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Abstract 

Structural equation modeling (SEM) is extensively used in marketing research. For various years 

now, there has been a somewhat heated debate among proponents and detractors of the use of the 

partial least squares (PLS) method for SEM. The classic PLS design, originally proposed by 

Herman Wold, has a number of advantages over covariance-based SEM; e.g., minimal model 

identification demands. However, that design does not base its model parameter recovery 

approach on the estimation of factors, but on composites, which are exact linear combinations of 

indicators. This leads to adverse consequences, primarily in the form of unacceptable levels of 

type I and II errors. Recently a new factor-based method for SEM has been developed, called 

PLSF, which we discuss in this paper. This method has the advantages of classic PLS, but 

without the problems inherent in the use of composites. For readers interested in trying it, the 

PLSF method is implemented in the SEM software WarpPLS. 
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1. Introduction 

    Structural equation modeling (SEM) is extensively used in marketing research (Hayes et al., 

2017). This sophisticated quantitative research method also finds broad application is many other 

areas of business research, as well as in research within the social and behavioral sciences. SEM 

employs latent variables (LVs), which are measured indirectly through “observed” or “manifest” 

variables. Observed or manifest variables associated with a specific LV are normally called 

“indicators”. 

    The measurement of LVs via indicators, typically obtained from the administration of 

questionnaires, includes error. In this context LVs refer to perception-based constructs, such as 

one’s satisfaction with one’s job. Indicators frequently store numeric answers on Likert-type 

scales (e.g., 1 = strongly disagree … 5 = strongly agree) to question-statements in questionnaires. 

Each set of question-statements is designed to refer to a specific LV, and expected to measure 

the LV with a certain degree of imprecision. 

    For various years now there has been a rather heated debate among proponents and detractors 

of the use of the partial least squares (PLS) method, developed by the Norwegian-born 

econometrician and statistician Herman Ole Andreas Wold, in the context of SEM. This debate 

stems from common factor model assumptions, which form the basis on which covariance-based 

SEM rests (Kline, 2010; Mueller, 1996). Fueling the debate is the fact that Wold’s classic PLS 

design for “soft” SEM has a number of advantages over covariance-based SEM, including: 

minimal model identification demands, practically no data or model parameter distribution 

assumptions, virtually universal convergence to solutions, and estimation of “pseudo-factors”. 

The latter can be used in a number of derivative tests. 

    In spite of the advantages above, there is a major problem with using PLS, as originally 

designed, for hypothesis-testing in the context of SEM. The original PLS design does not base its 

model parameter estimation process on the estimation of true factors. Estimation is based on 

“composites”, which are exact linear combinations of indicators, and are called above “pseudo-

factors”. The composite estimates generated by the classic PLS design can be conceptually seen 

as factors minus their corresponding measurement residuals. Reliance on them leads to biased 

model parameter estimates, notably path coefficients and loadings, even as sample sizes grow to 

infinity. 

    Recently a new factor-based method for SEM has been developed (Kock, forthcoming), which 

is discussed in this paper. Our discussion builds on an illustrative model, which is meant to make 

our exposition meaningful to those in the field of marketing and related fields. We created a 

large sample (N=10,000) of normally distributed data based on this illustrative model to 

exemplify the performance of the new method vis-à-vis other methods. These comparison 

methods are covariance-based SEM through full-information maximum likelihood, ordinary least 

squares regression with summed indicators, and PLS Mode A employing the path weighting 

scheme. The latter is the most widely used form of classic PLS. 

    Since this new method bears some resemblance to classic PLS, we refer to it as the “PLSF” 

method. The “F” in the PLSF acronym refers to the correlation-preserving factor estimation 

process that underlies the method. For readers interested in trying it, the PLSF method is 

implemented in WarpPLS (Kock, 2018). WarpPLS is an SEM software package that is unique 

not only because of its implementation of factor-based SEM, but also because it enables 

nonlinear analyses where best-fitting nonlinear functions are estimated for each pair of 
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structurally linked variables in path models, and subsequently used (i.e., the nonlinear functions) 

to estimate path coefficients that take into account the nonlinearity. 

 

2. Illustrative model 

    Our discussion is based on the illustrative model shown in Figure 1, which is used here to help 

us accomplish our goal of making our discussion meaningful to those in the field of marketing 

and related fields. The model contains four factors, associated with the following constructs: 

marketing expenditures (ME, 𝐹1), brand awareness (BA, 𝐹2), employee morale (EM, 𝐹3), and 

business success (SU, 𝐹4). These constructs are assumed to have been measured at the company 

level. The marketing expenditures construct is assumed to have been measured without error 

(e.g., in dollars per year), through a single indicator. The other three constructs are assumed to 

have been measured with error through Likert-type question-statements in a questionnaire, each 

through five indicators. 
 

Figure 1. Illustrative model 

 

 
 

 

    In this illustrative model 𝛽𝑖𝑗 is the path coefficient for the link going from factor 𝐹𝑗 to factor 

𝐹𝑖, and 𝜆𝑖𝑗 is the loading for the jth indicator of factor 𝐹𝑖. The general idea underlying this model 

is that a company’s marketing expenditures positively influence business success but only 

indirectly, via positive influences on brand awareness and employee morale. For example, a solar 

panel manufacturing company, by spending money marketing its product, will make its solar 
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panel brand better known to customers. It will also make its employees proud, by portraying the 

company positively in the media, and thus increase their morale. The combined result will be 

greater business success. 

    This is clearly a simplified model that is not meant to serve as the basis for future theoretical 

or empirical research. It is nevertheless a helpful model, as it helps us conduct a discussion that 

is not entirely conceptual or mathematical. From a methodological perspective, this model is also 

helpful because of the inclusion of mediating effects, and of the “zero” path from ME to SU. As 

it will be seen later in this paper, these model characteristics allow us to illustrate the tendency 

that composite-based SEM methods, such as classic PLS-based SEM, have to induce 

unacceptable levels of type I and II errors – a.k.a. false positives and false negatives, 

respectively. 

 

3. The PLSF method 

    The PLSF method is comprised of four main stages. In its first stage, it estimates the 

reliabilities for each of the LVs in a model. Those reliabilities are then used to estimate 

composites in the second stage. These composites are different from the composites generated 

via classic PLS algorithms, such as PLS Mode A and PLS Mode B (Kock & Hadaya, 2018). A 

key difference is that they must satisfy a specific equation that employs the Moore–Penrose 

pseudoinverse transformation. In the third stage, factors are estimated based on the composites 

via a novel technique known as variation sharing. In the fourth stage, the final stage, all 

parameters are estimated based on the estimated factors and the original indicators. This final 

stage implements a two-stage least squares estimation to control for in-model endogeneity. 

Through these four stages, the PLSF method essentially produces composites and then 

“transforms” these composites into factors. This fundamental characteristic of the PLSF method 

is illustrated in Figure 2. 

    The figure shows two correlated composites on the left side, and their corresponding 

correlated factors on the right side. The factors are derived from the composites. The indicators 

are assumed to be imprecise measures, obtained via questionnaires, from their corresponding 

LVs. As such the indicators “reflect” their common factors. Even though this is the case (top part 

of the figure), the factors can also be seen as aggregations of their respective indicators and 

measurement residuals (bottom part of the figure). In each factor the measurement residual 

explains the variation in the factor that is not accounted for by the indicators. Therefore the 

measurement residual is uncorrelated with the factor’s indicators. The percentage of the variance 

explained in a factor by its indicators, or the 𝑅2 obtained when a factor is regressed on its 

indicators, equals the factor’s reliability. 

    As we can see, reliability estimates need to be produced early in the PLSF method, and in fact 

are critical for the method. The Cronbach’s alpha coefficients provide good estimates of the 

reliabilities when the degree of heterogeneity among the loadings in each LV is low. This 

appears to frequently be the case in practice. Two alternatives can be employed when this is not 

the case. One of these alternatives is to use the reliability estimates generated by Dijkstra's 

consistent PLS (a.k.a. PLSc) technique, which appear to be closer to the true reliabilities than 

Cronbach’s alpha coefficients under high loading heterogeneity conditions. The other alternative 

is to use Cronbach’s alpha coefficients as initial reliability estimates, and iterate across the 

second and third stages of the PLSF method. In each iteration the reliability estimates for each 
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LV would be adjusted to 1 2⁄ (𝜔̂𝑖
′𝜆̂𝑖 + 𝜌̂𝑖), where for each LV indexed by 𝑖: 𝜔̂𝑖 is a column 

vector with weight estimates, 𝜆̂𝑖 is a column vector with loading estimates, and 𝜌̂𝑖 is the 

composite reliability estimate. 
 

Figure 2. From composites to factors 

 

 
 

 

    To produce the composite estimates, weights and loadings must satisfy the equation below, 

where: 𝛴𝑥𝑖𝑥𝑖
 is the matrix of correlations among the indicators associated with the LV indexed by 

𝑖, 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃̂𝑖
) is the diagonal matrix of covariances among the indicators and corresponding 

error terms, and the superscript + denotes the Moore–Penrose pseudoinverse transformation. 

Note that 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃̂𝑖
) is a diagonal matrix because in the common factor model 𝛴𝑥𝑖𝑗𝜃𝑖𝑗

= 0 for 

all 𝑖 ≠ 𝑗. That is, the indicator error terms are correlated with their corresponding indicators, as 

they account for the variation in those indicators that is not caused by the corresponding factor, 

and at the same time are uncorrelated with other indicators in the same factor. 

 

𝜔̂𝑖 = 𝛴𝑥𝑖𝑥𝑖

−1[𝛴𝑥𝑖𝑥𝑖
− 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃̂𝑖

)]𝜆̂𝑖
′+

.  

 

    Iterations of the equation above together with a few other ancillary equations produce 

estimates of weights and loadings. With the estimates of weights, the PLSF method generates 

estimates of composites. Those are then used by the PLSF method to produce factor estimates, 

employing the variation sharing equations below as part of an iterative process. Iterations take 



 6 

place until the sum of the absolute differences 𝛴̂𝐹𝑖𝐹𝑗
− 𝛴𝐹̂𝑖𝐹̂𝑗

 falls below a small fraction, or until 

the sum of the absolute differences between successive estimates of 𝛴𝐹̂𝑖𝐹̂𝑗
 changes by less than a 

small fraction. The estimated matrix of correlations among factors 𝛴̂𝐹𝑖𝐹𝑗
 is calculated as 

𝛴𝐶̂𝑖𝐶̂𝑗 √𝜌̂𝑖𝜌̂𝑗⁄ , where 𝛴𝐶̂𝑖𝐶̂𝑗
 is the corresponding element of the matrix of correlations among 

estimated composites. The matrix of correlations among estimated factors 𝛴𝐹̂𝐹̂ varies across 

iterations. 

 

𝜀𝑖̂ = 𝑆𝑡𝑑𝑧 (𝜀𝑖̂ + (𝛴̂𝐹𝑖𝐹𝑗
− 𝛴𝐹̂𝑖𝐹̂𝑗

)
𝛴̂𝐹𝑖𝐹𝑗

𝜔̂𝑖𝜀
(𝐶̂𝑗𝜔̂𝑗𝐶 + 𝜀𝑗̂𝜔̂𝑗𝜀)), 

 

𝐹̂𝑖 = 𝑆𝑡𝑑𝑧(𝐹̂𝑖 + (𝜔̂𝑖𝐶 − 𝛴𝐹̂𝑖𝐶̂𝑖
)𝐶̂𝑖𝜔̂𝑖𝐶),  

𝜀𝑖̂ = 𝑆𝑡𝑑𝑧(𝜀𝑖̂ −  𝛴𝐶̂𝑖𝜀̂𝑖
𝐶̂𝑖𝜔̂𝑖𝐶 + (𝜔̂𝑖𝜀 − 𝛴𝐹̂𝑖𝜀̂𝑖

)𝐹̂𝑖𝜔̂𝑖𝜀).  

 

    Through the variation sharing equations above, successive estimates of factors 𝐹̂𝑖 and 

measurement residuals 𝜀𝑖̂ acquire or lose variation from correlated factors, composites, and 

measurement residuals (denoted as 𝐹̂𝑗, 𝐶̂𝑗 and 𝜀𝑗̂). This is done in such a way as to enforce the 

following constraints: 𝛴̂𝐹𝑖𝐹𝑗
= 𝛴𝐹̂𝑖𝐹̂𝑗

, 𝛴𝐹̂𝑖𝐶̂𝑖
= 𝜔̂𝑖𝐶, 𝛴𝐹̂𝑖𝜀̂𝑖

= 𝜔̂𝑖𝜀, and 𝛴𝐶̂𝑖𝜀̂𝑖
= 0. The first 

constraint, namely 𝛴̂𝐹𝑖𝐹𝑗
= 𝛴𝐹̂𝑖𝐹̂𝑗

, drives the iterative convergence process. As we can see, the 

PLSF method is analogous to covariance-based SEM in that it maximizes the fit between 

covariance matrices. The key difference is that the PLSF method maximizes the fit between 

factor covariance matrices, whereas covariance-based SEM maximizes the fit between indicator 

covariance matrices. 

 

4. Coefficient estimation accuracy 

    We created a large sample (N=10,000) of normally distributed data, based on the illustrative 

model described earlier, to exemplify the performance of the PLSF method vis-à-vis other 

methods. Such a large sample contains only a small amount of sampling error, which makes it a 

good choice for cross-method comparisons highlighting algorithmic outcomes. It also provides 

the basis for a straightforward discussion about the performance of different methods. 

    Here PLSF is compared against the following methods: covariance-based SEM through full-

information maximum likelihood (FIML); ordinary least squares regression with summed 

indicators (OLS); and PLS Mode A employing the path weighting scheme (PLS). The latter is 

the most widely used form of classic PLS path modeling employed in the field of marketing. 

    We used WarpPLS 6.0 (Kock, 2018) for the implementation of the PLSF, OLS, and PLS 

methods. The following algorithms were selected in the WarpPLS software: Factor-Based PLS 

Type CFM2 (for the PLSF method), Robust Path Analysis (for OLS), and PLS Mode A (for 

PLS). For FIML, we used R 3.5.1 and the package lavaan 0.6-3 (Rosseel, 2012). 

    Table 1 lists the path coefficients and a summarized set of loadings; the latter only for SU, to 

avoid crowding, as the same loading estimation patterns repeat themselves across LVs. The 
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columns labeled “True” list the true values for path coefficients and loadings. The “Est.” 

columns list the corresponding estimates employing each method. The “Diff.” columns list the 

differences between estimates and true values for each method. The rows labeled “RMSE” list 

root-mean-square errors associated with the differences among estimates and true values, 

calculated as the square roots of the averages of the squared differences. 
 

Table 1. Path coefficients and loadings for large sample (N=10,000) 

 

Path coefficients 

   PLSF  FIML  OLS  PLS 

 True  Est. Diff.  Est. Diff.  Est. Diff.  Est. Diff. 

ME>BA 0.3000  0.2997 -0.0003  0.2987 -0.0013  0.2715 -0.0285  0.2725 -0.0275 

ME>EM 0.2000  0.1868 -0.0132  0.1873 -0.0127  0.1634 -0.0366  0.1643 -0.0357 

ME>SU 0.0000  -0.0060 -0.0060  -0.0071 -0.0071  0.0223 0.0223  0.0215 0.0215 

BA>SU 0.2500  0.2468 -0.0032  0.2471 -0.0029  0.1948 -0.0552  0.1969 -0.0531 

EM>SU 0.3500  0.3449 -0.0051  0.3447 -0.0053  0.2599 -0.0901  0.2653 -0.0847 

RMSE    0.0070   0.0071   0.0526   0.0500 

Loadings (for SU) 

   PLSF  FIML  OLS  PLS 

 True  Est. Diff.  Est. Diff.  Est. Diff.  Est. Diff. 

SU1<SU 0.5500  0.5469 -0.0031  0.5504 0.0004  0.6800 0.1300  0.6489 0.0989 

SU2<SU 0.6000  0.5989 -0.0011  0.5983 -0.0017  0.7055 0.1055  0.7001 0.1001 

SU3<SU 0.6500  0.6551 0.0051  0.6454 -0.0046  0.7340 0.0840  0.7264 0.0764 

SU4<SU 0.7000  0.7042 0.0042  0.7053 0.0053  0.7623 0.0623  0.7809 0.0809 

SU5<SU 0.7500  0.7551 0.0051  0.7545 0.0045  0.7870 0.0370  0.8074 0.0574 

RMSE    0.0040   0.0038   0.0898   0.0842 

 

 

Figure 3. Differences (RMSEs) with respect to true values 

 

 
 

 

    Figure 3 highlights the differences with respect to the true values for each of the methods. As 

noted earlier, these differences are presented as root-mean-square errors (RMSEs). Note that the 
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large sample created has true values associated with coefficients that are somewhat different 

from the true population values shown earlier for the illustrative model (Kock & Moqbel, 2016). 

It is the true sample values that the methods try to recover, which is why PLSF and FIML seem 

to miss the marks by approximately the same margins – e.g., by estimating a 0.2000 path 

respectively as 0.1868 and 0.1873. In other words, the bar charts are somewhat misleading, 

possibly portraying the PLSF and FIML methods as marginally less precise than they truly are. 

    As can be inferred from the results, the performances of PLSF and FIML were very similar in 

terms of estimation of path coefficients and loadings. Also, PLSF and FIML performed 

significantly better than OLS and PLS, whose corresponding RMSEs with respect to the true 

values were multiple orders of magnitude higher. 

    In terms of the path coefficients, the OLS and PLS methods significantly underestimated the 

true values. For example, the path coefficient for the link BA>SU (true value = 0.2500) was 

estimated as 0.1948 by OLS and as 0.1969 by PLS. The OLS and PLS methods also significantly 

overestimated the “zero” path coefficient for the link ME>SU (true value = 0.0000). The OLS 

method overestimated it as 0.0223, and PLS as 0.0215. 

 

5. False negatives and false positives 

    So what is the big deal about underestimating a path coefficient as 0.1969, as did the PLS 

method, when in reality (i.e., at the population level) the coefficient is 0.2500? The main 

problem with this type of underestimation is that it can have a significant impact on the 

probability of type II errors, or false negatives. The probability that a method will avoid false 

negatives, in the context of a specific model, is known as the statistical power of the method. A 

power value of 80 percent (or 0.8) or higher is generally considered acceptable in business 

research. 

    One of the “Explore” menu options available from the main window of WarpPLS, namely the 

“Explore statistical power and minimum sample size requirements” menu option, allows users to 

estimate statistical power and minimum sample size requirements. This feature helps us to form 

an idea about the loss in power that is caused by the path coefficient underestimations of OLS 

and PLS. Let us use the path coefficient for the link BA>SU (true value = 0.2500) as an example. 

It was estimated as 0.2468 by PLSF, which is very close to the estimate generated by FIML. 

Entering this value in WarpPLS we find that 80 percent power is achieved with a sample size of 

approximately 88 to 102. 

    However, if we enter the 0.1969 path coefficient estimate produced by PLS, we find that 80 

percent power is achieved with a sample size of approximately 146 to 160. Incrementally 

changing the power settings in the “Explore statistical power and minimum sample size 

requirements” feature of WarpPLS, allows us to establish that a sample size in the range of 93 to 

104 for this 0.1969 path coefficient would be associated with a power level of 64 percent, which 

is unacceptably low. And this range is slightly higher than the 88 to 102 range considered above. 

In other words, using the classic composite-based PLS method would significantly decrease the 

power of our analysis, when compared with the factor-based PLSF method. This essentially 

means that classic PLS leads to unacceptably high probabilities that type II errors will occur. The 

same is true also for OLS, with a comparable decrease in power and increase in type II error 

probability. 

    Another problem associated with the composite-based methods such as PLS occurs in 

connection with type I errors, or false positives. This problem is possibly even more severe than 
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the problem regarding type II errors discussed above, because the acceptable probability of type I 

errors is normally much lower than that for type II errors. A value of 5 percent (or 0.05) or lower 

is generally considered acceptable in business research, for type I errors. This is 1/4 of the 20 

percent allowable for type II errors; which is equivalent to 80 percent power (100 − 20 = 80). 

    For a “zero” path coefficient, the percentage of false positives equates the statistical power 

associated with that path, because the latter is the probability that the path will be found to be 

significantly greater than zero (which in reality it is not). Given this, we can use the same line of 

mathematical reasoning employed by Kock & Hadaya (2018) to obtain the equation below (see 

also: Kock et al., 2017), where: 𝑁 is the sample size at which a certain percentage of false 

positives is achieved (𝐹𝑃); 𝑧𝐶𝐿 is the z-score associated with a given confidence level 𝐶𝐿; 𝑧𝐹𝑃 is 

the z-score associated with 𝐹𝑃; and |𝛽0̂| is the absolute value of the estimate obtained for the 

“zero” path coefficient. 

 

𝑁 = (
𝑧𝐶𝐿 + 𝑧𝐹𝑃

|𝛽0̂|
)

2

.  

 

    As noted earlier, the PLS method overestimated the “zero” path coefficient for the link 

ME>SU (true value = 0.0000), as 0.0215. We can use the Excel function NORMSINV(∙) to 

obtain z-scores. In business research, normally the confidence level 𝐶𝐿 used is 95 percent. Thus, 

the value of 𝑁 shown below is the approximate sample size at which the percentage of false 

positives will be twice the acceptable level of 5 percent (i.e., 10 percent) for a |𝛽0̂| value of 

0.0215. 

 

𝑁 = (
𝑧0.95 + 𝑧0.10

0.0215
)

2

→  

𝑁 = (
1.6449 − 1.2816

0.0215
)

2

→  

𝑁 ≅ 286.  

 

    That is, the PLS method yields 10 percent false positives in our model with a sample size of 

286. Stated differently, the probability that the PLS method would estimate the “zero” path in 

our model as being statistically significant was found to be 10 percent at that sample size. This is 

an unacceptably high percentage of false positives, double the 5 percent that is generally 

considered the maximum allowable. The OLS method estimated the “zero” path coefficient as 

0.0223, greater than the 0.0215 for PLS, so clearly it would yield 10 percent false positives at a 

lower sample size. 

    Note from the equation that the values of 𝑧𝐹𝑃 and 𝑁 must increase together for the equation to 

be satisfied, other things being equal. And, for the value of 𝑧𝐹𝑃 to increase, the percentage of 

false positives 𝐹𝑃 has to increase. Therefore, it follows that the higher the sample size, the 

greater will be the percentage of false positives with the composite-based OLS and PLS 

methods. This is exactly the opposite of what one would expect from trustworthy methods. 
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    These results mirror those obtained by Kock (forthcoming), who provides a more detailed 

discussion of the PLSF method and results of comparisons against the same methods used here. 

That study found that false positives associated with a “zero” path coefficient were already at 

27.2 percent for OLS and 23.6 for PLS at a relatively small sample size of 300. At that sample 

size, both the PLSF and FIML methods yielded false positive percentages below 5. The study 

used a more complex model than the one employed here, which seemed to have amplified the 

negative effects of the poor coefficient estimation accuracy of OLS and PLS. The fundamental 

reason for these results is that, unlike factor-based methods, composite-based methods tend to 

“capitalize on error” when used to estimate coefficients associated with non-existent causal 

paths. 

 

6. Discussion and conclusion 

    We have highlighted problematic characteristics of composite-based methods, such as OLS 

and PLS, when they are compared with factor-based methods such as PLSF and FIML. The 

PLSF method is implemented starting in version 5.0 of the software WarpPLS (Kock, 2018). 

While our discussion has focused on path coefficients, which are structural model coefficients, 

we should note that our results show that measurement model coefficients are also biased in 

composite-based methods. Notably, loadings tend to be overestimated. For example, the loading 

for the link SU1<SU, whose true value is 0.5500, was overestimated as 0.6800 by OLS and as 

0.6489 by PLS. 

    The distortion in measurement model coefficients undermines the use of tried-and-true criteria 

for measurement model quality assessment in FIML. For example, a widely used criterion for 

convergent validity assessment is that loadings must be equal to or greater than 0.5 for all 

indicator-LV links in a model. This criterion is meant to help researchers assess whether the 

indicators associated with the loadings do in fact “belong” to the LVs to which they were 

assigned in the measurement model design stage. This type of assessment is an essential element 

of what is known as a “confirmatory factor analysis”. But if loadings are inflated, it is much 

more likely that indicators that do not actually belong to a LV will be mistaken as belonging. In 

other words, it is difficult to conduct a confirmatory factor analysis with entities that are not 

factors, but composites. 

    The recognition of this and related problems has motivated methodological researchers to 

develop various ad-hoc tests for the classic composite-based PLS method. This in part explains 

the proliferation of such ad-hoc tests that have recently been proposed; e.g., the heterotrait-

monotrait test. New tests may be seen as novel and useful developments, but they are not 

necessarily so if the new tests are proposed to address issues that are caused by more 

fundamental problems, particularly if the fundamental problems are not actually addressed. It is 

in this context that the PLSF method offers value. It addresses the fundamental problem plaguing 

composite-based methods in general, including classic PLS, which is that these methods do not 

explicitly account for measurement error. 

    Our results demonstrate that composite-based methods, such as OLS and PLS, are doubly 

problematic when it comes to the estimation of structural model parameters. Those methods tend 

to underestimate path coefficients that exist at the population level. And, at the same time, they 

tend to overestimate path coefficients that do not exist – i.e., that are “zero” at the population 

level. Added to these problems is the one related to loadings, which tend to be overestimated, 

leading to measurement model quality assessment difficulties; e.g., in convergent validity 
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assessment (Kock, 2014). Neither PLSF nor FIML, the factor-based methods employed in our 

analyses, suffers from the same problems. 

    Given that FIML is a fairly established method, why not simply use it instead of PLSF? Why 

do we need PLSF at all? There are several reasons why we need PLSF, of which three are 

particularly noteworthy. Firstly, the PLSF method is computationally much simpler than FIML. 

Most implementations of FIML require the calculation of matrices of second-order partial 

derivatives (Hessian matrices) and their inversion, which is often impossible or leads to 

unacceptable results (Kline, 2010; Mueller, 1996). The more complex the model, the more likely 

it is that unacceptable results will be produced. 

    Secondly, the PLSF method provides estimates of factor scores, which can subsequently be 

used in a variety of other tests. Factor scores can also be obtained via FIML, but they tend to be 

rather poor approximations of the true factors; see Kock (forthcoming) for several results and a 

discussion of this issue. Among tests that employ factor scores from the PLSF method are two 

that have been widely used in a variety of fields since their publication: full collinearity tests, 

which assess lateral and vertical collinearity among factors at the same time (Kock & Lynn, 

2012), and can be used in common method bias assessments (Kock & Lynn, 2012; Kock, 2015); 

and factor-factor nonlinearity tests, whereby best-fitting nonlinear functions are built for each 

pair of causally linked factors, and then used in the calculation of modified path coefficients that 

take nonlinearity into consideration (Guo et al., 2011; Kock, 2010; Moqbel et al., 2013). 

    The “double-trouble” structural model parameter estimation situation associated with classic 

PLS and other composite-based methods has led to a new line of prediction-oriented research, 

based on the argument that classic PLS is as good for prediction as factor-based methods, if not 

better (Shmueli et al., 2016). Let us assume, for instance, that one wants to build a model of 

customer purchases at a supermarket, where purchases of products are modeled as influencing 

one another. The argument is that a model built based on parameters obtained via classic PLS 

would be quite successful at predicting purchases in the future (e.g., next month) based on past 

purchases (e.g., last month). 

    However, the above prediction-oriented type of application above is significantly different 

from hypothesis-testing in the context of SEM. The latter can greatly benefit from factor-based 

methods such as PLSF, because SEM-based tests of hypotheses rely heavily on parameter 

estimation accuracy. Given that the lack of estimation accuracy can lead to both type I and II 

errors, which is a very troubling scenario in the context of SEM, we tend to favor the PLSF 

method for testing hypotheses. In prediction-oriented scenarios, the advantages of PLSF are yet 

to be determined. This appears to be a promising area for future research. 
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