in many countries, such as the 
Age Discrimination in Employment Act in the USA.

While the perceptions that underlie digital ageism are 
widespread, there is little if any theoretical or empirical 
research directly addressing digital ageism’s most fun-
damental assumption—the existence of a negative link 
between age- and IT-related task performance. We aim to 
fill this gap by developing a research model and providing 
a preliminary test of this model in the context of computer 
programming. We try to answer a specific research question: 
do older programmers perform as well as young ones? From 
a theoretical perspective, as it will be seen, we find reasons 

 *	 Ned Kock 
	 nedkock@gmail.com
	 http://www.tamiu.edu/~nedkock

	 Murad Moqbel 
	 muradmoqbel@gmail.com

	 Yusun Jung 
	 yusun.jung@tamiu.edu

	 Thant Syn 
	 thant.syn@tamiu.edu

1	 Division of International Business and Technology Studies, 
Texas A&M International University, 5201 University 
Boulevard, Laredo, TX 78041, USA

2	 Management Information Systems Department, University 
of Oklahoma, Adams Hall Room 305, 307 West Brooks, 
Norman, OK 73019‑4007, USA

3	 Division of International Business and Technology Studies, 
Texas A&M International University, 5201 University 
Boulevard, Laredo, TX 78045, USA

http://orcid.org/0000-0002-5791-5434
http://crossmark.crossref.org/dialog/?doi=10.1007/s10111-018-0479-x&domain=pdf


490	 Cognition, Technology & Work (2018) 20:489–504

1 3

to believe that older programmers may in fact perform better 
than their younger counterparts.

To provide an initial test of the model, we collected data 
through a software development experiment involving 140 
participants, who were graduate and undergraduate students 
majoring in IT-related areas from a midsized university in 
the southwestern region of the USA. The participants were 
asked to individually develop, under some time pressure, a 
simple software application. The data collected were used 
to test a path model with latent variables, for which we 
employed factor-based partial least squares structural equa-
tion modeling (Kock 2015a, b).

Consistently with the research model we developed, our 
analyses suggest that older individuals tend to have more 
programming experience than younger ones and that pro-
gramming experience plays a key role in how well program-
mers perform under stress. The key role played by program-
ming experience is that of a significant moderator of the 
relationship between stress and programming performance. 
We also found that older individuals experience more stress 
while performing a programming task under time pressure 
than younger individuals, with the end result being a nega-
tive and significant total association between a program-
mer’s age and his or her programming performance. How-
ever, in line with our theoretical expectations, our analyses 
suggest that the effect of stress and thus the indirect effect 
of age become insignificant at high levels of programming 
experience. In other words, given enough programming 
experience, age has no appreciable effect on programming 
performance.

2 � Theoretical orientation: 
the age‑experience framework

Our theoretical orientation is summarized through a frame-
work that we propose here and refer to as the age-experience 
(AE) framework. This framework builds on schema theory 
(Gardner 1985; Rumelhart 1978; Sorensen and Stanton 
2015) and is based on a fundamental idea: as individuals age 
they go through a variety of life experiences through which 
they acquire mental schemas (Gardner 1985; Tse et al. 2007) 
that enable them to successfully handle similar experiences 
in the future. Mental schemas are knowledge structures 
formed, often involuntarily, with the goal of understanding 
and enacting behaviors (Bartlett 1932, 1958; Cossete and 
Audet 1992; Gioia and Manz 1985). Figure 1 provides a 
schematic view of the key elements of the AE framework.

The AE framework posits that older individuals tend 
to possess both general and specific task-related mental 
schemas (Gioia and Manz 1985; Tse et al. 2007) that influ-
ence their performance in both general and specific ways. 
General schemas are acquired over time through generic 

problem-solving experiences, whereas specific schemas are 
acquired through the solution of problems in the context 
of specific tasks. General schemas create a level of general 
“preparedness” that has a stress-reduction effect (Bartlett 
1958; Cohen et al. 2015; Gardner 1985), thus indirectly 
influencing performance in a positive way for tasks in gen-
eral. Task-specific schemas lead to task-specific “prepared-
ness,” which also positively influences task performance in 
specific task contexts directly and indirectly; the latter by 
moderating the effect of stress on task performance (Gardner 
1985; Lord and Maher 1990).

As it will be seen in the next section, the AE framework 
can be easily adapted to the specific contexts of IT-related 
work and computer programming (Duschl et  al. 2015; 
Khan et al. 2011), and in ways that find support from past 
research findings. In any population made up exclusively 
of professional programmers, it is commonsense to expect 
that age and programming experience would be positively 
and strongly correlated with one another. If we consider a 
population of individuals who are not necessarily profes-
sional programmers, but who are either IT professionals or 
closely involved in IT-related activities, we will likely find a 
positive association between age and programming experi-
ence (Bailey and Mitchell 2006; Huang 2015), although not 
as strong as that in a population including only professional 
programmers. While not all IT professionals are professional 
programmers, most IT professionals are expected to have 
some experience with programming to be effective at their 
jobs (Bailey and Mitchell 2006; Johnson 2015).

3 � Research model and hypotheses

In this section, we start by showing our research model. This 
is a path model that follows directly from the AE framework. 
We then put forth several hypotheses, developed individually 
building on relevant past theoretical and empirical research. 

Fig. 1   Age-experience (AE) framework



491Cognition, Technology & Work (2018) 20:489–504	

1 3

The hypotheses are not shown directly in the path model 
because several of them involve indirect and total effects 
that cannot be easily indicated in the model. Figure 2 shows 
the path model in question, which embodies our applica-
tion of the AE framework for the specific task of computer 
programming.

While our model refers specifically to computer pro-
gramming, and given our previous discussion regarding IT 
employment, arguably it applies more broadly to individu-
als who are either IT professionals or closely involved in 
IT-related activities. That is, the unit of analysis to which 
the model refers is an individual who performs IT-related 
activities in an organization. Even though the model can be 
tested with students majoring in IT-related areas, its main 
focus is on professionals who perform IT-related activities 
on a daily basis. These professionals are expected to have 
past experience with programming to be effective at their 
jobs (Bailey and Mitchell 2006; Johnson 2015), which may 
involve the evaluation of computer programs and their pur-
chase to support mission-critical organizational processes.

The model contains one main independent variable, 
namely programmers’ age, and one main dependent vari-
able, which is programming performance. The association 
between the main independent and dependent variables 
is hypothesized to be fully mediated in the model by pro-
gramming experience and perceived stress, which is why 
the direct relationship at the top of the model is indicated as 
zero (0). Other associations are indicated as either positive 
(+) or negative (−). A moderating effect of programming 
experience on the relationship between perceived stress 
and programming performance is included in the model. 
Two control variables, namely GPA and Sex (M/F), are also 
included in the model. The hypotheses arising from this 
model are discussed in the subsections below. A discussion 
of how the variables were measured, and of the need for the 

control variables, is provided later as part of an elaboration 
of the research method used.

3.1 � Age, programming experience, and stress

Individuals who perform IT-related activities are expected 
to have programming experience to be effective at their jobs 
(Bailey and Mitchell 2006; Dönmez et al. 2016; Johnson 
2015; Kraft 2012), even if they are not professional program-
mers. Programming experience in this case is the equivalent 
to task-specific experience in the AE framework and is thus 
expected to be directly affected by age among those whose 
work involve IT-related activities. The older the profes-
sional, the greater is the amount of programming experience 
he or she possesses, an expectation that has been strongly 
supported by past empirical research (Kraft 2012).

The AE framework also posits that as one gets older so 
do general life experiences that enable better coping with 
stress, including stress that is related to technology use and 
development (Maier et al. 2015; Soror et al. 2015). Dyck 
and Smither’s (1994) study contrasted individuals 55 years 
of age and over with younger adults, whom the researchers 
classified as 30 years of age and under. Among the bases 
for comparison were levels of stress when using computers 
for complex tasks, including computer programming and 
computer experience. They found that older adults experi-
enced less stress regardless of past computer experience, as 
predicted by the AE framework. This suggests that age may 
have an effect on stress in IT-related tasks, including pro-
gramming, which could be independent from that of experi-
ence with the tasks in question. Thus, we hypothesize that:

H1:  Age has a positive direct association with programming 
experience.

Fig. 2   Research model



492	 Cognition, Technology & Work (2018) 20:489–504

1 3

H2:  Age has a negative direct association with perceived 
stress.

3.2 � Stress, programming experience, 
and performance

The AE framework incorporates the expectation that 
increased task-specific experience and decreased task-gen-
eral stress both lead to increased task-specific performance. 
From an IT perspective, this would lead to the predictions 
that more programming experience and less stress contribute 
to better programming performance. Past studies of perfor-
mance by individuals with and without prior programming 
experience provide strong support for the expectation that 
more programming experience leads to better programming 
performance (Hagan and Markham 2000; Byrne and Lyons 
2001). The link between stress and performance is also well 
established based on past research in IT-related activities 
in general (Brosnan 1998; Gilroy and Desai 1986), as well 
as in the more specific context of computer programming 
(Beckers et al. 2006; Potosky 2002). The two hypotheses 
below follow from this discussion.

H3:  Programming experience has a positive direct associa-
tion with programming performance.

H4:  Perceived stress has a negative direct association with 
programming performance.

Consistently with the AE framework, task-specific 
schema development has been found to moderate the rela-
tionship between stress and performance in IT-related con-
texts (Elias et al. 2012; Gilroy and Desai 1986; González 
et al. 2012). In the milieu of computer programming, this 
would mean that the level of schema development related to 
this specific task would reduce the negative effect of stress 
on programming performance. That is, more experienced 
programmers would perform better under stress than less 
experienced ones, an expectation that has been supported 
by past empirical research (Beckers et al. 2006). Therefore, 
we hypothesize that:

H5:  Programming experience positively moderates the 
direct association between perceived stress and program-
ming performance.

3.3 � Indirect and total effects of age on performance

Implicit in the AE framework is the belief that its main 
dependent variable, namely age, has indirect and positive 
effects on task-specific performance via decreased task-
general stress and increased task-specific experience. Past 
research has shown that stress is a likely mediator of the 

possible negative relationship between age and performance 
in IT-related tasks (Caplan and Schooler 1990; Kraft 2012). 
The same is true regarding the mediating effect of experi-
ence in the context of IT-related tasks (Beckers et al. 2006; 
Dollinger 1995; Hasan 2003; Morrell et al. 2000), as well 
as in the more specific context of computer programming 
(Bergin and Reilly 2005; Gilroy and Desai 1986; Potosky 
2002). Therefore, we hypothesize that:

H6:  Age has a negative indirect association with program-
ming performance via perceived stress.

H7:  Age has a positive indirect association with program-
ming performance via programming experience.

Age-induced decreases in task-general stress and 
increases in task-specific experience are fundamental ele-
ments in the AE framework, which are posited to play a 
significant role in the improvement of task-specific perfor-
mance. In the context of IT-related tasks, including computer 
programming, the overall effect would be a positive and sig-
nificant total effect of age on task-related performance. Past 
research has indeed shown that older adults often display 
specific behaviors and capabilities that make them perform 
better in IT-related tasks than younger adults (Dibiase and 
Kidwai 2010). Moreover, it follows from the AE framework 
that this relationship between age and task performance is 
fully mediated by task-specific experience and stress. The 
foregoing discussion leads to our two final hypotheses:

H8:  The total association between age and programming 
performance is fully mediated by programming experience 
and perceived stress.

H9:  The total association between age and programming 
performance is positive.

Testing of the above hypotheses allows us to answer our 
principal research question: do older programmers perform 
as well as young ones? As we can see, the AE framework 
provides the basis on which we can conclude that pro-
grammers who are older, and thus more experienced, may 
perform better than younger programmers. The test of the 
hypothesis referring to the total association between age 
and programming performance is central to answering our 
principal research question, whereas the tests of the other 
hypotheses should clarify the inner mechanisms influencing 
the total association.



493Cognition, Technology & Work (2018) 20:489–504	

1 3

4 � Research method

The data for this study have been collected through a soft-
ware development experiment involving 158 student par-
ticipants; from whom 140 valid sets of results and responses 
were obtained, for an 88.6% response rate. This was slightly 
above our minimum sample size estimate obtained through 
a statistical power analysis (Kock 2016; Martin 2007; 
Rosenthal and Rosnow 2007), which called for a sample size 
equal to or greater than 126 to ensure that any direct effect 
coefficient in our model found to be statistically significant 
at the P < 0.05 level was associated with a power greater 
than 80%. We also ensured that each direct effect coefficient 
yielded a practically relevant f-squared effect size coefficient 
of more than 0.02 (Cohen 1988).

The participants were graduate and undergraduate stu-
dents from a midsized university in the southwestern region 
of the USA. All students were management information 
systems’ majors, i.e., all students were majoring in IT-
related areas. Extra credit was provided for participation. 
Institutional review board approval was achieved prior to 
conducting the experiment. Informed consent was obtained 
from each participant prior to their participation in the 
experiment.

All students received instruction on how to develop basic 
computer programs with Microsoft Visual Basic prior to 
participating in the experiment. The experimental task lasted 
approximately 1 h. In it, students were asked to individu-
ally develop, under some time pressure, a simple software 
application to help the director of a PhD program in a school 
of business make decisions regarding admissions of student 
applicants into the program. The software development was 
in Visual Basic. A description of the experimental task is 
provided in Appendix 1.

After carrying out the software development task, the par-
ticipants were asked to complete a questionnaire. The ques-
tions and question-statements used are available in Appen-
dix 2. The questionnaire contained demographic questions, 
as well as question-statements related to perceived stress 
and a rubric for the scoring of programming performance. 
See Appendix 3 for details on the rubric for programming 
performance scoring. Both the experimental task and the 
construct measurement instrument were developed based 
on previously published materials (Akerstedt and Gillberg 
1990; Burgess 2005; Cohen et al. 1983; Ramalingam and 
Wiedenbeck 1998).

The participants’ grade point average (GPA) ranged from 
1.75 to 4.00, with a mean of 3.09 and a standard deviation 
of 0.50. Age ranged from 19 to 54 years, with a mean of 24 
and a standard deviation of 6.4 years. Programming experi-
ence ranged from 0 to 5 years, with a mean of 0.49 years and 
a standard deviation of 0.85 years. Approximately 62% of 

the participants were females. These and other descriptive 
statistics are listed in Table 1. The two normality tests for 
which results are shown at the bottom of the table are the 
classic Jarque–Bera test (Jarque and Bera 1980; Bera and 
Jarque 1981) and Gel and Gastwirth’s (2008) robust modi-
fication of this test. These tests suggest various deviations 
from normality in the data.

The data analysis method employed in this study was 
factor-based partial least squares structural equation mode-
ling, a variation of the classic partial least squares technique 
(Haenlein and Kaplan 2004; Kock 2014). This variation 
yields robust estimates with small samples, does not require 
that the data be normally distributed, and deals with factors 
as opposed to composites—thus accounting for measure-
ment error (Kock 2015a; Kock and Mayfield 2015). The 
software WarpPLS, version 5.0 implements this variation 
(Kock 2015b; Kock and Chatelain-Jardón 2016) and there-
fore was used. The structural equation modeling analysis 
was preceded by a confirmatory factor analysis, through 
which the measurement instrument was validated (Kline 
1998; Kock 2014; Thompson 2004).

The following variables were included as control vari-
ables, with respect to programming performance, in the 
structural equation modeling analysis: grade point aver-
age (GPA) and biological sex (male or female). GPA was 
included because academic achievement is likely to be cor-
related with performance in many academic tasks (Cath-
erine and Wheeler 1994; Gnambs 2015). Biological sex was 
included because of the common finding in past research 
that males generally find programming easier than females 
(Rubio et al. 2015). The use of these control variables essen-
tially means that the results of the analysis, with respect 
to the model’s main dependent variable, hold regardless of 
GPA and biological sex.

Table 1   Descriptive statistics

Exp, programming experience; Sex (M/F), M:0/F:1, SD, standard 
deviation; Normal-JB, Jarque–Bera test of normality; Normal-RJB, 
robust Jarque–Bera test of normality

GPA Age Sex (M/F) Exp

Mean 3.091 24.478 0.619 0.492
SD 0.479 6.344 0.486 0.839
Min 1.750 19.000 0.000 0.000
Max 4.000 54.000 1.000 5.000
Median 3.091 23.000 1.000 0.000
Mode 3.091 21.000 1.000 0.000
Skewness − 0.193 2.474 − 0.491 2.278
Excess kurtosis − 0.274 7.201 − 1.752 6.309
Normal-JB Yes No No No
Normal-RJB Yes No No No



494	 Cognition, Technology & Work (2018) 20:489–504

1 3

5 � Measurement instrument validation

The main goal of measurement instrument validation is to 
ensure that there is congruence among instrument designers 
and respondents, as well as among respondents as a group, in 
their understanding of the questions and question-statements 
in the instrument with respect to the underlying constructs 
that they are supposed to measure (Kline 1998; Kock and 
Lynn 2012; Kock and Mayfield 2015). Congruence among 
instrument designers and respondents regarding underlying 
constructs refers to convergent validity, with lack of confu-
sion across constructs referring specifically to discriminant 
validity. Congruence among respondents as a group refers 
to reliability, i.e., all respondents understand the instrument 
questions and question-statements in the same way. The 
absence of model-wide collinearity refers to measurement 
discrimination among constructs, i.e., different constructs 
measure different “things.”

Loadings, weights, cross-loadings, cross-weights, and 
indicator effect sizes were calculated, primarily for con-
vergent validity tests (see Appendix 4 for the coefficients 
mentioned in this section). P values were calculated for load-
ings and weights via resampling; all loadings and weights 
were found to be significant at the P < 0.001 level. Also, all 
loadings were significantly greater than 0.5, ranging from 
0.639 to 0.970, and all cross-loadings were lower than 0.5. 
All indicator effect sizes were greater than Cohen’s (1988) 
threshold of 0.02. These results, when taken together, sug-
gest that the measurement instrument passes a convergent 
validity test in the context of this study (Hair et al. 2009; 
Kock 2014).

R-squared, composite reliability, Cronbach’s alpha, aver-
age variance extracted, and Q-squared coefficients were 
calculated, chiefly for reliability and predictive validity 
assessment. All composite reliability and Cronbach’s alpha 
coefficients were greater than 0.7, suggesting that the meas-
urement instrument has acceptable reliability in the context 
of this study (Fornell and Larcker 1981; Nunnaly 1978; Nun-
nally and Bernstein 1994). All average variances extracted 
were greater than 0.5, suggesting acceptable convergent 
validity (Fornell and Larcker 1981), consistently with the 
loadings mentioned earlier. Q-squared coefficients were 
close in value to R-squared coefficients and are all greater 
than 0, suggesting acceptable predictive validity (Geisser 
1974; Kock 2015b; Stone 1974).

Latent variable correlations and square roots of average 
variances extracted were calculated mainly for discriminant 
validity assessment. For each latent variable, the square root 
of the corresponding average variance extracted was found 
to be greater than any of the correlations involving the latent 
variable in question. Therefore, it can be concluded that 
the measurement instrument has acceptable discriminant 

validity in the context of this study (Fornell and Larcker 
1981; Kock and Lynn 2012; Schumacker and Lomax 2004).

In addition to multi-indicator latent variables, the model 
also contains variables measured through single indicators 
(e.g., age), which tend to increase the model’s full collinear-
ity (Hair et al. 2009; Kock and Lynn 2012). Single-indica-
tor variables tend to increase the model’s full collinearity 
because the collinearity-minimization weight assignment 
scheme in partial least squares methods cannot be applied 
to them (Kock and Mayfield 2015; Lohmöller 1989).

A full collinearity test takes all variables in a model into 
consideration (Kock and Lynn 2012). This test has also been 
shown to be an effective and conservative alternative for 
the identification of common method bias (Dermentzi et al. 
2016; Kock 2015c). Therefore, a full collinearity test was 
conducted through the calculation of variance inflation fac-
tors for all variables in the model. All variance inflation fac-
tors were found to be lower than 3.3, suggesting no model-
wide collinearity or common method bias (Kock 2015c; 
Kock and Lynn 2012).

In summary, the measurement instrument used in this 
study passes a comprehensive number of fairly stringent 
tests. The results of these tests suggest that the measure-
ment instrument presents acceptable convergent and dis-
criminant validity, as well as reliability. They also suggest 
that the measurement instrument presents acceptable pre-
dictive validity. Finally, the results of the tests suggest that 
the measurement instrument used is free from model-wide 
collinearity and common method bias.

6 � Results

Table 2 lists the hypothesized links, the corresponding effect 
types (e.g., direct, moderating, etc.), the related coefficients 
of association, and their statistical significance levels. The 
term “Exp” refers to programming experience and “Perf” 
to programming performance. Effect types shown are 

Table 2   Hypothesized links and coefficients of association

Exp programming experience, Perf programming performance

Hypothesized links Effect type Coefficient Significance

Age → Exp Direct 0.211 P < 0.01
Age → Stress Direct 0.239 P < 0.01
Exp → Perf Direct 0.262 P < 0.001
Stress → Perf Direct − 0.443 P < 0.001
Exp → (Stress → Perf) Moderating 0.242 P < 0.01
Age → Stress → Perf Indirect − 0.106 P < 0.05
Age → Exp → Perf Indirect 0.035 Not significant
Age → Perf Direct − 0.111 Not significant
Age → → Perf Total − 0.162 P < 0.05



495Cognition, Technology & Work (2018) 20:489–504	

1 3

“direct,” referring to single direct links in the model (e.g., 
Age → Exp); “moderating,” referring to the moderating 
link in the model where one variable affects the relationship 
between other two variables (i.e., Exp → (Stress → Perf)); 
“indirect,” referring to effects for paths of multiple con-
nected links in the model (e.g., Age → Stress → Perf); and 
“total,” referring to the total effect of all paths connecting 
two variables (i.e., Age → → Perf).

Two direct links departing from the variable Age make up 
the left side of our structural model. The coefficient of asso-
ciation for the direct link Age → Exp (β = 0.211) was found 
to be statistically significant at the P < 0.01 level. This sup-
ports hypothesis H1, which is that a programmer’s age has 
a positive direct association with programming experience. 
However, the coefficient of association for the direct link 
Age → Stress (β = 0.239), which was found to be statistically 
significant at the P < 0.01 level, does not support hypothesis 
H2, which is that a programmer’s age has a negative direct 
association with perceived stress. Support for H2 would have 
required a statistically significant, but negative, coefficient 
of association.

Two additional direct links are important in the assess-
ment of downstream causal effects in the model that make 
up indirect effects. The coefficients of association for the 
direct links Exp → Perf and Stress → Perf (respectively, 
β = 0.262 and β = − 0.443) were both found to be statistically 
significant at the P < 0.001 level. These results, respectively, 
support hypothesis H3, which is that programming expe-
rience has a positive direct association with programming 
performance, and hypothesis H4, which is that perceived 
stress has a negative direct association with programming 
performance.

Our model contains one single moderating link. 
The coefficient of association for the moderating link 
Exp → (Stress → Perf) was found to be positive (β = 0.242) 
and statistically significant at the P < 0.01 level. This means 
that, as values of Exp increase (i.e., more programming 
experience), the coefficients of association for the link 
Stress → Perf tend to increase in value, going from negative 
to neutral. This provides support for hypothesis H5, which 
is that programming experience positively moderates the 
direct association between perceived stress and program-
ming performance.

Two indirect links allow us to assess the effects of inter-
vening variables. The coefficient of association for the indi-
rect link Age → Stress → Perf (β = − 0.106) was found to be 
statistically significant at the P < 0.05 level. This supports 
hypothesis H6, which is that a programmer’s age has a nega-
tive indirect association with programming performance via 
perceived stress. However, the coefficient of association for 
the indirect link Age → Exp → Perf (β = 0.035), found to 
be statistically nonsignificant, does not support hypothesis 
H7, which is that a programmer’s age has a positive indirect 

association with programming performance via program-
ming experience. Support for H7 would have required sta-
tistical significance, i.e., a statistically significant positive 
coefficient of association.

One final direct link, combined with a total effect link, 
allows us to assess our last two hypotheses. The coefficient 
of association for the direct link Age → Perf (β = − 0.111) 
was found to be statistically nonsignificant, whereas the coef-
ficient for the total effect link Age → → Perf (β = − 0.162) 
was found to be statistically significant at the P < 0.05 level. 
These results provide support for hypothesis H8, which is 
that the total association between a programmer’s age and 
programming performance is fully mediated, not by pro-
gramming experience but by perceived stress. However, 
these results do not provide support for hypothesis H9, 
which is that the total association between a programmer’s 
age and programming performance is positive.

Table 3 provides a summary of model-data fit indices 
that are often used in this type of analysis (Chan et al. 2015; 
Kock 2015b; Jaradat and Faqih 2014). Four fit indices are 
shown, namely the average path coefficient (APC), average 
R-squared (ARS), average full collinearity variance infla-
tion factor (AFVIF), and the Tenenhaus goodness-of-fit 
index (GoF). These fit indices allow us to assess the extent 
to which the hypothesized model fits the data. The indices 
act in concert with APC and ARS unveiling problems with 
the structural model (relationships among linked variables) 
and the AFVIF and GoF being useful in the identification of 
problems with the measurement model (relationships among 
latent variables and indicators).

The APC was found to be statistically significant 
(β = 0.196, P < 0.001), and so was the ARS (β = 0.156, 
P < 0.001). The AFVIF was found to be 1.318, which is well 
below the threshold of 3.3, indicative of absence of model-
wide collinearity. The GoF was calculated at 0.380, which 
is above the 0.360 for a large fit. Overall, these fit indices 
suggest good model-data congruence, when considered 
together, and give us confidence that the hypothesis-testing 
results are not significantly distorted by model misspecifica-
tion bias. Table 4 summarizes the support, or lack of sup-
port, for the hypotheses.

Table 3   Model fit indices

APC, average path coefficient; ARS, average R-squared; AFVIF, 
average full collinearity variance inflation factor; GoF, Tenenhaus 
goodness-of-fit index

Fit index Value Significance or acceptance level

APC 0.196 P < 0.001
ARS 0.156 P < 0.001
AFVIF 1.318 Acceptable if ≤ 5, ideally ≤ 3.3
GoF 0.380 Small ≥ 0.1, medium ≥ 0.25, large ≥ 0.36



496	 Cognition, Technology & Work (2018) 20:489–504

1 3

Three of the nine hypotheses were not supported by the 
data. Unexpectedly, we found that age was significantly and 
positively associated with perceived stress, i.e., older indi-
viduals experienced more stress while programming than 
younger ones. Also unexpectedly, we found that age had a 
nonsignificant indirect association with programming per-
formance via programming experience, i.e., programming 
experience was not a significant mediator of the relation-
ship between age and programming performance. A third 
unexpected finding was that the total association between 
age and programming experience turned out to be negative 
and significant.

Figure 3 contains a plot of the total negative effect of age 
on programming performance. This plot is meant to give 
a practical idea to the reader of the magnitude of this total 
effect. It suggests that each 10-year increment in age is on 
average associated with a 28.6% decrease in programming 
performance, calculated as: 

((0.21 + 1.15)∕(54 − 19) ∗ 10)∕(0.21 + 1.15) = 0.286.

It is noteworthy that we did find a positive and signifi-
cant moderating effect of programming experience on the 
direct association between perceived stress and program-
ming performance. This moderating effect was positive and 
significant after we controlled for the direct effect of age 
on programming performance. That is, the more program-
ming experience one has, the less perceived stress affects 
programming performance, regardless of age. Figure 4 pro-
vides a visual representation of this significant moderating 
effect. The graph shows two best-fitting lines, referring to 
individuals with low and high programming experience, for 
the associations between perceived stress and programming 
performance. The data were segmented into two sub-datasets 
of the same size, for grouping of participants according to 
low and high programming experience.

In summary, older individuals seem to have more pro-
gramming experience than younger ones, as expected. Also, 
programming experience appears to play a key role in how 

Table 4   Support for the hypotheses based on the results

Hypothesis Supported?

H1: Age has a positive direct association with programming experience. Yes
H2: Age has a negative direct association with perceived stress. No
H3: Programming experience has a positive direct association with programming performance. Yes
H4: Perceived stress has a negative direct association with programming performance. Yes
H5: Programming experience positively moderates the direct association between perceived stress and programming performance. Yes
H6: Age has a negative indirect association with programming performance via perceived stress. Yes
H7: Age has a positive indirect association with programming performance via programming experience. No
H8: The total association between age and programming performance is fully mediated by programming experience and perceived 

stress.
Yes

H9: The total association between age and programming performance is positive. No

Fig. 3   Total effect of age on programming performance. Note Programming performance shown on a standardized scale



497Cognition, Technology & Work (2018) 20:489–504	

1 3

well programmers perform under stress. However, this key 
role of programming experience is played chiefly as a signif-
icant moderator of the relationship between stress and pro-
gramming performance, and not as a significant mediator of 
the relationship between age and programming performance. 
Finally, older individuals seem to experience more stress 
while performing a programming task under time pressure 
than younger ones.

The end results are: a negative and significant total asso-
ciation between age and programming performance and an 
important moderating role of programming experience. The 
latter moderating role can be summarized as follows: given 
enough programming experience, stress does not seem to 
matter much regarding programming performance.

Since a programmer’s age influences programming per-
formance only via stress, we can also conclude that, given 
enough programming experience, age does not matter either 
with respect to programming performance. This seems to 
happen even though age may appear to strongly influence 
programming performance, when we look only at age’s total 
association with programming performance and ignore the 
important moderating effect of programming experience.

6.1 � What if the study’s participants had been 
professional programmers?

As we indicated earlier, our study involved student par-
ticipants and thus provides an initial test of our theoretical 
model. Note that even though the age of the student partici-
pants ranged from 19 to 54 years, programming experience 
ranged only from 0 to 5 years. Had the participants been 

professional programmers, we could reasonably expect a 
much different range of programming experience, perhaps 
from a few months to more than 30 years. For example, an 
individual who started working as a programmer at around 
20 years of age would have had 34 years of programming 
experience at age 54. Those extra years of programming 
experience likely would lead to stronger associations for the 
links Age → Exp and Exp → Perf. On a bivariate basis, those 
associations translated to small effect sizes (Cohen 1988) in 
our investigation with the student participants.

Employing the technique of variation sharing (Kock and 
Sexton 2017), which builds on the Monte Carlo method 
(Paxton et al. 2001; Robert and Casella 2013), we simulated 
the effects that such a wider range of variation in program-
ming experience would have on our study’s results. We did 
so by conservatively strengthening the associations only for 
the links Age → Exp and Exp → Perf so that they achieved 
medium effect sizes on a bivariate basis. We restricted our-
selves to medium, as opposed to large (Cohen 1988), effect 
sizes to be conservative. Variation sharing was conducted 
departing from the original empirical values of the variables 
Age, Exp, and Perf. That is, as recommended in discussions 
of the technique (Kock and Sexton 2017), no exogenous 
variation was introduced into the model.

The new simulated results, summarized in Table 5, should 
be seen as possible results if our study’s participants had 
been professional programmers. Several of these new results 
match the results obtained with student participants, from 
a hypothesis-testing perspective, with a few notable differ-
ences. One notable difference is that the coefficient of asso-
ciation for the direct link Age → Stress (β = − 0.116) changed 

Fig. 4   Moderating effect of programming experience with respect to stress and performance. Note Programming performance shown on a stand-
ardized scale



498	 Cognition, Technology & Work (2018) 20:489–504

1 3

sign and became statistically nonsignificant, although by a 
very small margin (P = 0.081). This provides some, but lim-
ited, support for hypothesis H2, which is that a program-
mer’s age has a negative direct association with perceived 
stress.

Another notable difference is that the coefficient of asso-
ciation for the indirect link Age → Exp → Perf (β = 0.118) 
became statistically significant, which provides support 
for hypothesis H7, which is that a programmer’s age has a 
positive indirect association with programming performance 
via programming experience. Two other notable differences 
were that the coefficient of association for the direct link 
Age → Perf (β = 0.250) became positive and statistically 
significant and that the coefficient for the total effect link 

Age → → Perf (β = 0.412) also became positive and sta-
tistically significant. Figure 5 illustrates this latter result 
vis-à-vis the corresponding result obtained with student 
participants.

These new results suggest that the total association 
between a programmer’s age and programming performance 
is partially mediated, not by perceived stress but by pro-
gramming experience. They also provide strong support for 
hypothesis H9, which is that the total association between 
a programmer’s age and programming performance is posi-
tive. As we can see, the results of this “what-if” analysis 
with simulated data provide much stronger support for our 
theoretical model. They also call for further research with 
the participation of professional programmers, to comple-
ment our investigation with student participants, and further 
test our theory-based predictions.

7 � Discussion

In our initial test of the model, we conducted a software 
development experiment involving 140 participants. The 
participants were graduate and undergraduate students 
majoring in IT-related areas. The setting for the study was a 
midsized university in the southwestern region of the USA. 
In the experiment, the participants were asked to individu-
ally develop a simple software application during a limited 
amount of time, which placed them under some stress due to 
the time pressure. A factor-based partial least squares struc-
tural equation modeling analysis was conducted to analyze 

Table 5   Hypothesized links and revised coefficients of association 
(professional programmers)

Exp, programming experience; Perf, programming performance. 
Results based on simulated data

Hypothesized links Effect type Coefficient Significance

Age → Exp Direct 0.388 P < 0.001
Age → Stress Direct − 0.116 Not significant
Exp → Perf Direct 0.303 P < 0.001
Stress → Perf Direct − 0.378 P < 0.001
Exp → (Stress → Perf) Moderating 0.351 P < 0.001
Age → Stress → Perf Indirect 0.044 Not significant
Age → Exp → Perf Indirect 0.118 P < 0.05
Age → Perf Direct 0.250 P < 0.01
Age → → Perf Total 0.412 P < 0.001

Fig. 5   Total effect of age on programming performance (students vs. professional programmers). Notes Programming performance shown on a 
standardized scale. Downward slope line = students. Upward slope line = professional programmers (simulated data)



499Cognition, Technology & Work (2018) 20:489–504	

1 3

the data and test a number of hypotheses related to the theo-
retical framework we developed.

The results of our analyses with student participants sug-
gest that age is positively and significantly associated with 
programming experience and perceived stress; the latter 
finding (regarding stress) going against the framework we 
developed. The results also suggest that programming expe-
rience is positively and significantly associated with pro-
gramming performance, whereas perceived stress seems to 
be negatively and significantly associated with programming 
performance.

Two separate analyses with student participants of medi-
ating effects suggest that while perceived stress is a sig-
nificant mediator of the association between age and pro-
gramming performance, programming experience is not a 
significant mediator of this association. A moderating effect 
analysis suggests that as programming experience increases, 
the association between perceived stress and programming 
performance weakens, going from strong and negative 
toward neutral.

Let us consider the magnitudes of the indirect effect with 
student participants of age on programming performance via 
perceived stress (β = − 0.106), the only significant indirect 
effect of the two analyzed, and of the moderating effect of 
programming experience on the association between per-
ceived stress and programming performance (β = 0.242). 
These magnitudes suggest that the moderating effect is 
approximately 2.28 stronger, or 128% greater, than the indi-
rect effect and that these effects control for the direct effect 
of age. Given this, one can reasonably conclude that, at high 
levels of programming experience, age does not matter when 
it comes to programming performance. The reason for this 
is that, at high levels of programming experience, stress has 
practically no effect on programming performance; ren-
dering the indirect effect of age on performance via stress 
insignificant.

Our study with student participants contradicts the AE 
framework in one key aspect: it suggests that older adults 
experience more stress than younger ones in a computer pro-
gramming task. This implies that general mental schemas 
acquired over time through generic problem-solving experi-
ences do not actually protect older individuals from stress if 
their task-specific mental schemas are significantly under-
developed—as in the case of older individuals with low pro-
gramming experience and a computer programming task.

Past research focusing on stress hormones and their 
prevalence among individuals of various ages provides 
some support for this result (Barnes et al. 1982; Whitbourne 
2012). However, it is possible that our use of students dis-
torted the results by artificially increasing the proportion 
of individuals with low programming experience among 
older participants. Given this, we recommend that our 
study be replicated with non-student participants, preferably 

professional programmers. This is a line of research that 
we intend to pursue in the future. The results of a “what-if” 
analysis, where we simulated an investigation with profes-
sional programmers, support this line of research.

8 � Conclusion

There is a widespread perception that older adults are under-
performers when compared with younger adults with respect 
to tasks that involve heavy use of IT (Czaja 1995; Kraft 
2012; Perry et al. 2003). One instance of such tasks is com-
puter programming, which also happens to be a key driver 
of the economy in the USA and other developed countries 
(Hannah 2014; John 2014). This perception bias against 
older adults is often referred to by the terms “ageism” and 
“digital ageism” (Garstka et al. 2004; Magsamen-Conrad 
et al. 2015; Oh et al. 2016; Vauclair et al. 2016). One of the 
goals of laws such as the Age Discrimination in Employment 
Act in the USA is to prevent this type of bias from influenc-
ing employment decisions (Neumark 2003, 2009).

Even though the perceptions that underlie digital ageism 
are commonly held in organizations, as well as society as a 
whole (Czaja 1995; Kraft 2012; Perry et al. 2003), little if 
any theoretical and empirical research has been published 
assessing whether digital ageism has any basis in reality. 
We tried to fill this gap through the development of a theo-
retical model and its initial testing in the specific context of 
computer programming. We conducted a study that enabled 
us to provide a preliminary answer a fundamental research 
question: do older programmers perform as well as young 
ones? The theoretical framework we developed was based 
on schema theory and provides the conceptual ground-
ing on which one can assume that older adults may in fact 
perform better than younger one in the task of computer 
programming.

Our initial test of our theoretical predictions was imple-
mented through a software development experiment involv-
ing 140 student participants. We followed this initial test 
with a simulation to obtain and assess possible results if our 
study’s participants had been professional programmers. In 
line with our theoretical expectations, this initial test and 
follow-up simulation study suggest that the effect of stress 
and thus the indirect effect of age become too weak to be 
of any practical consequence at high levels of programming 
experience. Stated differently, we can reasonably conclude 
based on our analyses that given enough programming expe-
rience, age has no relevant effect on programming perfor-
mance. In fact, our simulation study allows us to conclude 
that age may be positively associated with programming 
performance among professional programmers.

From an employment law perspective, our results suggest 
that laws such as the Age Discrimination in Employment 



500	 Cognition, Technology & Work (2018) 20:489–504

1 3

Act in the USA are generally appropriate in their spirit with 
respect to IT-related employment involving computer pro-
gramming tasks (Neumark 2003, 2009). It is sensible to 
conclude, based on our study, that such laws may prevent 
unfair discrimination based on stereotypes that have no clear 
or strong empirical basis. Moreover, age-based discrimina-
tion may negatively affect the competitiveness of software 
development organizations, as well as of other organizations 
where IT is heavily used to accomplish mission-critical 
tasks.

While advanced age may be associated with more stress, 
as past research focusing on stress hormones and their preva-
lence among individuals of various ages suggests, organi-
zational stress can be reduced via other means such as non-
threatening and relaxed work environments (Billings and 
Moos 1982; Hetherington and Blechman 2014), countering 
the possible effect of age on stress. Moreover, when we con-
sider the very important role that programming experience 
plays in influencing programming performance, directly 
and as a moderator, we can see the wisdom of disregarding 
age in employment decisions. Our study suggests that, with 
enough programming experience, older programmers may 
perform just as well as young ones, if not better.

Appendix 1: Experimental task description

Purpose

The director of the PhD program at a school of business 
needs to make decisions on whether or not to admit a doc-
toral program applicant in a timely manner. The director of 
the PhD program will save time and be more productive if he 
or she has a stand-alone application at his desktop to make 
such a decision.

Algorithms

For an applicant to be eligible for admission, he/she must 
satisfy one of the following sets of conditions:

•	 Have a GMAT greater than or equal to (≥) 600, a GPA 
greater than or equal to (≥) 3.5, WE greater than or equal 
to (≥) 0, and RecLtr greater than or equal to (≥) 80%.

•	 Have a GMAT greater than or equal to (≥) 500, GPA 
greater than or equal to (≥) 3.8, WE greater than or equal 
to (≥) 1, and RecLtr greater than or equal to (≥) 90%.

Legend

•	 GMAT: Graduate Management Aptitude Test.
•	 GPA: Grade Point Average.
•	 WE: Work Experience related to the major.

•	 RecLtr: Composite rating of the student based on a struc-
tured recommendation letter.

Notes

•	 The application should allow the director of the PhD 
program to reset all values on the screen to blank so that 
another calculation can be performed.

•	 The decision should be run based on the term “Decide,” 
so please include a working button for this. The reset of 
the values should be designated by the term “Reset,” so 
please include a working button for this term as well. The 
decision output, once all information is entered into the 
program and the “Decide” button is clicked should be 
either, “Admit” or “Not Admit.”

Appendix 2: Measurement instrument

The questions and question-statements below were used for 
data collection, in addition to demographic questions. The 
questions on perceived stress were answered on a Likert-
type scale going from 1 to 7. Programming performance was 
measured based on a rubric with five dimensions, whereby 
three researchers independently scored the quality of the 
software applications developed by the participants.

Perceived stress

Stress1: I felt stressed while completing this task.
Stress2: I felt nervous while completing this task.
Stress3: This task made me feel stressed.
Stress4: Completing this task was stressful.

Programming performance (based on rubric)

Perf1: Completeness of the software application.
Perf2: Correctness of the software application.
Perf3: Extent to which the software application met the 

requirements.
Perf4: Ease of use of interface.
Perf5: Programming code clarity.

Appendix 3: Programming performance 
scoring rubric

Below is the rubric we used to score programming perfor-
mance. Three researchers independently scored the quality 
of the software applications developed by the participants, 
from which average scores were calculated for each of the 
five dimensions. Each individual dimension’s score was then 
included as an indicator, with respect to the programming 



501Cognition, Technology & Work (2018) 20:489–504	

1 3

performance variable, as part of the measurement model in 
our structural equation modeling analysis.

0–25 25–50 50–75 75–100

Complete-
ness

The assign-
ment was 
incom-
plete or 
completed 
without 
regard to 
instruc-
tions

The assign-
ment 
was only 
partially 
com-
pleted per 
instruc-
tions

The assign-
ment was 
mod-
erately 
completed 
per 
instruc-
tions

The assign-
ment 
was fully 
completed 
per instruc-
tions

Correctness The pro-
gram did 
not per-
form per 
instruc-
tions

The 
program 
performed 
only par-
tially per 
instruc-
tions

The 
program 
performed 
moder-
ately per 
instruc-
tions

The program 
performed 
fully per 
instructions

Require-
ments met

Adheres to 
less than 
70% of 
standard

Adheres to 
between 
70 and 
80% of 
standard

Adheres to 
between 
80 and 
90% of 
standard

Adheres to 
between 90 
and 100% 
of standard

Ease of use Required 
user to 
reread 
before 
under-
stood

Required 
user to 
reread to 
confirm 
under-
stood

Reread 
was not 
required 
to confirm 
under-
stood

Immediately 
understood

Code clar-
ity

Code is 
unclear 
or too 
specific 
to stated 
purpose to 
be revised

Code is 
enough to 
revise

Code is 
clear and 
modular 
enough 
to ease 
revision

Code is clear 
and general 
enough to 
simplify 
revision

Appendix 4: Coefficients for measurement 
instrument validation

Loadings, weights, cross-loadings, cross-weights, and indi-
cator effect sizes are summarized in Table 6. Loadings, 
shown in bold, are from a structure matrix and thus unro-
tated; cross-loadings, shown in italics, are from a pattern 
matrix and thus oblique-rotated (Ehremberg and Goodhart 
1976; Thompson 2004). This combination of structure and 
pattern matrices’ loadings allows for easy identification of 
possible validity problems, while at the same time obviating 
the need for a potentially distorting normalization procedure 
(Ferguson 1981; Kock 2015b; Ogasawara 1999).

R-squared, adjusted R-squared, composite reliability, 
Cronbach’s alpha, average variance extracted, and Q-squared 
coefficients are listed in Table 7. Composite reliability and 
Cronbach’s alpha coefficients are reliability measures (For-
nell and Larcker 1981; Nunnaly 1978; Nunnally and Bern-
stein 1994). Average variances extracted are sometimes used 
for convergent validity assessment, in addition to loadings 
(Fornell and Larcker 1981). Q-squared coefficients are used, 
together with R-squared coefficients, for predictive validity 
assessment (Geisser 1974; Kock 2015b; Stone 1974).

Latent variable correlations and square roots of average 
variances extracted are listed in Table 8. These coefficients 
are used for discriminant validity assessment; that is, to 
assess whether measures associated with each latent variable 
are not confused by respondents with measures associated 
with other latent variables (Fornell and Larcker 1981; Kock 
2014; Schumacker and Lomax 2004).

Table 9 shows variance inflation factors (Hair et al. 2009) 
from a full collinearity test. In a full collinearity test, vari-
ance inflation factors are calculated for all of the variables 
in the model (Kock and Lynn 2012). This allows for the 
assessment of whole-model collinearity in the presence of 



502	 Cognition, Technology & Work (2018) 20:489–504

1 3

Table 6   Combined loadings and 
cross-loadings, weights, and 
effect sizes

Loadings and weights shown in bold, cross-loadings and cross-weights in italics; Stress, perceived stress; 
Perf, programming performance; ES, effect size

Loadings and cross-loadings Weights ES

Stress Perf P value Stress Perf P value

Stress1 0.945 − 0.002 < 0.001 0.240 0 0.002 0.226
Stress2 0.883 0.113 < 0.001 0.222 0 0.003 0.196
Stress3 0.970 0.009 < 0.001 0.241 0 0.002 0.234
Stress4 0.957 − 0.024 < 0.001 0.249 0 0.001 0.239
Stress5 0.639 − 0.024 < 0.001 0.164 0 0.023 0.105
Perf1 0.031 0.958 < 0.001 0 0.216 0.004 0.207
Perf2 0.041 0.936 < 0.001 0 0.208 0.006 0.194
Perf3 0.003 0.967 < 0.001 0 0.221 0.003 0.214
Perf4 0.016 0.935 < 0.001 0 0.206 0.006 0.193
Perf5 − 0.039 0.924 < 0.001 0 0.208 0.005 0.192

Table 7   Latent variable coefficients

Stress, perceived stress; Perf, programming performance; ES, effect 
size

Stress Perf

R-squared coefficients 0.057 0.366
Adjusted R-squared coefficients 0.050 0.337
Composite reliability coefficients 0.948 0.976
Cronbach’s alpha coefficients 0.927 0.969
Average variances extracted 0.788 0.891
Q-squared coefficients 0.059 0.364

Table 8   Latent variable 
correlations and square roots of 
average variances extracted

Square roots of average variances extracted shown on diagonal within bold; Stress, perceived stress; Perf, 
programming performance; Exp, programming experience

Stress Perf GPA Age Sex (M/F) Exp

Stress 0.888 − 0.524 − 0.204 0.221 − 0.154 − 0.142
Perf − 0.524 0.944 0.144 − 0.246 0.158 0.212
GPA − 0.204 0.144 1 − 0.001 0.026 0.071
Age 0.221 − 0.246 − 0.001 1 − 0.124 0.135
Sex (M/F) − 0.154 0.158 0.026 − 0.124 1 0.210
Exp − 0.142 0.212 0.071 0.135 0.210 1

Table 9   Full collinearity 
variance inflation factors

Stress, perceived stress; Perf, programming performance; Exp, programming experience; Exp*Stress, inter-
action variable used to implement the moderating effect: Exp → (Stress → Perf)

Stress Perf GPA Age Sex (M/F) Exp Exp*Stress

1.452 1.576 1.051 1.186 1.092 1.448 1.423

variables measured through single indicators. Full collinear-
ity variance inflation factors can also be used in common 
method bias tests (Kock 2015c).

The measurement model assessment results summarized 
in the tables above suggest that the measurement instrument 
presents acceptable convergent validity, discriminant valid-
ity, and reliability. These also suggest that the measurement 
instrument presents acceptable predictive validity. Finally, 
these results above suggest that the measurement instru-
ment is free from model-wide collinearity and that common 
method variance does not have a significant biasing effect 
in the analysis.



503Cognition, Technology & Work (2018) 20:489–504	

1 3

References

Akerstedt T, Gillberg M (1990) Subjective and objective sleepiness in 
the active individual. Int J Neourosci 52(1–2):29–37

Bailey J, Mitchell RB (2006) Industry perceptions of the competencies 
needed by computer programmers: technical, business, and soft 
skills. J Comput Inf Syst 47(2):28–33

Barnes RF, Raskind M, Gumbrecht G, Halter JB (1982) The effects of 
age on the plasma catecholamine response to mental stress in man. 
J Clin Endocrinol Metab 54(1):64–69

Bartlett F (1932) Remembering: a study in experimental and social 
psychology. Cambridge University Press, Cambridge

Bartlett F (1958) Thinking: an experimental and social study. Basic 
Books, New York

Beckers JJ, Rikers RM, Schmidt HG (2006) The influence of computer 
anxiety on experienced computer users while performing complex 
computer tasks. Comput Hum Behav 22(3):456–466

Bera AK, Jarque CM (1981) Efficient tests for normality, homosce-
dasticity and serial independence of regression residuals: Monte 
Carlo evidence. Econ Lett 7(4):313–318

Bergin S, Reilly R (2005) Programming: factors that influence success. 
ACM SIGCSE Bull 37(1):411–415

Billings AG, Moos RH (1982) Work stress and the stress-buffering 
roles of work and family resources. J Organ Behav 3(3):215–232

Brosnan MJ (1998) The impact of computer anxiety and self-efficacy 
upon performance. J Comput Assist Learn 14(3):223–234

Burgess GA (2005) Introduction to programming: blooming in Amer-
ica. J Comput Sci Coll 21(1):19–28

Byrne P, Lyons G (2001) The effect of student attributes on success in 
programming. ACM SIGCSE Bull 33(3):49–52

Caplan LJ, Schooler C (1990) The effects of analogical training models 
and age on problem-solving in a new domain. Exp Aging Res 
16(3):151–154

Catherine BC, Wheeler DD (1994) The Myers-Briggs personality type 
and its relationship to computer programming. J Res Comput 
Educ 26(3):358–370

Chan DKC, Yang SX, Hamamura T, Sultan S, Xing S, Chatzisarantis 
NL, Hagger MS (2015) In-lecture learning motivation predicts 
students’ motivation, intention, and behaviour for after-lecture 
learning: examining the trans-contextual model across universi-
ties from UK, China, and Pakistan. Motiv Emot 39(6):908–925

Cohen J (1988) Statistical power analysis for the behavioral sciences. 
Lawrence Erlbaum, Hillsdale

Cohen S, Kamarck T, Mermelstein R (1983) A global measure of per-
ceived stress. J Health Soc Behav 24(4):385–396

Cohen I, Brinkman WP, Neerincx MA (2015) Modelling environ-
mental and cognitive factors to predict performance in a stressful 
training scenario on a naval ship simulator. Cogn Technol Work 
17(4):503–519

Cossete P, Audet M (1992) Mapping of an idiosyncratic schema. J 
Manage Stud 29(3):325–348

Czaja SJ (1995) Aging and work performance. Rev Public Pers Adm 
15(2):46–61

Dermentzi E, Papagiannidis S, Toro CO, Yannopoulou N (2016) Aca-
demic engagement: differences between intention to adopt Social 
Networking Sites and other online technologies. Comput Hum 
Behav 61(1):321–332

Dibiase D, Kidwai K (2010) Wasted on the young? Comparing the 
performance and attitudes of younger and older US adults in 
an online class on geographic information. J Geogr High Educ 
34(3):299–326

Dollinger SMC (1995) Mental rotation performance: age, sex, and 
visual field differences. Dev Neuropsychol 11(2):215–222

Dönmez D, Grote G, Brusoni S (2016) Routine interdependencies as a 
source of stability and flexibility. A study of agile software devel-
opment teams. Inf Organ 26(3):63–83

Duschl KC, Gramß D, Obermeier M, Vogel-Heuser B (2015) Towards 
a taxonomy of errors in PLC programming. Cogn Technol Work 
17(3):417–430

Dyck JL, Smither JAA (1994) Age differences in computer anxiety: 
the role of computer experience, gender and education. J Educ 
Comput Res 10(3):239–248

Ehremberg ASC, Goodhart GJ (1976) Factor analysis: limitations and 
alternatives. Marketing Science Institute, Cambridge

Elias SM, Smith WL, Barney CE (2012) Age as a moderator of attitude 
towards technology in the workplace: work motivation and overall 
job satisfaction. Behav Inf Technol 31(5):453–467

Ferguson GA (1981) Statistical analysis in psychology and education. 
McGraw-Hill, New York

Fornell C, Larcker DF (1981) Evaluating structural equation models 
with unobservable variables and measurement error. J Mark Res 
18(1):39–50

Gardner H (1985) The mind’s new science. Basic Books, New York
Garstka TA, Schmitt MT, Branscombe NR, Hummert ML (2004) How 

young and older adults differ in their responses to perceived age 
discrimination. Psychol Aging 19(2):326–335

Geisser S (1974) A predictive approach to the random effects model. 
Biometrika 61(1):101–107

Gel YR, Gastwirth JL (2008) A robust modification of the Jarque-Bera 
test of normality. Econ Lett 99(1):30–32

Gilroy FD, Desai HB (1986) Computer anxiety: sex, race and age. Int 
J Man Mach Stud 25(6):711–719

Gioia DA, Manz CC (1985) Linking cognition and behavior: a script 
processing interpretation of vicarious learning. Acad Manag Rev 
10(3):527–539

Gnambs T (2015) What makes a computer wiz? Linking personality 
traits and programming aptitude. J Res Pers 58(3):31–34

González A, Ramírez MP, Viadel V (2012) Attitudes of the elderly 
toward information and communications technologies. Educ Ger-
ontol 38(9):585–594

Haenlein M, Kaplan AM (2004) A beginner’s guide to partial least 
squares analysis. Underst Stat 3(4):283–297

Hagan D, Markham S (2000) Does it help to have some programming 
experience before beginning a computing degree program? ACM 
SIGCSE Bull 32(3):25–28

Hair JF, Black WC, Babin BJ, Anderson RE (2009) Multivariate data 
analysis. Prentice Hall, Upper Saddle River

Hannah L (2014) The rise of the modern firm. Bus Hist 56(5):845–846
Hasan B (2003) The influence of specific computer experiences on 

computer self-efficacy beliefs. Comput Hum Behav 19(4):443–450
Hetherington EM, Blechman EA (2014) Stress, coping, and resiliency 

in children and families. Psychology Press, New York
Huang LK (2015) Exploring factors affecting top management support 

of IT implementation: a stakeholder perspective in hospital. J Inf 
Technol Manag 26(1):31–45

Jaradat MIRM, Faqih KM (2014) Investigating the moderating effects 
of gender and self-Efficacy in the context of mobile payment 
adoption: a developing country perspective. Int J Bus Manag 
9(11):147

Jarque CM, Bera AK (1980) Efficient tests for normality, homosce-
dasticity and serial independence of regression residuals. Econ 
Lett 6(3):255–259

John RR (2014) The computer boys take over: computers, pro-
grammers, and the politics of technical expertise. Bus Hist 
56(5):846–847

Johnson KM (2015) Non-technical skills for IT professionals in the 
landscape of Social Media. Am J Bus Manag 4(3):102–122

Khan IA, Brinkman WP, Hierons RM (2011) Do moods affect program-
mers’ debug performance? Cogn Technol Work 13(4):245–258



504	 Cognition, Technology & Work (2018) 20:489–504

1 3

Kline RB (1998) Principles and practice of structural equation mod-
eling. The Guilford Press, New York

Kock N (2014) Advanced mediating effects tests, multi-group analyses, 
and measurement model assessments in PLS-based SEM. Int J 
e-Collab 10(3):1–13

Kock N (2015a) A note on how to conduct a factor-based PLS-SEM 
analysis. Int J e-Collab 11(3):1–9

Kock N (2015b) WarpPLS 5.0 user manual. ScriptWarp Systems, 
Laredo

Kock N (2015c) Common method bias in PLS-SEM: a full collinearity 
assessment approach. Int J e-Collab 11(4):1–10

Kock N (2016) Non-normality propagation among latent variables and 
indicators in PLS-SEM simulations. J Mod Appl Stat Methods 
15(1):299–315

Kock N, Chatelain-Jardón R (2016) Surprise-enhanced and technol-
ogy-mediated learning: a two-country study. Cogn Technol Work 
18(1):105–119

Kock N, Lynn GS (2012) Lateral collinearity and misleading results 
in variance-based SEM: an illustration and recommendations. J 
Assoc Inf Syst 13(7):546–580

Kock N, Mayfield M (2015) PLS-based SEM algorithms: the good 
neighbor assumption, collinearity, and nonlinearity. Inf Manag 
Bus Rev 7(2):113–130

Kock N, Sexton S (2017) Variation sharing: a novel numeric solution 
to the path bias underestimation problem of PLS-based SEM. Int 
J Strateg Decis Sci 8(4):46–68

Kraft P (2012) Programmers and managers: the routinization of com-
puter programming in the United States. Springer, New York

Lohmöller J-B (1989) Latent variable path modeling with partial least 
squares. Physica, Heidelberg

Lord RG, Maher KJ (1990) Alternative information-processing models 
and their implications for theory, research, and practice. Acad 
Manag Rev 15(1):9–28

Magsamen-Conrad K, Upadhyaya S, Joa CY, Dowd J (2015) Bridging 
the divide: using UTAUT to predict multigenerational tablet adop-
tion practices. Comput Hum Behav 50(3):186–196

Maier C, Laumer S, Weinert C, Weitzel T (2015) The effects of 
technostress and switching stress on discontinued use of 
social networking services: a study of Facebook use. Inf Syst J 
25(3):275–308

Martin MA (2007) Bootstrap hypothesis testing for some common sta-
tistical problems: a critical evaluation of size and power proper-
ties. Comput Stat Data Anal 51(12):6321–6342

Morrell W, Park DC, Mayhorn CB, Kelley CLR (2000) Effects of age 
and instructions on teaching older adults to use Eldercomm, an 
electronic bulletin board system. Educ Gerontol 26(3):221–235

Neumark D (2003) Age discrimination legislation in the United States. 
Contemp Econ Policy 21(3):297–317

Neumark D (2009) The Age Discrimination in Employment Act and 
the challenge of population aging. Res Aging 31(1):41–68

Nunnally JC, Bernstein IH (1994) Psychometric theory. McGraw-Hill, 
New York

Nunnaly J (1978) Psychometric theory. McGraw Hill, New York

Ogasawara H (1999) Standard errors for the direct oblimin solution 
with Kaiser’s normalization. Jpn J Psychol 70(4):333–338

Oh SY, Bailenson J, Weisz E, Zaki J (2016) Virtually old: embodied 
perspective taking and the reduction of ageism under threat. Com-
put Hum Behav 60(3):398–410

Paxton P, Curran PJ, Bollen KA, Kirby J, Chen F (2001) Monte Carlo 
experiments: design and implementation. Struct Equ Model 
8(2):287–312

Perry EL, Simpson PA, NicDomhnaill OM, Siegel DM (2003) Is 
there a technology age gap? Associations among age, skills, and 
employment outcomes. Int J Sel Assess 11(2):141–149

Potosky D (2002) A field study of computer efficacy beliefs as an 
outcome of training: the role of computer playfulness, computer 
knowledge, and performance during training. Comput Hum Behav 
18(3):241–255

Ramalingam V, Wiedenbeck S (1998) Development and validation of 
scores on a computer programming self-efficacy scale and group 
analyses of novice programmer self-efficacy. J Educ Comput Res 
19(4):367–381

Robert C, Casella G (2013) Monte Carlo statistical methods. Springer, 
New York

Rosenthal R, Rosnow RL (2007) Essentials of behavioral research: 
methods and data analysis. McGraw Hill, Boston

Rubio MA, Romero-Zaliz R, Mañoso C, Angel P (2015) Closing the 
gender gap in an introductory programming course. Comput Educ 
82(2):409–420

Rumelhart DE (1978) Schemata: the building blocks of cognition. 
Center for Human Information Processing, University of Califor-
nia, San Diego, San Diego

Schumacker RE, Lomax RG (2004) A beginner’s guide to structural 
equation modeling. Lawrence Erlbaum, Mahwah

Sorensen LJ, Stanton NA (2015) Exploring compatible and incompat-
ible transactions in teams. Cogn Technol Work 17(3):367–380

Soror AA, Hammer BI, Steelman ZR, Davis FD, Limayem MM (2015) 
Good habits gone bad: explaining negative consequences associ-
ated with the use of mobile phones from a dual-systems perspec-
tive. Inf Syst J 25(4):403–427

Stone M (1974) Cross-validatory choice and assessment of statistical 
predictions. J Roy Stat Soc B 36(1):111–147

Thompson B (2004) Exploratory and confirmatory factor analysis: 
understanding concepts and applications. American Psychologi-
cal Association, Washington

Tse D, Langston RF, Kakeyama M, Bethus I, Spooner PA, Wood ER, 
Witter MP, Morris RG (2007) Schemas and memory consolida-
tion. Science 316(5821):76–82

Vauclair CM, Lima ML, Abrams D, Swift HJ, Bratt C (2016) What do 
older people think that others think of them, and does it matter? 
The role of meta-perceptions and social norms in the prediction of 
perceived age discrimination. Psychol Aging 31(7):699

Whitbourne SK (2012) The aging body: physiological changes and 
psychological consequences. Springer, New York


	Do older programmers perform as well as young ones? Exploring the intermediate effects of stress and programming experience
	Abstract
	1 Introduction
	2 Theoretical orientation: the age-experience framework
	3 Research model and hypotheses
	3.1 Age, programming experience, and stress
	3.2 Stress, programming experience, and performance
	3.3 Indirect and total effects of age on performance

	4 Research method
	5 Measurement instrument validation
	6 Results
	6.1 What if the study’s participants had been professional programmers?

	7 Discussion
	8 Conclusion
	References




