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Abstract 

Partial least squares (PLS) methods offer many advantages for path modeling, such as fast 

convergence to solutions and relaxed requirements in terms of sample size and multivariate 

normality. However, they do not deal with factors, but with composites. As a result, they typically 

underestimate path coefficients and overestimate loadings. Given these, it is difficult to fully 

justify their use for confirmatory factor analyses or factor-based structural equation modeling 

(SEM). We addressed this problem through the development of a new method that generates 

estimates of the true composites and factors, potentially placing researchers in a position where 

they can obtain consistent estimates of a wide range of model parameters in SEM analyses. A 

Monte Carlo experiment suggests that this new method represents a solid step in the direction of 

achieving this ambitious goal. 
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1. Introduction 

    Herman Wold, whose seminal contributions include the Cramér–Wold theorem and Wold's 

decomposition, developed what is known today as the partial least squares (PLS) approach to 

path modeling (Henseler & Chin, 2010; Kock & Mayfield, 2015; Kock & Moqbel, 2016; Wold, 

1980). He intended it as an exploratory and computationally efficient approach that would yield 

moderately biased model parameters with small samples and with both normal and non-normal 

data (Kock & Mayfield, 2015; Kock & Moqbel, 2016; Wold, 1980). 

    This same general approach has recently been gaining an increasing number of adherents as a 

tool for confirmatory factor analyses and structural equation modeling (SEM), as suggested by 

the growth of normative discussions clearly aimed at a much broader use of PLS than originally 

intended (Hair et al., 2011; Richter et al., 2015). Strong criticism by methodological researchers 

has ensued, and for reasons that are difficult to brush away (McIntosh et al., 2014; Rönkkö & 

Evermann, 2013). 

    Historically SEM has been closely aligned with the common factor model, which posits the 

existence of factors that cause indicators (Kline, 2010; Kock, 2014). PLS methods, on the other 

hand, are based on composites and not on factors (Kock & Lynn, 2012; Kock & Mayfield, 2015; 

McDonald, 1996). In part because of this, PLS algorithms yield biased model parameters (Kock, 

2015). Notably, path coefficients are generally underestimated, and loadings are more often than 

not overestimated. Given these problems it is difficult to fully justify the use of PLS, in its 

classic form, for confirmatory research. 

    Still, PLS methods have advantages. They virtually always converge to solutions, and fast 

(Henseler, 2010; Kock & Mayfield, 2015). They make no data or parameter distribution 

assumptions (Kock, 2016). Since they generate composites, these can be used as “pseudo-

factors” or factor approximations, and provide a partial solution to the factor indeterminacy 

problem of covariance-based SEM (Fornell & Bookstein, 1982; Kline, 2010; Kock & Moqbel, 

2016). 

    We have attempted to address the biases inherent in PLS methods, while preserving most of 

their advantages, through the development of a new method that deals with composites and 

factors. We refer to this method as “factor-based SEM” (FSEM), and believe it is the first of a 

future family of related methods. We believe that the FSEM method can be used for 

confirmatory factor analyses and factor-based SEM analyses, and hope that our discussion in the 

following pages will make it clear why. 

    FSEM’s main goal is ambitious: to obtain consistent estimates of any model parameters. It 

aims at doing so by first generating estimates of the true composites, which are then used to 

produce estimates of the true factors. These estimations also produce loadings, weights, and 

measurement errors. 

    FSEM is not a parameter correction method, such as the Cronbach alpha disattenuation 

(Goodhue et al., 2012) or the consistent PLS (Dijkstra & Schermelleh-Engel, 2014) methods. In 

general terms, correction methods first estimate parameters (such as path coefficients and 

loadings) via classic PLS methods. Then they correct those parameters with the goal of obtaining 

asymptotically unbiased versions of them. Since FSEM yields estimates of composite and factor 

scores, and those are used as a basis for estimation of parameters, no corrections are needed. 

    FSEM is more computationally complex than PLS methods in general, as will be seen. 

However, the FSEM method has the advantage of generating estimates of composite and factor 

scores, from which arguably any model parameter can be estimated. Given this, we see FSEM 
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and these various methods as complementary to one another, as well as to Wold’s original PLS 

path modeling methods and covariance-based SEM methods. 

    FSEM’s underlying mathematics is demonstrated to, for the most part, follow directly from 

the common factor model. A Monte Carlo experiment suggests that FSEM represents a solid step 

in the direction of achieving its ambitious goal. This conclusion must be accompanied by the 

caveat that much more research is needed to further validate the method. 

2. The common factor model and measurement error theory 

    In this section we discuss the mathematics underlying the common factor model (Kline, 2010) 

and measurement error theory (Nunnally & Bernstein, 1994). This discussion is necessarily 

narrow, since the mathematical properties of the common factor model and measurement error 

theory are well known and should not be unnecessarily repeated. Rather, we focus on a set of 

equations that we will use in later sections, with the required notation to meet our purposes, to 

derive all of the mathematical equations needed to implement the FSEM method.  

    We generally use the mathematical notation of classic path analysis, with elements of the 

notations used in PLS path modeling and covariance-based SEM. Our notation refers to variables 

as they are typically seen by SEM software users in data tables – e.g., each indicator as a column 

on a data table. For the sake of simplicity, and without any impact on the generality of the 

discussion presented here, we assume that variables are standardized – i.e., scaled to have a mean 

of zero and a standard deviation of 1. 

    Let 𝐹𝑖 be a column vector denoting one of the 𝑁𝐹 factors in a common factor model, and 𝑥𝑖𝑗 

be a column vector denoting one of the 𝑛𝑖 indicators associated with 𝐹𝑖. Each indicator is 

associated with its factor according to 

 

𝑥𝑖𝑗 = 𝐹𝑖𝜆𝑖𝑗 + 𝜃𝑖𝑗 , 𝑖 = 1 … 𝑁𝐹, 𝑗 = 1 … 𝑛𝑖 , (1) 

 

where 𝜆𝑖𝑗 denotes the indicator loading and 𝜃𝑖𝑗 the indicator error term that accounts for the 

variance in 𝑥𝑖𝑗 that is not explained by 𝐹𝑖. This can be simplified through 

 

𝑥𝑖 = 𝐹𝑖𝜆𝑖
′ + 𝜃𝑖, 𝑖 = 1 … 𝑁𝐹, (2) 

 

where 𝑥𝑖 is a matrix with each column referring to one of the indicators associated with 𝐹𝑖; 𝜆𝑖
′
 is 

the transpose of 𝜆𝑖, a column vector storing the loadings associated with 𝐹𝑖; and 𝜃𝑖 is a matrix 

with each column storing the indicator error terms. 

    From measurement error theory we know that each indicator is also associated with its factor 

according to (3), where 𝜔𝑖𝑗 denotes the indicator’s weight. The standardized measurement error 

is denoted by 𝜀𝑖, and its associated weight as 𝜔𝑖𝜀. 

 

𝐹𝑖 = ∑ 𝑥𝑖𝑗𝜔𝑖𝑗
𝑛𝑖
𝑗=1 + 𝜀𝑖𝜔𝑖𝜀. (3) 
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    This can be simplified through (4)-(5), where 𝜔𝑖 is a column vector containing the weights, 𝐶𝑖 

is the composite associated with 𝐹𝑖, and 𝜔𝑖𝐶 is the composite’s weight. The composite to which 

we refer here is the true composite associated with its corresponding factor. As it will be seen 

later, its estimation requires a full consideration of the role of the indicators in defining the 

relationship between weights and loadings. 

 

𝐹𝑖 = 𝑥𝑖𝜔𝑖 + 𝜀𝑖𝜔𝑖𝜀. (4) 

𝐹𝑖 = 𝐶𝑖𝜔𝑖𝐶 + 𝜀𝑖𝜔𝑖𝜀. (5) 

 

    The measurement error 𝜀𝑖 is uncorrelated with its adjacent indicators (i.e. the indicators 𝑥𝑖, 

which belong to the same factor), and consequently also uncorrelated with its adjacent composite 

𝐶𝑖. As demonstrated by Nunnally & Bernstein (1994), the composite and measurement error 

weights are associated with their factor’s true reliability 𝛼𝑖 according to 

 

𝜔𝑖𝐶 = √𝛼𝑖, (6) 

𝜔𝑖𝜀 = √1 − 𝛼𝑖. (7) 

 

    The above are well known properties, relevant for our discussion, of the measurement 

component of a common factor model – we refer to it as the “measurement model”. The 

measurement model describes the relationships among factors and their respective indicators. 

    The structural component of a common factor model, or the “structural model”, complements 

the measurement model, by describing relationships among factors. In it, it is relevant for our 

discussion to note that 

 

𝐹𝑖 = ∑ 𝛽𝑖𝑗
𝑁𝑖
𝑗=1 𝐹𝑗 + 𝜁𝑖, (8) 

𝐹𝑖 = 𝛴𝐹𝑖𝐹𝑗
𝐹𝑗 + 𝛿𝑖𝑗, (9) 

 

where: 𝛽𝑖𝑗 is the standardized partial regression (a.k.a. path) coefficient associated with the 

criterion-predictor relationship between 𝐹𝑖 and 𝐹𝑗; 𝑁𝑖 is the number of predictors pointing at 𝐹𝑖 in 

the model; 𝜁𝑖 is the structural error term accounting for the variance in 𝐹𝑖 that is not explained by 

the factors that point at it in the model; 𝛴𝐹𝑖𝐹𝑗
 is the correlation between  𝐹𝑖 and 𝐹𝑗; and 𝛿𝑖𝑗 is the 

correlation error term accounting for the variance in 𝐹𝑖 that is not explained by 𝐹𝑗. 

3. PLS Mode A 

    Several PLS algorithms have been developed based on the original design proposed by 

Herman Wold (see, e.g., Kock & Mayfield, 2015; Kock & Moqbel, 2016; Wold, 1980). 

Lohmöller (1989) provides what is probably the most extensive discussion to date of PLS 

algorithms and their use in the analysis of path models. 
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    PLS algorithms do not generate estimates of factors, nor do they explicitly take measurement 

error into account when estimating model parameters. They estimate composites, which are exact 

linear combinations of indicators (Kock & Moqbel, 2016; McDonald, 1996). These composites 

are then used as “pseudo-factors” for the estimation of model parameters (Kock, 2015). These 

characteristics lead to biased estimates of path coefficients and loadings. Estimated path 

coefficients are generally lower than the true values, and loadings are generally higher. 

    The most widely used PLS path modeling algorithm is PLS Mode A (PLSA), which is also 

seen as compatible with the common factor model because in this algorithm indicators are 

related to composites in a reflective way (i.e., with arrows pointing from the factors to the 

indicators). 

    In PLSA indicator weight estimates 𝑤̂𝑖𝑗 are initially set to 1 (or another arbitrary positive real 

number, assuming that indicators and composites are positively associated), and composite 

estimates 𝐶𝑖̂ are initialized with a standardized vector of the summed indicators. Then the 

composites are re-estimated as 

 

𝐶̂𝑖 ≔ 𝑆𝑡𝑑𝑧(∑ 𝑣𝑖𝑗
𝐴𝑖
𝑗=1 𝐶̂𝑗), (10) 

 

which is known as the “inside approximation”. Here 𝑆𝑡𝑑𝑧(∙) is a function that returns a 

standardized column vector, and 𝐴𝑖 is the number of composites 𝐶𝑗̂ (𝑗 = 1 … 𝐴𝑖) that are 

“neighbors” of the composite 𝐶𝑖̂. Neighbor composites are those that are linked to a composite by 

arrows, either by pointing at or being pointed at by the composite. The estimates 𝑣𝑖𝑗 are referred 

to as the “inner weights” (Lohmöller, 1989, p. 29).  

    PLSA has three main variations, called “schemes”, which define how the inner weights 𝑣𝑖𝑗 are 

estimated: centroid, factorial, and path weighting. In the centroid scheme the inner weights are 

set according to (11), as units with the signs (−1 or +1) of the estimated correlations among 

neighbor composites. In the factorial scheme they are set according to (12), as the correlations 

among neighbor composites. In the path weighting scheme they are set according to (13), as the 

path coefficients or correlations among neighbor composites, depending on whether the arrows 

go in or out respectively. 

 

𝑣𝑖𝑗 ≔ 𝑆𝑖𝑔𝑛 (𝛴𝐶̂𝑖𝐶̂𝑗
). (11) 

𝑣𝑖𝑗 ≔ 𝛴𝐶̂𝑖𝐶̂𝑗
. (12) 

{
𝑣𝑖𝑗 ≔ 𝛽̂𝑖𝑗, if 𝐶̂𝑗  points at 𝐶̂𝑖,

 𝑣𝑖𝑗 ≔ 𝛴𝐶̂𝑖𝐶̂𝑗
, if 𝐶̂𝑖 points at 𝐶̂𝑗.

 
(13) 

 

    There does not seem to exist a solid mathematical basis for any of these inner weight 

estimation schemes, leading to one of the sources of bias in PLSA. When we say that a 

mathematical basis is lacking, we mean that none of the equations characterizing these inner 

weight estimation schemes can be derived from the equations describing the common factor 

model or measurement error theory, of which several were discussed in the previous section. 
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This is not meant to be a critical comment as much as it is meant to highlight a clear source of 

bias, like other similar comments below. Again, it is our belief that Wold never intended PLS to 

be completely unbiased. In our view he successfully solved an engineering problem, at a time 

when computing resources were both scarce and expensive, through the development of a 

moderately biased method. 

    Broadly speaking, these schemes are based on an intuitive assumption – the so-called “good 

neighbor assumption” (Kock & Mayfield, 2015). This assumption is described by Adelman & 

Lohmoller’s (1994, p. 357) as the assumption that a latent variable should be estimated “… so 

that it is a good neighbour in its neighbourhood. That is, estimate the [latent variable] so that it is 

well predicted by its predecessors in the path diagram and is a good predictor for its followers in 

the diagram.” 

    The PLSA algorithm proceeds by estimating what are referred to as the “outer weights” by 

solving (14) for 𝑤̂𝑖𝑗, where 𝑁𝐶 is the number of composites (the same as the number of factors), 

and 𝑛𝑖 is the number of indicators associated with composite 𝐶𝑖. This yields estimates of 

loadings for the outer weights. 

 

𝑥𝑖𝑗 = 𝐶̂𝑖𝑤̂𝑖𝑗 + 𝜖𝑖̂𝑗, 𝑖 = 1 … 𝑁𝐶, 𝑗 = 1 … 𝑛𝑖. (14) 

 

    Next composites are set as in (15), a step known as “outside approximation”, as exact linear 

combinations of their indicators; i.e., assuming measurement error to be either nil or irrelevant, 

mathematically speaking. These and the preceding steps are conducted iteratively until the inner 

weights 𝑤̂𝑖𝑗 change by less than a small fraction. 

 

𝐶̂𝑖 ≔ 𝑆𝑡𝑑𝑧(∑ 𝑤̂𝑖𝑗
𝑛𝑖
𝑗=1 𝑥𝑖𝑗). (15) 

 

    In successive iterations, this ensures that weight estimates are directly proportional to loading 

estimates. There does not seem to be any mathematical basis for this assumption of 

proportionality among weights and loadings either. This is another source of bias in PLSA, 

which is compounded by the assumption of no measurement error. Consequently PLSA is not 

only restricted to estimates of composites (as opposed to factors), but the composites that are 

estimated are unlikely to be the true composites. 

4. Factor-based SEM 

    The FSEM method described here is made up of two main stages, which can be seen as 

analogous to the outside and inside approximations of PLSA. Key differences are that separate 

sets of iterations are carried out for each of these stages, and that the two stages are contained 

within an outermost loop. This outermost loop is responsible for convergence toward an 

asymptotically unbiased reliability measure (see Figure 1). 

    In the first stage we estimate the model’s true composites, as well as other elements such as 

weights and loadings, which are then used as inputs for the second stage. This first stage is 

analogous to PLSA’s outside approximation. In the second stage, analogous to PLSA’s inside 

approximation, we arrive at estimates of the true measurement errors and factors, as well as other 

elements. In the end, after the second stage is completed, we are provided with estimates of 
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measurement errors, factors, composites, loadings, and weights that are expected to be 

consistent. These elements in turn allow us to proceed to estimate any other derivative model 

parameter. 
 

Figure 1. The two stages and the enveloping outermost loop 

 

 
Notes: 

  - Both stages 1 and 2 involve iterative steps. 

  - The outermost loop seeks reliability measures’ convergence. 

 

 

    Prior to the first stage, we set 𝜀𝑖̂ according to (16), where 𝑅𝑛𝑑(𝑁) is a function that returns an 

independent and identically distributed (i.i.d.) variable as a column vector with 𝑁 rows, where 𝑁 

is the sample size. In this stochastic approach, the measurement error “stand-in” does not need to 

be a i.i.d. variable at this point. For example, a normally distributed random error variable could 

also be used. In software implementations (e.g., WarpPLS), the random seed can be set to a fixed 

value; this will avoid different results being generated each time an analysis is conducted with 

the same model and empirical data. 

 

𝜀𝑖̂ ≔ 𝑆𝑡𝑑𝑧[𝑅𝑛𝑑(𝑁)]. (16) 

 

    Employing a stochastic approach to estimating the measurement error allows us to solve a 

longstanding problem that cannot be properly addressed via other approaches that only “assume” 

the existence of measurement error. The problem is that, without measurement error being 

actually present, the estimation of the true weights is not possible. The reason for this is that 

measurement error accounts for the variation in a factor that is not accounted for by the 

indicators. 
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    Next we set 𝛼̂𝑖, 𝜔̂𝑖𝐶 and 𝜔̂𝑖𝜀 according to (17)-(19), where 𝑛𝑖 is the number of indicators of 

factor 𝐹𝑖, and 𝛴𝑥𝑖𝑥𝑖
 is the mean of the non-redundant correlation coefficients among the column 

vectors that make up 𝑥𝑖 (e.g., the mean of the lower triangular version of 𝛴𝑥𝑖𝑥𝑖
). 

 

𝛼̂𝑖 ≔
𝑛𝑖𝛴̅𝑥𝑖𝑥𝑖

  

(1+(𝑛𝑖−1)𝛴̅𝑥𝑖𝑥𝑖
)
. 

(17) 

𝜔̂𝑖𝐶 ≔ √𝛼̂𝑖. (18) 

𝜔̂𝑖𝜀 ≔ √1 − 𝛼̂𝑖. (19) 

 

    The reliability estimate 𝛼̂𝑖 in (17) is the Cronbach’s alpha coefficient (Cronbach, 1951; Kline, 

2010) associated with the factor 𝐹𝑖. The Cronbach’s alpha coefficient is a biased measure of 

reliability, representing a lower bound estimate (Sijtsma, 2009). Because of this, the FSEM 

method must iterate through its first and second stages, each time with different measures of 

reliability, until convergence to the correct measure is achieved.  

    Convergence to the correct reliability measure occurs when the quantity 𝜔̂𝑖
′𝜆̂𝑖, which is a 

direct measure of reliability based on estimated weights and loadings, equals the composite 

reliability coefficient (Dillon & Goldstein, 1984; Peterson & Yeolib, 2013). The composite 

reliability coefficient associated with a latent variable indexed by 𝑖, denoted as 𝜌̂𝑖, is calculated 

based on the latent variable’s loadings as: 

 

𝜌̂𝑖 =
(∑ 𝜆̂𝑖𝑗

𝑛𝑖
𝑗=1

)
2

(∑ 𝜆̂𝑖𝑗
𝑛𝑖
𝑗=1

)
2

+∑ (1−𝜆̂𝑖𝑗
2

)
𝑛𝑖
𝑗=1

 , 𝑗 = 1 … 𝑛𝑖. 
 

 

    Should loadings be unbiased, it is generally believed that the composite reliability coefficient 

will yield the true population reliability for each latent variable. Thus in order to reach the point 

at which loadings are unbiased, we adjust the reliability coefficient across iterations by making it 

fall between the quantity 𝜔̂𝑖
′𝜆̂𝑖 and the estimated composite reliability coefficient 𝜌̂𝑖: 

 

𝛼̂𝑖 ≔
1

2
(𝜔̂𝑖

′𝜆̂𝑖 + 𝜌̂𝑖).  

 

    Adjusting the reliability coefficient in this way across iterations is analogous to slowly filling a 

glass 𝐺 of water with the contents of two other glasses of water 𝐺1 and 𝐺2, where the water in 

each of these two glasses is stored at different temperatures. The temperature of the water in 𝐺1 

is “too low”, and in 𝐺2 it is “too high”. In this analogy the goal would be to obtain water at the 

“right” temperature in 𝐺; analogously, the “right” reliability in our method. Each time we add 

some water into 𝐺 from  𝐺1 and 𝐺2 we measure the temperature in 𝐺. We stop this process when 

we reach the desired temperature in 𝐺. 

    Composite and measurement error weights are re-estimated for use in the first and second 

stages each time the reliability coefficient is adjusted. The outermost loop enclosing the first and 
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second stages stops when the difference between the direct measure of reliability based on 

estimated weights and loadings (𝜔̂𝑖
′𝜆̂𝑖) and the composite reliability coefficient (𝜌̂𝑖) falls below a 

small fraction. 

    Underlying FSEM’s two sequential stages is an important assumption, which follows directly 

from the mathematical properties of the common factor model and measurement error theory 

discussed earlier: the true composites are completely determined by their corresponding 

indicators, and their estimation does not require information about any other true composite in 

the model. 

    Therefore, in the first stage we do not need information about how the composites vary with 

respect to other composites; e.g., we do not need information about correlations among 

composites. Because of this, we can create and use estimates of measurement error terms that 

satisfy only a few key properties, notably that they are uncorrelated with their adjacent 

indicators. 

5. Stage 1: Estimation of composites 

    One of the problems with traditional PLS algorithms, including PLSA, is that they do not 

incorporate enough information about the relationship between weights and loadings, simply 

assuming that weights are proportional to loadings. This is addressed through the discussion 

below. Combining (2) and (4) we arrive at (20), where 𝜆𝑖
′
 is the transpose of 𝜆𝑖. 

 

𝑥𝑖 = 𝐹𝑖𝜆𝑖
′ + 𝜃𝑖, 𝐹𝑖 = 𝑥𝑖𝜔𝑖 + 𝜀𝑖𝜔𝑖𝜀 →  

𝑥𝑖 = (𝑥𝑖𝜔𝑖 + 𝜀𝑖𝜔𝑖𝜀)𝜆𝑖
′ + 𝜃𝑖 →  

𝑥𝑖 = 𝑥𝑖𝜔𝑖𝜆𝑖
′ + 𝜀𝑖𝜔𝑖𝜀𝜆𝑖

′ + 𝜃𝑖. (20) 

 

    Applying covariance properties to (20), we obtain (21), where 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃𝑖
) is the matrix of the 

diagonal elements of 𝛴𝑥𝑖𝜃𝑖
, and the superscript + denotes the application of the Moore–Penrose 

pseudoinverse transformation; e.g., 𝜆𝑖
′+

 is the Moore–Penrose pseudoinverse of 𝜆𝑖
′
. 

 

𝛴𝑥𝑖𝑥𝑖
= 𝛴𝑥𝑖𝑥𝑖

𝜔𝑖𝜆𝑖
′ + 𝛴𝑥𝑖𝜀𝑖

𝜔𝑖𝜀𝜆𝑖
′ + 𝛴𝑥𝑖𝜃𝑖

 →  

𝛴𝑥𝑖𝑥𝑖
= 𝛴𝑥𝑖𝑥𝑖

𝜔𝑖𝜆𝑖
′ + 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃𝑖

) →  

𝛴𝑥𝑖𝑥𝑖
𝜔𝑖𝜆𝑖

′ = 𝛴𝑥𝑖𝑥𝑖
− 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃𝑖

) →  

𝜔𝑖𝜆𝑖
′ = 𝛴𝑥𝑖𝑥𝑖

−1 (𝛴𝑥𝑖𝑥𝑖
− 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃𝑖

)) →  

𝜔𝑖 = 𝛴𝑥𝑖𝑥𝑖

−1 (𝛴𝑥𝑖𝑥𝑖
− 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃𝑖

)) 𝜆𝑖
′+

. (21) 
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    Equation (21) expresses the column vector of weights in terms of loadings and correlations 

among indicators and indicator error terms. Clearly it incorporates significantly more 

information about how weights and loadings are interrelated than the PLSA method does. For 

example, this equation suggests that the relationship between weights and loadings is likely to be 

nonlinear. With weights we can then obtain the associated composites according to 

 

𝐶𝑖𝜔𝑖𝐶 = 𝑥𝑖𝜔𝑖 →  

𝐶𝑖 =
1

𝜔𝑖𝐶
𝑥𝑖𝜔𝑖. (22) 

 

   Applying covariance properties to (5) we arrive at (23), which expresses the column vector of 

loadings in terms of the associated composites and indicators. 

 

𝐹𝑖 = 𝐶𝑖𝜔𝑖𝐶 + 𝜀𝑖𝜔𝑖𝜀 →  

𝛴𝐹𝑖𝑥𝑖
= 𝛴𝐶𝑖𝑥𝑖

𝜔𝑖𝐶 + 𝛴𝑥𝑖𝜀𝑖
𝜔𝑖𝜀 →  

𝛴𝐹𝑖𝑥𝑖
= 𝛴𝐶𝑖𝑥𝑖

𝜔𝑖𝐶 →  

𝜆𝑖 = (𝐶𝑖
+𝑥𝑖)

′
𝜔𝑖𝐶. (23) 

 

    The equations above provide all of the elements based on which we can iteratively estimate 

the composites, one of the main goals of FSEM’s first stage. We start by setting weights and 

loadings as 1, and initializing the composite estimates with a standardized vector of the summed 

indicators. We set weights and loadings as 1 based on the assumption that all of the indicators 

measure the factors in a direct, as opposed to reversed, fashion. We can ensure that this 

assumption is met by appropriately adjusting indicators that measure factors in a reversed 

fashion. 

    It is important to emphasize that, in this first stage of our FSEM method, we do not need the 

measurement errors to incorporate variation from opposite composites and measurement errors, 

which the true measurement errors do incorporate. However, we do need the measurement errors 

to be uncorrelated with their adjacent composites, and thus with their adjacent indicators. 

    We then proceed to iteratively estimate factors, indicator error terms, weights, composites and 

loadings according to (24)-(28). The iterations continue until the loading estimates stored in the 

column vector 𝜆̂𝑖 change by less than a small fraction. 

 

𝐹̂𝑖 ≔ 𝑆𝑡𝑑𝑧(𝐶̂𝑖𝜔̂𝑖𝐶 + 𝜀𝑖̂𝜔̂𝑖𝜀). (24) 

𝜃𝑖 ≔ 𝑥𝑖 − 𝐹̂𝑖𝜆̂𝑖
′
. (25) 

𝜔̂𝑖 ≔ 𝛴𝑥𝑖𝑥𝑖

−1 (𝛴𝑥𝑖𝑥𝑖
− 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃̂𝑖

)) 𝜆̂𝑖
′+

. (26) 
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𝐶̂𝑖 ≔
1

𝜔̂𝑖𝐶
(𝑥𝑖𝜔̂𝑖). (27) 

𝜆̂𝑖 ≔ (𝐶̂𝑖
+

𝑥𝑖)
′

𝜔̂𝑖𝐶. 
(28) 

 

    The above steps yield estimates that are used in the next stage, where estimates of 

measurement errors and factors are produced. 

6. Stage 2: Estimation of factors 

    While setting the foundations of measurement error theory, Nunnally & Bernstein (1994) 

demonstrated that the correlation between any pair of factors 𝛴𝐹𝑖𝐹𝑗
 is related to the correlation 

between their corresponding true composites 𝛴𝐶𝑖𝐶𝑗
 according to (29), where 𝛼𝑖 and 𝛼𝑗 are the 

true reliabilities associated with the factors.  

 

𝛴𝐹𝑖𝐹𝑗
=

𝛴𝐶𝑖𝐶𝑗

√𝛼𝑖𝛼𝑗

. 
(29) 

 

    Since we have estimates of the true composites, this allows us to estimate the elements of the 

matrix of correlations among factors 𝛴̂𝐹𝐹. This matrix will play a key role in this stage, as we 

will use it as the end point for a fitting algorithm that can be seen as a nonparametric version of 

the expectation-maximization algorithm (Dempster et al., 1977). 

    At this point we need to understand how each measurement error and factor varies with 

respect to other relevant variables in the model. With (5) expressed in terms of any pair of factors 

we obtain (30). We can also express the measurement error in terms of its factor and a 

correlation error term 𝜉𝑖𝜀, as indicated in (31). 

 

𝐹𝑖 = 𝐶𝑖𝜔𝑖𝐶 + 𝜀𝑖𝜔𝑖𝜀, 𝐹𝑗 = 𝐶𝑗𝜔𝑗𝐶 + 𝜀𝑗𝜔𝑗𝜀, 𝐹𝑖 = 𝛴𝐹𝑖𝐹𝑗
𝐹𝑗 + 𝛿𝑖𝑗 →  

𝐶𝑖
𝜔𝑖𝐶

𝜔𝑖𝜀
+ 𝜀𝑖 =

1

𝜔𝑖𝜀
𝛴𝐹𝑖𝐹𝑗

(𝐶𝑗𝜔𝑗𝐶 + 𝜀𝑗𝜔𝑗𝜀) +
𝛿𝑖𝑗

𝜔𝑖𝜀
. (30) 

𝜀𝑖 = 𝐹𝑖𝜔𝑖𝜀 + 𝜉𝑖𝜀. (31) 

 

    We can see that, for each pair of factors 𝐹𝑖 and 𝐹𝑗, the measurement error 𝜀𝑖 receives variation 

from its opposite composite 𝐶𝑗 and measurement error 𝜀𝑗, proportionally to (32). It also receives 

variation from its adjacent factor 𝐹𝑖, in proportion to (33). Additionally, from (5) we can see that 

the factor 𝐹𝑖 receives variation from its adjacent composite 𝐶𝑖, in proportion to (34). 

 
1

𝜔𝑖𝜀
𝛴𝐹𝑖𝐹𝑗

(𝐶𝑗𝜔𝑗𝐶 + 𝜀𝑗𝜔𝑗𝜀). (32) 
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𝐹𝑖𝜔𝑖𝜀. (33) 

𝐶𝑖𝜔𝑖𝐶. (34) 

 

    The measurement error 𝜀𝑖 should not share any variation with its adjacent composite 𝐶𝑖. Any 

shared variation between 𝜀𝑖 and 𝐶𝑖, which may exist due to both variables sharing variation with 

their adjacent factor 𝐹𝑖, should be removed, also proportionally to (34). 

    We also know, based on our discussion of the common factor model and measurement error 

theory presented earlier, that the measurement error is uncorrelated with its adjacent composite 

(as noted above), that the correlation between a factor and its composite equals the composite’s 

weight, and that the correlation between a factor and its measurement error equals the 

measurement error’s weight:  

 

𝛴𝐶𝑖𝜀𝑖
= 0. (35) 

𝛴𝐹𝑖𝐶𝑖
= 𝜔𝑖𝐶. (36) 

𝛴𝐹𝑖𝜀𝑖
= 𝜔𝑖𝜀. (37) 

 

    The equations above provide the mathematical foundation on which we can iteratively 

estimate measurement error terms and factors that incorporate all of the variation necessary for 

the consistent estimation of model parameters. 

    We now proceed to estimate the matrix of correlations among factors 𝛴̂𝐹𝑖𝐹𝑗
 through (38), 

which follows from (29). This matrix will be our target in this second stage, to which we will 

iteratively fit the matrix of correlations among estimated factors, whose elements are denoted by 

𝛴𝐹̂𝑖𝐹̂𝑗
. At this point we also initialize the factors as indicated in (39). 

 

𝛴̂𝐹𝑖𝐹𝑗
≔

𝛴𝐶̂𝑖𝐶̂𝑗

√𝛼̂𝑖𝛼̂𝑗

. 
(38) 

𝐹̂𝑖 ≔ 𝑆𝑡𝑑𝑧(𝐶̂𝑖𝜔̂𝑖𝐶 + 𝜀𝑖̂𝜔̂𝑖𝜀). (39) 

 

    Next each measurement error 𝜀𝑖̂ and factor 𝐹̂𝑖 are iteratively adjusted by having variation 

added to or removed from them as indicated in (40)-(42). The main sources of the variation are 

𝐶̂𝑗, 𝜀𝑗̂, 𝐶̂𝑖 and 𝐹̂𝑖. Clearly 𝐹̂𝑗 is also a source of variation, via 𝐶̂𝑗 and 𝜀𝑗̂, with this already being 

incorporated in (40). The variation is added or removed according to (32)-(34).  

 

𝜀𝑖̂ ≔ 𝑆𝑡𝑑𝑧 [𝜀𝑖̂ + (𝛴̂𝐹𝑖𝐹𝑗
− 𝛴𝐹̂𝑖𝐹̂𝑗

)
1

𝜔̂𝑖𝜀
𝛴̂𝐹𝑖𝐹𝑗

(𝐶̂𝑗𝜔̂𝑗𝐶 + 𝜀𝑗̂𝜔̂𝑗𝜀)]. (40) 
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𝐹̂𝑖 ≔ 𝑆𝑡𝑑𝑧[𝐹̂𝑖 + (𝜔̂𝑖𝐶 − 𝛴𝐹̂𝑖𝐶̂𝑖
)𝐶̂𝑖𝜔̂𝑖𝐶]. (41) 

𝜀𝑖̂ ≔ 𝑆𝑡𝑑𝑧[𝜀𝑖̂ − 𝛴𝐶̂𝑖𝜀̂𝑖
𝐶̂𝑖𝜔̂𝑖𝐶 + (𝜔̂𝑖𝜀 − 𝛴𝐹̂𝑖𝜀̂𝑖

)𝐹̂𝑖𝜔̂𝑖𝜀]. (42) 

 

    The first assignment equation above adds or removes variation in 𝜀𝑖̂ with respect to the 

opposite variables, via the estimates 𝐶̂𝑗 and 𝜀𝑗̂. Whether variation is added or removed depends 

on the sign of (𝛴̂𝐹𝑖𝐹𝑗
− 𝛴𝐹̂𝑖𝐹̂𝑗

), with the end goal being that 𝛴̂𝐹𝑖𝐹𝑗
= 𝛴𝐹̂𝑖𝐹̂𝑗

 for all pairs of factors.  

    The second assignment equation above adds or removes variation in 𝐹̂𝑖 with respect to the 

adjacent composite 𝐶̂𝑖. Whether variation is added or removed depends on the sign of        

(𝜔̂𝑖𝐶 − 𝛴𝐹̂𝑖𝐶̂𝑖
), with the end goal being that 𝛴𝐹̂𝑖𝐶̂𝑖

= 𝜔̂𝑖𝐶 for all factors. 

    The third assignment equation above adds or removes variation in 𝜀𝑖̂ with respect to the 

adjacent variables, via the estimates 𝐶̂𝑖 and 𝐹̂𝑖. Similarly, whether variation is added or removed 

depends on the signs of −𝛴𝐶̂𝑖𝜀̂𝑖
 and (𝜔̂𝑖𝜀 − 𝛴𝐹̂𝑖𝜀̂𝑖

), with the end goals being that 𝛴𝐶̂𝑖𝜀̂𝑖
= 0 and 

𝛴𝐹̂𝑖𝜀̂𝑖
= 𝜔̂𝑖𝜀 for all factors. Note that the term −𝛴𝐶̂𝑖𝜀̂𝑖

 appears to be an exception here, but it is not 

since it stands for (0 − 𝛴𝐶̂𝑖𝜀̂𝑖
). 

    In each iteration in this second stage, after the steps above are carried out, estimates of factors 

and measurement errors are obtained according to (43)-(44). 

 

𝐹̂𝑖 ≔ 𝑆𝑡𝑑𝑧(𝐶̂𝑖𝜔̂𝑖𝐶 + 𝜀𝑖̂𝜔̂𝑖𝜀). (43) 

𝜀𝑖̂ ≔ 𝑆𝑡𝑑𝑧 [
1

𝜔̂𝑖𝜀
(𝐹̂𝑖 − 𝐶̂𝑖𝜔̂𝑖𝐶)]. (44) 

 

    These iterative steps in Stage 2 are conducted until the sum of the absolute differences 𝛴̂𝐹𝑖𝐹𝑗
−

𝛴𝐹̂𝑖𝐹̂𝑗
 falls below a small fraction, or until the sum of the absolute differences between successive 

estimates 𝛴𝐹̂𝑖𝐹̂𝑗
 changes by less than a small fraction. When convergence is achieved, final 

estimates of the composites, weights and loadings are generated according to (45)-(47). 

 

𝐶̂𝑖 ≔ 𝑆𝑡𝑑𝑧 [
1

𝜔̂𝑖𝐶
(𝐹̂𝑖 − 𝜀𝑖̂𝜔̂𝑖𝜀)]. (45) 

𝜔̂𝑖 ≔ 𝑥𝑖
+𝐶̂𝑖𝜔̂𝑖𝐶. (46) 

𝜆̂𝑖 ≔ 𝑥𝑖
′𝐹̂𝑖

′+
. (47) 

 

    Once convergence is achieved at the outermost loop, which envelops stages 1 and 2, path 

coefficients can then be generated by solving (48) for 𝛽̂𝑖𝑗, which follows from (8), and where 𝛽̂𝑖𝑗 

is the estimated standardized partial regression (a.k.a. path) coefficient associated with the 

criterion-predictor relationship between 𝐹̂𝑖 and 𝐹̂𝑗, 𝑁𝑖 is the number of predictors pointing at 𝐹𝑖 in 
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the model, 𝜁𝑖 is the structural residual accounting for the variance in 𝐹̂𝑖 that is not explained by 

the estimates of the factors that point at it in the model. 

 

𝐹̂𝑖 = ∑ 𝛽̂𝑖𝑗
𝑁𝑖
𝑗=1 𝐹̂𝑗 + 𝜁𝑖. (48) 

 

    Through the FSEM method described above we obtain estimates of factors, measurement 

errors, composites, loadings and weights that can arguably serve as the basis for the estimation of 

any other SEM model parameter. We also obtain path estimates, which like weights and 

loadings, are expected to be consistent under common factor model assumptions. Moreover, the 

FSEM method is essentially nonparametric, making no data or parameter distribution 

assumptions. 

7. Monte Carlo experiment 

    A Monte Carlo experiment (Paxton et al., 2001) was conducted to test FSEM’s performance in 

terms of its ability to reproduce the true values of path coefficients and loadings, and also in 

terms of the standard errors of the estimates of these true values. The Monte Carlo experiment 

was conducted with MATLAB. 

    Assessing performance in terms of standard errors of estimates is important because a method 

that is more complex may induce more variation in its estimates of model parameters, which 

would in turn reduce the method’s statistical power (i.e., its ability to avoid false negatives). As 

we have seen in the previous sections, FSEM is a more computationally complex method than 

PLSA. 

    We created 1,000 samples, 500 of normal data and 500 of non-normal data, based on the true 

population model in Figure 2 for each of the following sample sizes: 50, 100, 200, 500 and 

1,000. Kock’s (2016) error-based technique for proper non-normality propagation was employed 

in the creation of the non-normal data samples. 

    Estimates of skewness and excess kurtosis were obtained for all factors and indicators in all 

samples analyzed. In the non-normal data, skewness ranged from -.286 to 5.109 and excess 

kurtosis from -1.260 to 46.923. Two tests of normality were conducted for each factor and 

indicator in each non-normal sample to ensure that non-normality propagation from factors and 

error terms to indicators occurred as expected. The tests used were the classic Jarque-Bera test 

(Jarque & Bera, 1980; Bera & Jarque, 1981) and Gel & Gastwirth’s (2008) robust modification 

of this test. Both tests indicated statistically significantly non-normality in all non-normal sample 

factors and indicators. 

    Our true population model is based on an actual empirical study of the overall effect of 

empathetic management (𝐹1) on job performance (𝐹4), via intermediate effects on job satisfaction 

(𝐹2) and job innovativeness (𝐹3). While the results of the base empirical study are not our focus 

here, readers may find useful to know that those results suggest that employee performance is 

significantly associated with the degree of use by supervisors of a management style that 

demonstrates care about the employees’ well being. 

    Factor and error scores were generated directly based on the true population model, and 

indicator scores were subsequently generated based on those factor and error scores. With the 

non-normal data, both factors and errors were created based on independent non-normal 

distributions. Each sample was analyzed with PLSA and FSEM.  



 15 

 

Figure 2. True population model 

 

 
Notes: 

  - 𝛽𝑖𝑗 = true population coefficient for path pointing from factor 𝐹𝑗 to factor 𝐹𝑖. 

  - 𝜆𝑖𝑗 = true population loading for the jth indicator of factor 𝐹𝑖. 

 

 

    Samples were screened for instances of multicollinearity and Simpson’s paradox, as well as 

for Heywood cases. Based on this screening, 21 samples of normal data and 17 samples of non-

normal data were discarded. All of these discarded samples occurred at N=50. As a result, a total 

of 479 normal and 483 non-normal data samples of size 50 were analyzed, of the original 1,000 

created. No samples had to be discarded at sample sizes greater than 50. 

    Tables 1 and 2 show a summarized set of results, for sample sizes 50 and 500 only. True 

values, mean parameter estimates, and standard errors are shown next to one another. Results for 

all four structural paths in the model are shown. 

    Loadings only for empathetic management (𝐹1) are shown, to avoid crowding, because the 

pattern of results in terms of loading biases and standard errors repeats itself for all factors. 

Complete results are available in appendices A and B. 

    These summarized results illustrate the performance of the FSEM method vis-à-vis PLSA. 

The path coefficient and loading estimates produced by FSEM were virtually unbiased at N=100 

and above with normal data, and at N>200 with non-normal data. Broadly speaking, FSEM 

yielded path coefficient and loading estimates that were closer to the true values for small and 

large sample sizes, and with normal and non-normal data. As expected, some degradation of 

performance occurred with non-normal data, with FSEM generally performing better than PLSA.  

    Figure 3 provides a further summarization of the results, in terms of root-mean-square errors 

(RMSEs) for path coefficients and loadings. These RMSEs have been calculated based on the 

true and mean path coefficients and loadings summarized through the tables above. They 

visually highlight the better performance of FSEM compared with PLSA, arguably in remarkable 

fashion. 
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Table 1: Summarized Monte Carlo experiment results for path coefficients 

 

 Normal data Non-normal data 

 PLSA FSEM PLSA FSEM PLSA FSEM PLSA FSEM 

𝑁 50 50 500 500 50 50 500 500 

𝛽21 .530 .530 .530 .530 .530 .530 .530 .530 

𝛽̂21 .498 .522 .482 .528 .492 .519 .482 .529 

𝑆𝐸(𝛽̂21) .092 .102 .056 .032 .102 .109 .056 .032 

𝛽32 .405 .405 .405 .405 .405 .405 .405 .405 

𝛽̂32 .372 .392 .369 .406 .376 .395 .367 .403 

𝑆𝐸(𝛽̂32) .120 .127 .051 .039 .115 .121 .052 .038 

𝛽42 .260 .260 .260 .260 .260 .260 .260 .260 

𝛽̂42 .260 .266 .255 .262 .258 .266 .252 .259 

𝑆𝐸(𝛽̂42) .109 .118 .036 .040 .116 .125 .038 .041 

𝛽43 .515 .515 .515 .515 .515 .515 .515 .515 

𝛽̂43 .483 .507 .473 .518 .480 .503 .474 .518 

𝑆𝐸(𝛽̂43) .104 .114 .051 .034 .101 .106 .053 .037 

Notes: 𝛽𝑖𝑗 = true path coefficient; 𝛽̂𝑖𝑗 = mean path coefficient estimate; 𝑆𝐸(∙) = standard error of estimate (a.k.a. 

root-mean-square error and standard deviation of estimate). 

 

Table 2: Summarized Monte Carlo experiment results for empathetic management (𝑭𝟏) loadings  

 

 Normal data Non-normal data 

 PLSA FSEM PLSA FSEM PLSA FSEM PLSA FSEM 

𝑁 50 50 500 500 50 50 500 500 

𝜆11 .900 .900 .900 .900 .900 .900 .900 .900 

𝜆̂11 .905 .891 .907 .897 .906 .890 .907 .897 

𝑆𝐸(𝜆̂11) .020 .034 .009 .011 .021 .036 .009 .011 

𝜆12 .850 .850 .850 .850 .850 .850 .850 .850 

𝜆̂12 .876 .843 .879 .850 .875 .841 .878 .849 

𝑆𝐸(𝜆̂12) .038 .046 .030 .014 .035 .046 .029 .015 

𝜆13 .800 .800 .800 .800 .800 .800 .800 .800 

𝜆̂13 .842 .796 .847 .801 .844 .796 .846 .800 

𝑆𝐸(𝜆̂13) .055 .056 .048 .017 .055 .052 .047 .017 

𝜆14 .750 .750 .750 .750 .750 .750 .750 .750 

𝜆̂14 .809 .747 .810 .751 .809 .753 .810 .752 

𝑆𝐸(𝜆̂14) .075 .065 .062 .020 .075 .067 .061 .020 

𝜆15 .700 .700 .700 .700 .700 .700 .700 .700 

𝜆̂15 .762 .689 .769 .701 .771 .701 .772 .703 

𝑆𝐸(𝜆̂15) .086 .078 .071 .023 .089 .071 .074 .023 

Notes 𝜆𝑖𝑗 = true loading; 𝜆̂𝑖𝑗 = mean loading estimate; 𝑆𝐸(∙) = standard error of estimate (a.k.a. root-mean-square 

error and standard deviation of estimate). 

 

 

    The RMSEs for path coefficients provide an aggregated view of the results for the four path 

coefficients shown in the first table. Analogously, the RMSEs for loadings provide an aggregated 

view of the results for the five loadings show in the second table. Like the tables, the RMSEs are 

grouped based on sample size and data distribution (normal versus non-normal). 
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Figure 3. Root-mean-square errors for path coefficients and loadings 

 

 
 

 

    Somewhat surprisingly, given that FSEM is significantly more computationally complex than 

PLSA, relatively small standard errors were generated via FSEM. Standard errors were typically 

higher for FSEM at N=50, and lower at higher sample sizes.  

    The slightly greater standard errors at N=50 were generally offset by the less biased path 

coefficients generated by FSEM, which also tended to be of greater magnitude than those 

generated by PLSA. This generally bodes well in terms of statistical power. Greater standard 

errors would tend to decrease statistical power in the absence of any bias correction. In FSEM’s 

case, the bias correction appears to make up for the standard error increase at N=50. 

    Both methods converged to viable solutions in all samples, including those that were not 

deemed usable (i.e., the samples that were discarded). On average FSEM converged after 10 

iterations, counted as iterations within each of the stages – the first stage, which conducts the 

estimation of composites; and the second stage, which conducts the estimation of factors. PLSA 

converged over twice as fast for this model, after 4 iterations on average. 

8. Discussion and conclusion 

    The positive results from the Monte Carlo experiment, and the fact that the equations used in 

estimations are consistent with the common factor model and measurement error theory, give us 

confidence that the FSEM method is capable of generating asymptotically unbiased model 

parameters. Of course, this should apply to models that meet the assumptions of the common 

factor model and measurement error theory. Much more research needs to be conducted to see 

how deviations from the those assumptions influence model parameter bias in FSEM. 

    The two-stage estimation process underlying the FSEM method could be seen as combining 

elements of the classic PLSA and covariance-based SEM (CSEM) iterative estimation processes. 

Like PLSA, the FSEM method generates factor scores, with the difference that FSEM provides 

estimates of the true factor scores while PLSA uses composites as factor approximations. This 
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difference accounts for the FSEM estimates being asymptotically unbiased, with those yielded 

by PLSA being asymptotically biased. In PLSA path coefficients tend to be underestimated, and 

loadings overestimated, as sample sizes grow to infinity. While CSEM yields asymptotically 

unbiased estimates of path coefficients and loadings, in it factors are not estimated as part of the 

iterative parameter estimation process. 

    Like CSEM, FSEM accounts for measurement error. However, FSEM does so explicitly, 

estimating measurement error terms as part of the estimation process. CSEM accounts for 

measurement error implicitly, as it does not iteratively estimate measurement error terms. 

(Measurement error terms should not to be confused with endogenous factor or indicator 

residuals, both of which are estimated by CSEM.) Like CSEM, FSEM minimizes differences 

between model-implied and empirical covariance matrices, with the difference that CSEM 

focuses on matrices calculated based on indicators, and FSEM on matrices calculated based on 

factors. These key differences are summarized in Table 3. 
 

Table 3: FSEM versus classic SEM approaches 

 

 FSEM PLSA CSEM 

Factor estimation Estimates the true factors 

during the iterative 

convergence process. 

Estimates composites during the 

iterative convergence process, 

as approximations of factors. 

Does not produce factor 

estimates during the 

iterative process. 

Measurement 

error 

Explicitly accounts for 

measurement error. 

Does not account for 

measurement error. 

Implicitly accounts for 

measurement error. 

Minimization 

criterion 

Explicitly minimizes the 

difference between factor 

covariance matrices. 

Implicitly minimizes the 

variance explained by 

measurement error. 

Explicitly minimizes the 

difference between indicator 

covariance matrices. 

Path coefficient 

and loading bias 

Produces asymptotically 

unbiased estimates of path 

coefficients and loadings. 

Tends to underestimate path 

coefficients and overestimate 

loadings. 

Produces asymptotically 

unbiased estimates of path 

coefficients and loadings. 

 

 

    We see our study as a first step in the development of asymptotically unbiased composite-to-

factor methods and related algorithms that can give researchers access to estimates of any model 

parameter. Further tests of the FSEM method must be conducted for us to understand its 

limitations and how to properly address them. Tests with more complex models are needed and 

planned for the future, and are also suggested to other methodological investigators as future 

research. 

    A standardized variation sharing approach, used in the second stage or the estimation of 

factors, serves as a pillar for the FSEM method. To the best of our knowledge, this rather simple 

approach is novel, although it could be seen as a “soft” form of the expectation-maximization 

algorithm used in CSEM. Through it measurement errors and factors receive the variation that 

was not, by definition, incorporated into their corresponding true composites. 

    The FSEM method described in this study allows researchers to obtain estimates of factors, 

composites, loadings and weights that can serve as the basis for the estimation of any derivative 

SEM model parameter. This includes a variety of fit indices. For instance, given that the 

elements of the indicator errors matrix 𝜃 are essentially uncorrelated disturbances, and that the 

elements of the matrices of factor scores 𝐹̂ and loadings 𝜆̂ are estimated, the model-implied 

indicator correlation matrix can consequently be easily estimated. 

    Corresponding covariance matrices can be obtained via unstandardization of indicators, based 

on the indicators’ means and standard deviations. Therefore, versions of the classic covariance-
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based SEM fit indices can be obtained by employing this model-implied indicator correlation 

matrix 𝛴̂𝑋𝑋 in conjunction with the actual indicator correlation matrix 𝛴𝑋𝑋. Classic covariance-

based SEM fit indices are essentially a measure of the extent to which 𝛴̂𝑋𝑋 fits 𝛴𝑋𝑋. 

    If in the future fit indices based on covariance matrices are developed based on FSEM, which 

we consider a worthy pursuit and recommend, it seems reasonable to focus on the fit between 

𝛴𝐹̂𝐹̂ and 𝛴̂𝐹𝐹, since the method explicitly attempts to fit these two matrices. These are, 

respectively, the model-implied matrix of correlations among factors (estimated based on model 

parameters), and the more direct sample estimate of the population matrix generated at the 

beginning of FSEM’s second stage. 

    In addition to allowing researchers to estimate any model parameter, the FSEM method is 

designed to be nonparametric, making no data or parameter distribution assumptions. We believe 

that these characteristics make the FSEM method a worthy addition to the portfolio of SEM 

techniques available to researchers.  
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Appendix A: Full Monte Carlo results with normal data 

    Notes: XX>YY = link from variable XX to YY; EM = empathetic management; JI = job 

innovativeness; JS = job satisfaction; JP = job performance; XX1 … XXn = indicators associated 

with factor XX; TruePath = true path coefficient; AvgPath = mean path coefficient estimate; 

SEPath = standard error of path estimate; TrueLoad = true loading; AvgLoad = mean loading 

estimate; SELoad = standard error of loading estimate. 

 
 PLSA FSEM PLSA FSEM PLSA FSEM PLSA FSEM PLSA FSEM 

Sample size 50 50 100 100 200 200 500 500 1000 1000 

EM>JS(TruePath) .530 .530 .530 .530 .530 .530 .530 .530 .530 .530 

EM>JS(AvgPath) .498 .522 .491 .528 .482 .524 .482 .528 .480 .527 

EM>JS(SEPath) .092 .102 .073 .069 .067 .052 .056 .032 .054 .023 

JS>JI(TruePath) .405 .405 .405 .405 .405 .405 .405 .405 .405 .405 

JS>JI(AvgPath) .372 .392 .369 .396 .370 .404 .369 .406 .367 .404 

JS>JI(SEPath) .120 .127 .084 .082 .064 .059 .051 .039 .045 .026 

JS>JP(TruePath) .260 .260 .260 .260 .260 .260 .260 .260 .260 .260 

JS>JP(AvgPath) .260 .266 .258 .265 .255 .261 .255 .262 .254 .262 

JS>JP(SEPath) .109 .118 .083 .091 .062 .070 .036 .040 .026 .029 

JI>JP(TruePath) .515 .515 .515 .515 .515 .515 .515 .515 .515 .515 

JI>JP(AvgPath) .483 .507 .477 .514 .472 .514 .473 .518 .471 .517 

JI>JP(SEPath) .104 .114 .083 .083 .067 .059 .051 .034 .049 .027 

EM1>EM(TrueLoad) .900 .900 .900 .900 .900 .900 .900 .900 .900 .900 

EM1>EM(AvgLoad) .905 .891 .908 .898 .906 .896 .907 .897 .907 .898 

EM1>EM(SELoad) .020 .034 .015 .023 .011 .018 .009 .011 .008 .008 

EM2>EM(TrueLoad) .850 .850 .850 .850 .850 .850 .850 .850 .850 .850 

EM2>EM(AvgLoad) .876 .843 .878 .846 .878 .850 .879 .850 .878 .849 

EM2>EM(SELoad) .038 .046 .034 .032 .030 .022 .030 .014 .029 .010 

EM3>EM(TrueLoad) .800 .800 .800 .800 .800 .800 .800 .800 .800 .800 

EM3>EM(AvgLoad) .842 .796 .844 .796 .845 .798 .847 .801 .846 .802 

EM3>EM(SELoad) .055 .056 .050 .038 .048 .028 .048 .017 .047 .012 

EM4>EM(TrueLoad) .750 .750 .750 .750 .750 .750 .750 .750 .750 .750 

EM4>EM(AvgLoad) .809 .747 .809 .747 .810 .751 .810 .751 .810 .751 

EM4>EM(SELoad) .075 .065 .067 .047 .064 .032 .062 .020 .061 .014 

EM5>EM(TrueLoad) .700 .700 .700 .700 .700 .700 .700 .700 .700 .700 

EM5>EM(AvgLoad) .762 .689 .769 .699 .770 .701 .769 .701 .771 .701 

EM5>EM(SELoad) .086 .078 .079 .052 .075 .035 .071 .023 .072 .016 

JS1>JS(TrueLoad) .900 .900 .900 .900 .900 .900 .900 .900 .900 .900 

JS1>JS(AvgLoad) .906 .891 .906 .893 .907 .897 .907 .898 .907 .897 

JS1>JS(SELoad) .020 .034 .014 .024 .011 .017 .009 .011 .008 .008 

JS2>JS(TrueLoad) .850 .850 .850 .850 .850 .850 .850 .850 .850 .850 

JS2>JS(AvgLoad) .877 .845 .878 .849 .879 .849 .878 .849 .879 .851 

JS2>JS(SELoad) .036 .046 .033 .030 .031 .021 .030 .014 .029 .010 

JS3>JS(TrueLoad) .800 .800 .800 .800 .800 .800 .800 .800 .800 .800 

JS3>JS(AvgLoad) .845 .796 .847 .802 .846 .800 .846 .802 .846 .801 

JS3>JS(SELoad) .055 .052 .052 .040 .049 .026 .047 .017 .047 .012 

JS4>JS(TrueLoad) .750 .750 .750 .750 .750 .750 .750 .750 .750 .750 

JS4>JS(AvgLoad) .809 .750 .810 .751 .809 .750 .809 .750 .811 .753 

JS4>JS(SELoad) .072 .061 .067 .044 .063 .031 .061 .019 .062 .014 

JS5>JS(TrueLoad) .700 .700 .700 .700 .700 .700 .700 .700 .700 .700 

JS5>JS(AvgLoad) .770 .700 .768 .695 .771 .700 .771 .702 .771 .703 

JS5>JS(SELoad) .086 .070 .077 .052 .075 .036 .073 .023 .072 .016 

JI1>JI(TrueLoad) .900 .900 .900 .900 .900 .900 .900 .900 .900 .900 

JI1>JI(AvgLoad) .905 .889 .907 .895 .907 .897 .907 .897 .907 .898 

JI1>JI(SELoad) .019 .034 .014 .023 .011 .016 .009 .010 .008 .007 

JI2>JI(TrueLoad) .850 .850 .850 .850 .850 .850 .850 .850 .850 .850 
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 PLSA FSEM PLSA FSEM PLSA FSEM PLSA FSEM PLSA FSEM 

Sample size 50 50 100 100 200 200 500 500 1000 1000 

JI2>JI(AvgLoad) .876 .843 .876 .845 .878 .849 .878 .850 .879 .850 

JI2>JI(SELoad) .036 .046 .032 .033 .031 .022 .030 .015 .029 .009 

JI3>JI(TrueLoad) .800 .800 .800 .800 .800 .800 .800 .800 .800 .800 

JI3>JI(AvgLoad) .843 .796 .845 .798 .845 .798 .846 .800 .847 .802 

JI3>JI(SELoad) .054 .055 .050 .038 .048 .026 .047 .018 .047 .012 

JI4>JI(TrueLoad) .750 .750 .750 .750 .750 .750 .750 .750 .750 .750 

JI4>JI(AvgLoad) .810 .748 .808 .750 .809 .748 .810 .751 .810 .752 

JI4>JI(SELoad) .073 .062 .066 .048 .062 .032 .062 .019 .061 .014 

JI5>JI(TrueLoad) .700 .700 .700 .700 .700 .700 .700 .700 .700 .700 

JI5>JI(AvgLoad) .769 .698 .770 .698 .767 .696 .771 .704 .772 .703 

JI5>JI(SELoad) .088 .074 .079 .050 .072 .037 .073 .022 .073 .016 

JP1>JP(TrueLoad) .900 .900 .900 .900 .900 .900 .900 .900 .900 .900 

JP1>JP(AvgLoad) .896 .885 .895 .887 .897 .891 .896 .890 .896 .890 

JP1>JP(SELoad) .019 .033 .014 .025 .009 .017 .007 .014 .006 .012 

JP2>JP(TrueLoad) .850 .850 .850 .850 .850 .850 .850 .850 .850 .850 

JP2>JP(AvgLoad) .860 .834 .860 .840 .862 .842 .862 .843 .863 .844 

JP2>JP(SELoad) .028 .045 .021 .031 .017 .021 .015 .014 .014 .011 

JP3>JP(TrueLoad) .800 .800 .800 .800 .800 .800 .800 .800 .800 .800 

JP3>JP(AvgLoad) .825 .792 .823 .788 .825 .792 .825 .794 .825 .794 

JP3>JP(SELoad) .043 .053 .033 .038 .030 .026 .027 .017 .026 .013 

JP4>JP(TrueLoad) .750 .750 .750 .750 .750 .750 .750 .750 .750 .750 

JP4>JP(AvgLoad) .778 .732 .782 .739 .785 .744 .786 .745 .785 .745 

JP4>JP(SELoad) .056 .066 .045 .044 .042 .031 .038 .019 .037 .014 

JP5>JP(TrueLoad) .700 .700 .700 .700 .700 .700 .700 .700 .700 .700 

JP5>JP(AvgLoad) .739 .687 .741 .692 .741 .693 .745 .696 .743 .695 

JP5>JP(SELoad) .065 .067 .056 .048 .049 .034 .048 .022 .045 .017 

JP6>JP(TrueLoad) .650 .650 .650 .650 .650 .650 .650 .650 .650 .650 

JP6>JP(AvgLoad) .689 .634 .698 .644 .700 .646 .699 .646 .700 .646 

JP6>JP(SELoad) .080 .083 .065 .055 .059 .038 .053 .024 .052 .019 

JP7>JP(TrueLoad) .600 .600 .600 .600 .600 .600 .600 .600 .600 .600 

JP7>JP(AvgLoad) .647 .589 .649 .593 .654 .596 .653 .596 .654 .596 

JP7>JP(SELoad) .091 .090 .070 .059 .066 .044 .058 .028 .057 .021 

JP8>JP(TrueLoad) .550 .550 .550 .550 .550 .550 .550 .550 .550 .550 

JP8>JP(AvgLoad) .600 .545 .601 .542 .602 .543 .605 .546 .606 .548 

JP8>JP(SELoad) .106 .100 .080 .069 .069 .049 .062 .032 .060 .021 

JP9>JP(TrueLoad) .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 

JP9>JP(AvgLoad) .553 .500 .557 .496 .552 .492 .557 .498 .557 .499 

JP9>JP(SELoad) .115 .104 .092 .079 .072 .052 .065 .033 .061 .024 
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Appendix B: Full Monte Carlo results with non-normal data 

    Notes: XX>YY = link from variable XX to YY; EM = empathetic management; JI = job 

innovativeness; JS = job satisfaction; JP = job performance; XX1 … XXn = indicators associated 

with factor XX; TruePath = true path coefficient; AvgPath = mean path coefficient estimate; 

SEPath = standard error of path estimate; TrueLoad = true loading; AvgLoad = mean loading 

estimate; SELoad = standard error of loading estimate. 

 
Algoritm PLSA FSEM PLSA FSEM PLSA FSEM PLSA FSEM PLSA FSEM 

Sample size 50 50 100 100 200 200 500 500 1000 1000 

EM>JS(TruePath) .530 .530 .530 .530 .530 .530 .530 .530 .530 .530 

EM>JS(AvgPath) .492 .519 .481 .519 .484 .527 .482 .529 .481 .528 

EM>JS(SEPath) .102 .109 .084 .077 .063 .047 .056 .032 .053 .023 

JS>JI(TruePath) .405 .405 .405 .405 .405 .405 .405 .405 .405 .405 

JS>JI(AvgPath) .376 .395 .370 .399 .368 .402 .367 .403 .367 .405 

JS>JI(SEPath) .115 .121 .084 .083 .066 .059 .052 .038 .045 .027 

JS>JP(TruePath) .260 .260 .260 .260 .260 .260 .260 .260 .260 .260 

JS>JP(AvgPath) .258 .266 .257 .264 .255 .263 .252 .259 .252 .259 

JS>JP(SEPath) .116 .125 .081 .090 .058 .065 .038 .041 .027 .029 

JI>JP(TruePath) .515 .515 .515 .515 .515 .515 .515 .515 .515 .515 

JI>JP(AvgPath) .480 .503 .477 .514 .477 .518 .474 .518 .474 .520 

JI>JP(SEPath) .101 .106 .083 .083 .064 .059 .053 .037 .047 .027 

EM1>EM(TrueLoad) .900 .900 .900 .900 .900 .900 .900 .900 .900 .900 

EM1>EM(AvgLoad) .906 .890 .906 .895 .907 .897 .907 .897 .907 .898 

EM1>EM(SELoad) .021 .036 .015 .024 .012 .016 .009 .011 .008 .007 

EM2>EM(TrueLoad) .850 .850 .850 .850 .850 .850 .850 .850 .850 .850 

EM2>EM(AvgLoad) .875 .841 .877 .847 .878 .849 .878 .849 .879 .851 

EM2>EM(SELoad) .035 .046 .033 .032 .031 .022 .029 .015 .029 .010 

EM3>EM(TrueLoad) .800 .800 .800 .800 .800 .800 .800 .800 .800 .800 

EM3>EM(AvgLoad) .844 .796 .846 .798 .844 .798 .846 .800 .846 .801 

EM3>EM(SELoad) .055 .052 .052 .039 .047 .027 .047 .017 .046 .012 

EM4>EM(TrueLoad) .750 .750 .750 .750 .750 .750 .750 .750 .750 .750 

EM4>EM(AvgLoad) .809 .753 .807 .747 .811 .752 .810 .752 .810 .752 

EM4>EM(SELoad) .075 .067 .064 .043 .064 .031 .061 .020 .061 .014 

EM5>EM(TrueLoad) .700 .700 .700 .700 .700 .700 .700 .700 .700 .700 

EM5>EM(AvgLoad) .771 .701 .770 .701 .771 .701 .772 .703 .772 .703 

EM5>EM(SELoad) .089 .071 .081 .051 .075 .036 .074 .023 .073 .016 

JS1>JS(TrueLoad) .900 .900 .900 .900 .900 .900 .900 .900 .900 .900 

JS1>JS(AvgLoad) .905 .890 .906 .895 .907 .897 .907 .898 .907 .898 

JS1>JS(SELoad) .019 .034 .014 .025 .011 .017 .009 .011 .008 .008 

JS2>JS(TrueLoad) .850 .850 .850 .850 .850 .850 .850 .850 .850 .850 

JS2>JS(AvgLoad) .875 .842 .878 .847 .879 .849 .879 .850 .879 .851 

JS2>JS(SELoad) .034 .045 .032 .032 .031 .022 .029 .013 .030 .009 

JS3>JS(TrueLoad) .800 .800 .800 .800 .800 .800 .800 .800 .800 .800 

JS3>JS(AvgLoad) .845 .794 .845 .797 .845 .798 .847 .801 .846 .802 

JS3>JS(SELoad) .055 .056 .050 .038 .048 .027 .048 .017 .047 .011 

JS4>JS(TrueLoad) .750 .750 .750 .750 .750 .750 .750 .750 .750 .750 

JS4>JS(AvgLoad) .806 .747 .810 .750 .810 .752 .810 .751 .810 .751 

JS4>JS(SELoad) .072 .067 .067 .042 .063 .031 .061 .020 .061 .014 

JS5>JS(TrueLoad) .700 .700 .700 .700 .700 .700 .700 .700 .700 .700 

JS5>JS(AvgLoad) .767 .694 .767 .696 .768 .697 .772 .703 .771 .702 

JS5>JS(SELoad) .086 .075 .075 .048 .073 .036 .074 .023 .072 .016 

JI1>JI(TrueLoad) .900 .900 .900 .900 .900 .900 .900 .900 .900 .900 

JI1>JI(AvgLoad) .906 .891 .905 .893 .907 .897 .907 .897 .907 .897 

JI1>JI(SELoad) .019 .033 .014 .024 .011 .016 .009 .011 .008 .008 

JI2>JI(TrueLoad) .850 .850 .850 .850 .850 .850 .850 .850 .850 .850 

JI2>JI(AvgLoad) .877 .844 .880 .851 .879 .848 .879 .850 .879 .851 
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Algoritm PLSA FSEM PLSA FSEM PLSA FSEM PLSA FSEM PLSA FSEM 

Sample size 50 50 100 100 200 200 500 500 1000 1000 

JI2>JI(SELoad) .036 .043 .034 .031 .031 .022 .030 .014 .029 .010 

JI3>JI(TrueLoad) .800 .800 .800 .800 .800 .800 .800 .800 .800 .800 

JI3>JI(AvgLoad) .841 .792 .846 .798 .845 .799 .846 .801 .847 .802 

JI3>JI(SELoad) .053 .054 .050 .036 .048 .026 .047 .017 .047 .012 

JI4>JI(TrueLoad) .750 .750 .750 .750 .750 .750 .750 .750 .750 .750 

JI4>JI(AvgLoad) .807 .745 .807 .745 .810 .750 .811 .752 .811 .752 

JI4>JI(SELoad) .071 .063 .064 .047 .063 .033 .062 .020 .061 .014 

JI5>JI(TrueLoad) .700 .700 .700 .700 .700 .700 .700 .700 .700 .700 

JI5>JI(AvgLoad) .764 .696 .769 .700 .770 .699 .771 .702 .772 .703 

JI5>JI(SELoad) .084 .074 .077 .048 .074 .037 .073 .022 .073 .016 

JP1>JP(TrueLoad) .900 .900 .900 .900 .900 .900 .900 .900 .900 .900 

JP1>JP(AvgLoad) .894 .883 .897 .888 .896 .890 .896 .891 .896 .891 

JP1>JP(SELoad) .021 .035 .012 .023 .010 .018 .007 .013 .006 .011 

JP2>JP(TrueLoad) .850 .850 .850 .850 .850 .850 .850 .850 .850 .850 

JP2>JP(AvgLoad) .859 .834 .861 .838 .861 .841 .862 .842 .862 .843 

JP2>JP(SELoad) .028 .043 .022 .032 .017 .021 .014 .015 .013 .011 

JP3>JP(TrueLoad) .800 .800 .800 .800 .800 .800 .800 .800 .800 .800 

JP3>JP(AvgLoad) .820 .785 .823 .790 .824 .791 .826 .794 .825 .793 

JP3>JP(SELoad) .040 .052 .033 .035 .029 .025 .028 .017 .026 .013 

JP4>JP(TrueLoad) .750 .750 .750 .750 .750 .750 .750 .750 .750 .750 

JP4>JP(AvgLoad) .784 .742 .785 .744 .787 .745 .785 .744 .786 .745 

JP4>JP(SELoad) .054 .059 .046 .043 .042 .029 .038 .019 .037 .014 

JP5>JP(TrueLoad) .700 .700 .700 .700 .700 .700 .700 .700 .700 .700 

JP5>JP(AvgLoad) .739 .690 .741 .690 .743 .695 .744 .696 .744 .695 

JP5>JP(SELoad) .069 .072 .056 .051 .050 .034 .047 .021 .046 .016 

JP6>JP(TrueLoad) .650 .650 .650 .650 .650 .650 .650 .650 .650 .650 

JP6>JP(AvgLoad) .692 .637 .702 .648 .699 .646 .700 .646 .700 .646 

JP6>JP(SELoad) .080 .080 .069 .055 .057 .038 .054 .025 .052 .019 

JP7>JP(TrueLoad) .600 .600 .600 .600 .600 .600 .600 .600 .600 .600 

JP7>JP(AvgLoad) .654 .596 .650 .593 .651 .594 .653 .595 .653 .595 

JP7>JP(SELoad) .092 .084 .075 .063 .064 .044 .058 .029 .055 .019 

JP8>JP(TrueLoad) .550 .550 .550 .550 .550 .550 .550 .550 .550 .550 

JP8>JP(AvgLoad) .598 .540 .599 .541 .607 .547 .605 .546 .605 .547 

JP8>JP(SELoad) .107 .103 .084 .074 .072 .047 .062 .032 .058 .022 

JP9>JP(TrueLoad) .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 

JP9>JP(AvgLoad) .543 .485 .549 .491 .554 .496 .557 .500 .557 .498 

JP9>JP(SELoad) .113 .109 .088 .078 .074 .053 .066 .034 .061 .023 

 


