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Abstract 

Partial least squares (PLS) methods possess desirable characteristics that have led to their 

extensive use in the field of information systems, as well as many other fields, for path analyses 

with latent variables. Such variables are typically conceptualized as factors in structural 

equation modeling (SEM). In spite of their desirable characteristics, PLS methods suffer from a 

fundamental problem: unlike covariance-based SEM, they do not deal with factors, but with 

composites, and as such do not fully account for measurement error. This leads to biased 

parameters, even as sample sizes grow to infinity. Anchored on a new conceptual foundation, we 

discuss a method that builds on the consistent PLS technique and that estimates factors, fully 

accounting for measurement error. We provide evidence that this new method shares the 

property of statistical consistency with covariance-based SEM, but, like classic PLS methods has 

greater statistical power. Moreover, our method provides correlation-preserving estimates of the 

factors, which can be used in a variety of other tests. For readers interested in trying it, the new 

method is implemented in the software WarpPLS. Our detailed discussion should facilitate the 

implementation of the method in any numeric computing environment, including open source 

environments such as R and GNU Octave. 
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Introduction 

    The field of information systems (IS) is closely associated with the development, 

implementation, assessment, and use of the partial least squares method (PLS) method (Chin, 

1998; Chin et al., 2003; Kock, 2010; Kock & Hadaya, 2018; Dijkstra & Henseler, 2015a). This 

method, developed by Wold (1980), has been extensively used in IS studies, as well as in studies 

in many other fields, to investigate path models with latent variables (Goodhue et al., 2012; 

Dijkstra & Henseler, 2015a; Kock & Hadaya, 2018). More often than not latent variables are 

quantifications of mental constructs, for which multiple imprecise direct measures (indicators) 

are obtained via questionnaires. In this context, PLS has often been compared with the classic 

covariance-based approach to structural equation modeling (SEM). 

    Such comparisons have led to a continuing and often antagonistic debate among proponents 

and detractors of PLS (Henseler et al., 2014; Rigdon, 2012; Rönkkö, M., & Evermann, 2013; 

Rönkkö et al., 2015). While this debate has addressed numerous issues, it has often gravitated 

around one main problem: PLS and related methods do not deal with factors, but with 

composites. Composites aggregate indicators but do not fully incorporate measurement error, 

and thus can only be seen as approximations of factors. In large part because of their focus on 

composites, PLS methods yield biased estimates of various parameters even as sample sizes 

grow to infinity. Among these asymptotically biased parameters are path coefficients, indicator 

weights, and indicator loadings. 

    Despite this problem PLS methods have some clear advantages over covariance-based SEM, 

which have led to their growing use. Notably, they virtually always converge to solutions, even 

with very small sample sizes. This is useful in cases where IS researchers want to investigate 

small populations (e.g., 𝑁 < 50) to which they have full access, although a combination of weak 

effects and small sample sizes may lead to problems such as capitalization on error (see, e.g., 

Goodhue et al., 2007; Kock & Hadaya, 2018). Also, PLS methods do not normally have 

identification problems, allowing for the development of fairly complex models and their test 

with a limited number of indicators. 

    We make here what we believe to be an important contribution to this debate surrounding PLS 

methods. Anchored on a new conceptual foundation, we discuss a method that combines 

elements of current PLS methods and covariance-based SEM, and that provides estimates of the 

composites and correlation-preserving factors in a path model. In our method, the factors are 

estimated so as to preserve their true correlations (see, e.g., DiStefano et al., 2009), which 

addresses the well-known correlation attenuation problem (Hakstian et al., 1988; Johnson, 1950; 

Nunnaly, 1978; Nunnally & Bernstein, 1994). In path models, this problem is frequently 

characterized by path coefficient estimates that asymptotically converge to values that 

underestimate the true values (Goodhue et al., 2012). 

    Our method builds on the consistent PLS technique (Dijkstra & Henseler, 2015a; 2015b; 

Dijkstra & Schermelleh-Engel, 2014), which is a parameter correction technique. Nevertheless, 

our method, which we refer to as PLSF (where the “F” is a reference to its focus on factor 

estimation), is not a parameter correction technique. Generally speaking, PLS-based parameter 

correction techniques adjust parameters estimated via PLS methods to correct for bias (Goodhue 

et al., 2012; Dijkstra & Schermelleh-Engel, 2014; Rönkkö, 2014). Our method estimates 

prototypical elements, such as factors, which are then used in the production of parameters. As 

such, no corrections are needed. The consistent PLS technique is used in the estimation of a few 
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coefficients in the early stages of our method; notably the reliabilities, which are nevertheless 

critical elements. 

    Dijkstra & Henseler (2015a, p. 17) noted that: “Not only does [IS] research make ample use of 

PLS as a method of analysis, but also many extensions and advances of PLS can be credited to 

[IS] researchers.” We agree with this statement, and hope that the PLSF method will be seen as a 

contribution to this tradition. Our PLSF method is the culmination of several years of research on 

the basic elements that make it up. Particularly important among those elements is a function that 

fits a matrix of correlations among composites to a matrix of correlations among factors, which 

will be discussed later. This function relies on reliability measures. Previous attempts have led to 

approaches that were less accurate under certain conditions, due to relying on biased reliability 

estimates; or less computationally efficient, due to the need for nested iterations to converge to 

more accurate reliability estimates. The method discussed here is so far the one with the broadest 

range of application, and the greatest computational efficiency. 

    We provide evidence that our method shares the property of consistency with covariance-

based SEM, but like classic PLS has greater statistical power. The term “classic PLS” is used 

from this point forward to refer to current composite-based PLS methods, particularly PLS Mode 

A (Lohmöller, 1989), and thus to differentiate them from our factor-based PLSF method. Our 

method provides estimates of factor scores, which can be used in a variety of other tests. Among 

such tests are two that have been developed in the field of IS and have been widely used in a 

variety of fields since their publication: full collinearity tests, which concurrently assess both 

lateral and vertical collinearity among factors (Kock & Lynn, 2012); and factor nonlinearity 

tests, where best-fitting nonlinear functions are estimated for each pair of linked factors, and 

subsequently used in the estimation of nonlinear path coefficients (Guo et al., 2011; Kock, 2010; 

Moqbel et al., 2013). For readers interested in testing our new method, it is implemented in a 

widely used commercial SEM software, namely WarpPLS (Kock, 2010; 2018). 

    Our discussion is organized as follows. We start by describing an illustrative model, based on 

IS theory and related empirical work, which we use as a basis for discussion and to generate data 

for analyses as a true population model. Next we discuss the PLSF method as a set of four main 

stages; including a discussion of composites and factors, and how we can go from composites to 

factors, which is in part what the PLSF method does. A more technical discussion of the PLSF 

method follows, where it is presented as a set of four main functions. We proceed with an 

assessment of the method’s performance against three other methods, including covariance-

based SEM via full-information maximum likelihood. This is done through the juxtaposition of 

results from analyses of a finite population and from a Monte Carlo experiment. We conclude 

with a discussion of our findings and its implications. For simplicity, and without any impact on 

the generality of our discussion, all variables are standardized – i.e., scaled to have a mean of 

zero and standard deviation of one. 

Illustrative model 

    Figure 1 shows an illustrative model that we will use in the discussion that follows. The model 

is also used later as a starting point for us to generate data for analyses, as a true population 

model. It is based on theory and results from field studies and controlled experiments (Kock, 

2003; 2007; Kock & Murphy, 2001; Kock et al., 2008; 2009), notably a field study involving 156 

individuals participating in business process redesign projects employing information technology 

(IT) solutions to process problems (Kock et al., 2009), and a controlled experiment involving 

210 graduate business students majoring in IS (Kock et al., 2008). 
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Figure 1. Illustrative model 

 

 
 

 

    The model contains five factors, associated with the following constructs: communication 

flow orientation (CO, 𝐹1), ease of understanding (EU, 𝐹2), usefulness in the development of IT 

solutions (GT, 𝐹3), accuracy (AC, 𝐹4), and impact on redesign success (SU, 𝐹5). This model is 

based on communication flow optimization theory (Kock, 2003; 2007; Kock & Murphy, 2001; 

Kock et al., 2008; 2009); a theory that has been developed and validated within the field of IS. 

    Business processes are sets of interrelated activities (Kock, 2007; Mendling et al., 2012), by 

which virtually any good or service is produced in organizations. For example, the set of 

interrelated activities involved in assembling a car, carried out by an automaker, is a business 

process. Communication flow optimization theory’s main domain of application are efforts 

whereby business processes are analyzed, redesigned, and implemented with IT. One of the 

theory’s main predictions is that the extent to which the business process representations used in 

these efforts focus on how communication takes place in organizations positively affects 

redesign success. Among other things, the theory highlights the importance of understanding 

how information and knowledge flows in organizations in order to successfully redesign the 

organizations’ processes with the help of IT. 

    According to the theory the overall effect of communication flow orientation on business 

process redesign success, with respect to the business process representations used, is fully 

mediated by a few elements that relate to the representations. Chiefly among these elements are a 

representation’s ease of understanding (CO > EU > SU), usefulness in the development of IT 

solutions (CO > GT > SU), and accuracy (CO > AC > SU). The full mediation is expressed in 

the model through a path coefficient of magnitude zero for the direct link CO > SU. That is, the 

overall effect of CO on SU is fundamentally an indirect effect. 
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    The various parameters in the model were set based on consistency with the theory and 

empirical validation studies, variability and complexity for testing purposes, and challenges to 

our PLSF method. For example, the path coefficients are all different from one another, and go 

from a low value of 0.157 to a high value of 0.542. Also, the loadings cover a range of 

heterogeneity options, going from no heterogeneity (e.g., EU, where all loadings are the same) to 

high heterogeneity (SU, where all loadings are different). Finally, the inclusion of a single-item 

construct (CO) poses a challenge to our PLSF method because, as it will be seen later, it prevents 

this construct from receiving variation when we go from composites to factors; this is due to the 

fact that CO, with a loading of 1, is measured without error. 

    While neither the theory nor the empirical studies that led to it or validated it are the foci of 

this paper, the fact that our illustrative model is based on a carefully developed and tested theory 

lends credence to the model’s viability. This is important, because the model is reasonably 

complex. Moreover, using a model base on an IS theory makes our contribution more 

meaningful to an IS audience; while hopefully also being meaningful to readers from other 

fields. 

    The complexity of the model allows us to incorporate a broad set of comparison criteria into 

our analyses, reflected in a significant variation in several elements such as: reliabilities, number 

of indicators, loadings, loading heterogeneity within each factor, weights, and redundancy 

measures. For example, reliabilities ranged from 0.757 to 1 and loadings from 0.507 to 1. Such a 

variation in comparison criteria allowed us to provide a more complete view of the performance 

of the PLSF method against other methods, without the level of repetition that would have been 

required should we have chosen to analyze a variety of simpler models. Moreover, using a more 

complex model posed challenges to the methods that would not be present in fairly simple 

models. 

The PLSF method: Four main stages 

    The PLSF method generates estimates of the composites and factors, with these serving as the 

foundation for the generation of asymptotically unbiased estimates of various model parameters. 

The method can be seen as being made up of four main stages. This section provides a high-level 

overview of these stages, with the goal of giving the reader a broad conceptual understanding of 

the method. The PLSF method builds on key elements from classic measurement error theory 

(Nunnaly, 1978; Nunnally & Bernstein, 1994) and the common factor model (Kline, 2010; 

MacCallum & Tucker, 1991). 

Stage 1: Consistent PLS 

    While our method’s main goal is to estimate model parameters by estimating factors, in 

empirical studies only factor indicators are available. Since each indicator measures the 

corresponding factor with error, the indicators themselves do not explain 100 percent of the 

variance in the factor. The percentage of the variance explained in the factor (e.g., 73 percent) by 

its indicators is the reliability associated with the factor. The remaining variance (e.g., 27 

percent) is explained by what we call the “measurement residual”, which is uncorrelated with the 

factors’ indicators. 

    Given the above, the reliability associated with a factor becomes a critical ingredient for the 

PLSF method. The reliability must be estimated early on in our PLSF method, in its first stage 

(i.e., Stage 1), because it can then serve as the basis for the estimation of the composite 
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associated with the factor in Stage 2. The reliability estimate is provided by the consistent PLS 

technique, which also provides estimates of the factor-indicator loadings, for each factor. These 

estimates have been shown to be asymptotically unbiased (Dijkstra & Schermelleh-Engel, 2014; 

Dijkstra & Henseler, 2015a; 2015b). This makes the reliability estimate generated by consistent 

PLS more desirable for our method than other widely used reliability estimates, such as the 

Cronbach’s alpha coefficient and the composite reliabilities calculated based on loadings 

produced by classic PLS algorithms (Dillon & Goldstein, 1984; Peterson & Yeolib, 2013; 

Sijtsma, 2009). 

Stage 2: Composite estimation 

    In Stage 2 we use the reliabilities and loadings from Stage 1 to estimate the composites 

associated with the factors. Each of these composites is, like all composites, an exact linear 

combination of the indicators. However, because of the assumption that each of these composites 

is uncorrelated with the corresponding measurement residual, it differs from the composites 

estimated via classic PLS algorithms (Adelman & Lohmoller, 1994; Lohmöller, 1989; McIntosh 

et al., 2014). The key difference is that each composite is estimated, as a weighted aggregation of 

the indicators, so that it accounts exactly for the variance explained in the corresponding factor – 

the reliability associated with the factor. 

    Once the composites are estimated we can then calculate the correlations among those 

composites, which we know to be attenuated with respect to the corresponding factor 

correlations (Nunnaly, 1978; Nunnally & Bernstein, 1994). That is, for each pair of composites 

𝐶𝑖 and 𝐶𝑗, and corresponding factors 𝐹𝑖 and 𝐹𝑗, the correlation between the composites 𝛴𝐶𝑖𝐶𝑗
 has 

a lower absolute magnitude than the correlation between the factors 𝛴𝐹𝑖𝐹𝑗
.The magnitude of this 

attenuation is given by the equation below, where 𝜌𝑖 and 𝜌𝑗 are the reliabilities associated with 

factors 𝐹𝑖 and 𝐹𝑗. 

 

𝛴𝐹𝑖𝐹𝑗
=

𝛴𝐶𝑖𝐶𝑗

√𝜌𝑖𝜌𝑗

. 
 

 

    As we can see, since we have estimates of the reliabilities from Stage 1 and of the composite 

correlations, we can therefore easily estimate the correlations among each pair of factors 𝛴𝐹𝑖𝐹𝑗
. 

This allows us, in Stage 3, to go from composites to factors. This is done by gradually sharing 

variation among composites and measurement residuals, until the composites “become” factors. 

We know precisely when this is achieved: when the correlations among composites reach the 

expected estimated correlations among factors. While iterations take place to achieve this, the 

correlations among the composites and measurement residuals associated with their 

corresponding factors are kept at zero. 

Stage 3: Factor estimation 

    At the end of Stage 2 we obtain estimates of composites that are uncorrelated with 

measurement residuals. Since the measurement residuals account for the variance in the factors 

that are not accounted for by the composites, they should be correlated with their corresponding 

factors and also with other factors in the model. The reason for this is that factors share variation 

with one another due to the cause-and-effect network that connects them. 
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    In Stage 3 we start by estimating the correlations among factors based on the correlations 

among composites and the reliabilities. We also initialize the factors by aggregating the 

composites and measurement residuals obtained from Stage 2. We then iteratively recover the 

variation shared among composites and measurement residuals into the factors, until 

convergence is achieved. 

    The above happens when the correlations among the emerging factors match the target 

correlations, which were earlier estimated via the correlation attenuation equation. The resulting 

factors will not incorporate exactly the same patterns of randomness found in the original factors. 

Those are unique and unrecoverable (Mueller, 1996). However, while post-estimation random 

patterns will be unique, they will be reduced to uncorrelated error that will have no effect on any 

parameter estimation (Bentler & Huang, 2014). 

Stage 4: Full parameter estimation 

    In Stage 4 we use the factor estimates from Stage 3 to obtain various model parameters, of 

which many become available. This is done based on the premise that the factors are the original 

sources of all variation in the model, even though some of the parameters of interest may have 

already been estimated in intermediate stages. For example, we can estimate loadings by 

regressing indicators on factors, and weights by regressing factors on indicators. Like in 

covariance-based SEM, these parameters are expected to be asymptotically unbiased. 

    At the end of Stage 4 we are left with a collection of correlated factors, where the correlations 

are expected to match those among the original true factors. For each pair of correlated factors, 

we end up with the pattern of correlations schematically illustrated in Figure 2. The factors 

aggregate composites and measurement residuals. The composite and measurement residual 

associated with one factor are correlated with the composite and measurement residual 

associated with the other factor. However, a composite and measurement residual associated 

with the same factor are uncorrelated. 
 

Figure 2. Correlations among model elements 

 

 
Notes: full line = nonzero correlation; dashed line = zero correlation. 

 

 

    Conceptually, the PLSF method attempts to recover factors from the indicators used to 

measure them, where each indicator is an imprecise measure of the factor. To do so, PLSF first 

estimates composites, which are unique to the method. The PLSF method assumes that a factors’ 

measurement residual explains the variance in the factor that is not explained by the composite 
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that is made up of the indicators; with the variance in the factor that is explained by composite, 

and thus by the indicators, being equal to the reliability associated with the factor. 

    From the above we can see that the PLSF method conceptualizes factors as aggregations of 

composites and measurement residuals, where the composites are in turn aggregations of 

indicators. The composite and measurement residual weights are obtained directly from the 

reliabilities estimated in Stage 1. The measurement residuals are uncorrelated with the indicators 

in the same factors, and thus with the composites in the same factors. However, the measurement 

residuals are correlated with the indicators and measurement residuals associated with other 

factors in the same model. 

The PLSF method: Four main functions 

    The PLSF method can be seen as being comprised of four main functions: ℱ1, the consistent 

PLS function; ℱ2, the composite estimation function; ℱ3, the factor estimation function; and ℱ4, 

the full parameter estimation function. The execution of each function refers to a PLSF stage, for 

a total of four stages. 

Function 𝓕𝟏: The consistent PLS function 

    This function, expressed in equation form below, takes as inputs the matrix 𝑥 of all indicators, 

and the matrix 𝒮 containing the model specification. The matrix 𝑥 has 𝑁 rows, where 𝑁 is the 

sample size; and one column for each of the indicators in the model. The matrix 𝒮 is made up of 

two sub-matrices: one specifying factor-factor associations, and the other specifying indicator-

factor associations – i.e., specifying the structural and measurement model links respectively. 

The outputs of function ℱ1 include a column vector 𝜌̂ containing estimates of the reliabilities 

associated with all of the factors in the model, and a matrix 𝜆̂ of estimates of the loadings for all 

factors. This function also produces initial estimates of the matrices 𝐶̂ and 𝜔̂ of composites and 

indicator weights, based on the basic design of PLS Mode A, which will be used as starting 

values in the next stage. 

 

[𝜌̂, 𝜆̂, 𝐶̂, 𝜔̂] = ℱ1(𝑥, 𝒮).  

 

    The consistent PLS technique is discussed in detail by Dijkstra & Schermelleh-Engel (2014), 

and Dijkstra & Henseler (2015a; 2015b). The corresponding function ℱ1 produces its outputs by 

first estimating composite weights via the basic design of PLS Mode A (Lohmöller, 1989, p. 29), 

also known as PLS Mode A employing the centroid scheme. Then estimates of the reliabilities 

and loadings are generated. 

Function 𝓕𝟐: The composite estimation function 

    This function takes as inputs 𝑥, 𝜌̂, 𝜆̂, 𝐶̂ and 𝜔̂. The composites in the matrix 𝐶̂ and the 

indicator weights in the matrix 𝜔̂ are used as initial values, whereas the reliabilities in 𝜌̂ and 

loadings in 𝜆̂ are fixed across the iterations carried out within ℱ2. As expressed in equation form 

below, the outputs of this function comprise the following model-wide estimates: a matrix 𝐶̂ of 

composites, a matrix 𝜔̂ of weights, vectors 𝜔̂𝐶 and 𝜔̂𝜀 of composite and measurement residual 

weights respectively, and a matrix 𝜀̂ of measurement residuals. 
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[𝐶̂, 𝜔̂, 𝜔̂𝐶 , 𝜀̂, 𝜔̂𝜀] = ℱ2(𝑥, 𝜌̂, 𝜆̂, 𝐶̂, 𝜔̂).  

 

    It is clear from our previous discussion on composites and factors that each composite is 

completely determined by its indicators, aggregated based on appropriate weights. The indicators 

are uncorrelated with the corresponding measurement residual. Therefore, the matrix 𝜀̂ produced 

and initially used internally by ℱ2 is at first a matrix of random uncorrelated “noise”, which at 

the conclusion of ℱ2 stores measurement residuals that are correlated only with their 

corresponding factors. In this stochastic approach to estimation, the measurement residuals are 

necessary for the proper estimation of the composites in ℱ2, through iterations of three key 

equations until successive estimates of each of the elements in the weight vectors 𝜔̂𝑖 that make 

up 𝜔̂ change by less than a small fraction: 

 

𝐹̂𝑖 = 𝑆𝑡𝑑𝑧(𝐶̂𝑖𝜔̂𝑖𝐶 + 𝜀𝑖̂𝜔̂𝑖𝜀),  

𝜃𝑖 = 𝑥𝑖 − 𝐹̂𝑖𝜆̂𝑖
′
,  

𝜔̂𝑖 = 𝛴𝑥𝑖𝑥𝑖

−1 (𝛴𝑥𝑖𝑥𝑖
− 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃̂𝑖

)) 𝜆̂𝑖
′+

,  

 

    where for each composite 𝐶̂𝑖 we have: 𝐹̂𝑖 as its corresponding factor, 𝜃𝑖 as the matrix of 

estimated indicator errors, 𝛴𝑥𝑖𝑥𝑖
 as the covariance matrix of the indicators associated with the 

factor, and 𝛴𝑥𝑖𝜃̂𝑖
 as the matrix of estimated covariances among indicators and their errors. The 

function 𝑆𝑡𝑑𝑧(∙) denotes the standardization function, and 𝑑𝑖𝑎𝑔(∙) returns the diagonal of a 

matrix, the superscript ′ denotes the transpose operation, the superscript −1 the classic matrix 

inversion, and the superscript + the Moore–Penrose pseudoinverse transformation. See 

Appendix A for the derivation of these equations. 

Function 𝓕𝟑: The factor estimation function 

    This function takes as inputs 𝜌̂, 𝐶̂,  𝜔̂𝐶, 𝜀̂ and 𝜔̂𝜀. As indicated below, the outputs of this 

function are the final estimates of the matrix of factors 𝐹̂ and the matrix of measurement 

residuals 𝜀̂. These final estimates will contain all of the model-implied variation that is reflected 

in the model’s key “signature” employed by the PLSF method. This model “signature” is 𝛴̂𝐹𝐹, 

the estimated matrix of correlations among factors, calculated within ℱ3 based on the matrix of 

correlations among estimated composites 𝛴𝐶̂𝐶̂ and the vector of reliabilities 𝜌̂. 

 

[𝐹̂, 𝜀̂] = ℱ3(𝜌̂, 𝐶̂, 𝜔̂𝐶 , 𝜀̂, 𝜔̂𝜀).  

 

    The final estimates of 𝐹̂ and 𝜀̂ are generated within ℱ3 through iterations of the three main 

equations below, whereby the matrix of correlations among estimated factors 𝛴𝐹̂𝐹̂ is fitted to the 

estimated matrix of correlations among factors 𝛴̂𝐹𝐹. While the former (i.e., 𝛴𝐹̂𝐹̂) varies across 

iterations, the latter (i.e., 𝛴̂𝐹𝐹) is calculated early in ℱ3 and kept unchanged thereafter within ℱ3. 



 10 

The iterations continue until the sum of the absolute differences 𝛴̂𝐹𝑖𝐹𝑗
− 𝛴𝐹̂𝑖𝐹̂𝑗

 falls below a small 

fraction, or until the sum of the absolute differences between successive estimates of 𝛴𝐹̂𝑖𝐹̂𝑗
 

changes by less than a small fraction. 

 

𝜀𝑖̂ = 𝑆𝑡𝑑𝑧 (𝜀𝑖̂ + (𝛴̂𝐹𝑖𝐹𝑗
− 𝛴𝐹̂𝑖𝐹̂𝑗

)
𝛴̂𝐹𝑖𝐹𝑗

𝜔̂𝑖𝜀
(𝐶̂𝑗𝜔̂𝑗𝐶 + 𝜀𝑗̂𝜔̂𝑗𝜀)), 

 

𝐹̂𝑖 = 𝑆𝑡𝑑𝑧(𝐹̂𝑖 + (𝜔̂𝑖𝐶 − 𝛴𝐹̂𝑖𝐶̂𝑖
)𝐶̂𝑖𝜔̂𝑖𝐶),  

𝜀𝑖̂ = 𝑆𝑡𝑑𝑧(𝜀𝑖̂ −  𝛴𝐶̂𝑖𝜀̂𝑖
𝐶̂𝑖𝜔̂𝑖𝐶 + (𝜔̂𝑖𝜀 − 𝛴𝐹̂𝑖𝜀̂𝑖

)𝐹̂𝑖𝜔̂𝑖𝜀).  

 

    The above are labeled “variation sharing” equations. Through them successive estimates of 

factors 𝐹̂𝑖 and measurement residuals 𝜀𝑖̂ acquire or lose variation from correlated factors, 

composites, and measurement residuals (denoted as 𝐹̂𝑗, 𝐶̂𝑗 and 𝜀𝑗̂); in such a way that the 

following constraints are enforced: 𝛴̂𝐹𝑖𝐹𝑗
= 𝛴𝐹̂𝑖𝐹̂𝑗

, 𝛴𝐹̂𝑖𝐶̂𝑖
= 𝜔̂𝑖𝐶, 𝛴𝐹̂𝑖𝜀̂𝑖

= 𝜔̂𝑖𝜀, and 𝛴𝐶̂𝑖𝜀̂𝑖
= 0. The 

first constraint, namely 𝛴̂𝐹𝑖𝐹𝑗
= 𝛴𝐹̂𝑖𝐹̂𝑗

, drives the iterative convergence process. See Appendix A 

for the derivation of these equations. 

Function 𝓕𝟒: The full parameter estimation function 

    This function, expressed in equation form below, marks the final stage of the PLSF method. It 

ensures that all estimates produced are internally consistent, by taking as inputs 𝑥, 𝐹̂, 𝜔̂𝐶, 𝜀̂ and 

𝜔̂𝜀. Based on these inputs, notably 𝐹̂ and 𝜀̂, it re-estimates 𝐶̂, 𝜔̂ and 𝜆̂. 

 

[𝐶̂, 𝜔̂, 𝜆̂, 𝛽̂, 𝜃, 𝜁] = ℱ4(𝑥, 𝐹̂, 𝜔̂𝐶 , 𝜀̂, 𝜔̂𝜀).  

 

    Additionally, function ℱ4 produces a matrix of estimates of the path coefficients 𝛽̂, indicator 

residuals 𝜃, and endogenous factor residuals 𝜁. These estimates are obtained by solving the 

equation below for each endogenous factor 𝐹̂𝑖, where 𝑁𝑖 is the number of factors 𝐹̂𝑗 (𝑗 = 1 … 𝑁𝑖) 

pointing at 𝐹̂𝑖 in the model. The instrumental variables 𝐼𝑖 implement a two-stage least squares 

estimation, and exist for all endogenous factors in the model that contain variation from other 

factors but are not directly linked with those factors. These instrumental variables control for in-

model endogeneity, and their corresponding path coefficients 𝛽̂𝑖 allow for endogeneity 

significance tests. The indicator residuals in 𝜃 and the residuals in 𝜁 are subsequently obtained 

directly based on these factor estimates. 

 

𝐹̂𝑖 = ∑ 𝛽̂𝑖𝑗
𝑁𝑖
𝑗=1 𝐹̂𝑗 + 𝛽̂𝑖𝐼𝑖 + 𝜁𝑖.  

 

    At the end of the four stages that make up the PLSF method we have estimates of various 

parameters stored in the following: 𝐹̂, 𝐶̂, 𝜀̂, 𝜁, 𝜔̂, 𝜔̂𝐶, 𝜔̂𝜀, 𝜆̂, 𝛽̂ and 𝜃. In Appendix B we provide 
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all of the steps and equations that make up the PLSF method, for each of the four functions, as 

well as the algorithmic sequence of their execution and explanatory notes. This should facilitate 

the implementation of the method in any numeric computing environment, including open source 

environments such as R and GNU Octave. 

Finite population illustration 

    A normal finite population (N=10,000) was created, based on the illustrative model described 

earlier, to demonstrate the performance of the PLSF method vis-à-vis other methods. A finite 

population of this size incorporates only a small amount of sampling error, and has the advantage 

of allowing us to calculate the values of various true model parameters that can be used in a 

preliminary assessment of the PLSF method’s ability to generate estimates of the true factors 

(minus uncorrelated error). Among these parameters are path coefficients, full collinearity 

variance inflation factors (VIFs), loadings, and weights. The disadvantage of using a finite 

population is that it does not exactly replicate the properties of the infinite population from 

which it derives, which is why we also conducted a classic Monte Carlo experiment to assess the 

PLSF method. 

    Attentive readers will notice that the true model parameters for our finite population 

illustration are not exactly the same as the true values shown earlier for our illustrative model. 

For example, the true value of the path coefficient for the CO > EU link is 0.4180 in our 

illustrative model presented earlier, and 0.4223 in our finite population illustration presented here 

(as will be seen shortly below). This and other related differences in true parameter values are 

due to sampling error, which arises from the fact that we created a population whose size is finite 

(not infinite) based on the true illustrative model presented earlier. 

    Full collinearity VIFs were added to our analysis due to their importance in tests of empirical 

data, as they assess collinearity among all factors in a model (Kock & Lynn, 2012), and also due 

to the fact that their magnitude of variation and dependence on the estimates of all factor scores 

make them particularly sensitive to factor estimation problems. Full collinearity VIFs allow 

researchers to identify both vertical and lateral collinearity in models. Vertical, or classic, 

collinearity reflects redundancy among predictors in a model with various factors. Lateral 

collinearity reflects redundancy among predictors and criteria. Full collinearity VIFs also allow 

researchers to check for common method bias (Kock & Lynn, 2012; Kock, 2015). 

    The methods against which PLSF is compared are: covariance-based SEM through full-

information maximum likelihood (FIML); ordinary least squares regression with summed 

indicators (OLS); and PLS Mode A employing the path weighting scheme (PLS). The latter is 

the most widely used form of PLS path modeling employed in the field of IS (Goodhue et al., 

2012). We used pre-tested MATLAB 8.4 code from a widely used commercial software, namely 

WarpPLS (Kock, 2010; 2018), for the implementation of the OLS and PLS methods. We 

developed our own implementation of PLSF, also with MATLAB 8.4. This implementation, not 

published until now, has been available in WarpPLS since version 5.0 (released in 2015). For 

FIML, we used R 3.2.2 and the package lavaan 0.5-19 (Rosseel, 2012). We employed the same 

analysis settings as Dijkstra & Henseler (2015a), who compared a similar set of methods. 

    Table 1 lists the path coefficients and full collinearity VIFs for the finite population. The 

FIML method does not estimate factor scores, which are needed to calculate the full collinearity 

VIFs. Several unrefined and refined methods exist to generate correlation-preserving 

approximations of factor scores based on FIML outputs (DiStefano et al., 2009). We employed 

two refined methods available in lavaan, the Thurstone and Bartlett methods (DiStefano et al., 
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2009; Bartlett, 1937; Hershberger, 2005; Thurstone, 1935). Only the Thurstone method yielded 

solutions for our model. The reason for this may be that the Bartlett method requires multiple 

matrix inversions, including nested inversions (DiStefano et al., 2009, p. 10), which make it 

inherently unstable. According to a seminal discussion by Bartholomew et al. (2009), both 

methods tend to yield very similar results; and the Thurstone method, also known as Thomson’s 

method, has a more sound mathematical basis. 
 

Table 1. Path coefficients and full collinearity VIFs for finite population (N=10,000) 

 

Path coefficients 

   PLSF  FIML  OLS  PLS 

 True  Est. Diff.  Est. Diff.  Est. Diff.  Est. Diff. 

CO>EU 0.4223  0.4208 -0.0015  0.4188 -0.0036  0.3971 -0.0253  0.3971 -0.0252 

CO>GT 0.5074  0.5066 -0.0008  0.5085 0.0012  0.4575 -0.0499  0.4599 -0.0474 

CO>AC 0.2947  0.3021 0.0074  0.3041 0.0095  0.2661 -0.0286  0.2673 -0.0274 

CO>SU 0.0146  0.0137 -0.0009  0.0132 -0.0014  0.0917 0.0771  0.0899 0.0753 

EU>SU 0.1466  0.1479 0.0013  0.1477 0.0011  0.1206 -0.0259  0.1219 -0.0247 

GT>SU 0.5356  0.5331 -0.0025  0.5262 -0.0095  0.3983 -0.1373  0.4022 -0.1334 

AC>SU 0.2562  0.2565 0.0003  0.2664 0.0102  0.2025 -0.0537  0.2040 -0.0522 

RMSE    0.0031   0.0066   0.0679   0.0659 

Full collinearity VIFs 

   PLSF  FIML  OLS  PLS 

 True  Est. Diff.  Est. Diff.  Est. Diff.  Est. Diff. 

CO 1.6618  1.6752 0.0135  1.8265 0.1648  1.5451 -0.1167  1.5489 -0.1128 

EU 1.2575  1.2541 -0.0034  1.3119 0.0544  1.2084 -0.0491  1.2091 -0.0485 

GT 1.8865  1.8921 0.0055  2.4263 0.5398  1.4966 -0.3899  1.5062 -0.3803 

AC 1.2186  1.2181 -0.0005  1.3803 0.1616  1.1364 -0.0823  1.1384 -0.0803 

SU 1.8813  1.8892 0.0079  2.5014 0.6201  1.4590 -0.4223  1.4687 -0.4127 

RMSE    0.0076   0.3827   0.2658   0.2594 

 

 

    Table 2 lists a summarized set of loadings and weights for the finite population. To avoid 

crowding, and since the patterns observed here repeat themselves across latent variables and 

indicators, this summarized set focuses on AC and its respective indicators AC1, AC2 ... AC5. In 

our model AC has the lowest overall set of loadings, and thus potentially poses the most 

estimation challenges for the PLSF method. The FIML method does not generate estimates of 

weights, which is why they are not listed in the table. Loadings and weights for constructs other 

than AC are provided in Appendix C. Figure 3 highlights the differences (RMSEs) with respect 

to true values for each of the methods. 

    In each table the column labeled “True” lists the true values in our finite population of various 

parameters. The “Est.” columns list the corresponding estimates employing each method. The 

“Diff.” columns list the differences between estimates and true values for each method. The row 

labeled “RMSE” lists root-mean-square errors associated with the differences between estimates, 

calculated as the square roots of the averages of the squared differences, which provide a 

summarized performance measure for each of the methods. 

    As we can see, the performances of PLSF and FIML were similar in terms of estimation of 

path coefficients. In this respect, these two methods (i.e., PLSF and FIML) performed 

significantly better than OLS and PLS, whose corresponding RMSEs were multiple orders of 

magnitude higher. In terms of full collinearity VIFs the PLSF method performed significantly 

better than the other three methods, with the performance of FIML being the poorest. 
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Table 2. Summarized loadings and weights for finite population (N=10,000) 

 

Loadings 

   PLSF  FIML  OLS  PLS 

 True  Est. Diff.  Est. Diff.  Est. Diff.  Est. Diff. 

AC1<AC 0.4955  0.5007 0.0052  0.5108 0.0153  0.6529 0.1574  0.6157 0.1202 

AC2<AC 0.5959  0.6005 0.0046  0.6036 0.0077  0.7050 0.1091  0.7059 0.1100 

AC3<AC 0.5986  0.5969 -0.0017  0.5964 -0.0022  0.7000 0.1013  0.6988 0.1001 

AC4<AC 0.7003  0.6999 -0.0004  0.7002 -0.0001  0.7531 0.0528  0.7721 0.0718 

AC5<AC 0.7010  0.6981 -0.0028  0.6945 -0.0064  0.7513 0.0504  0.7647 0.0638 

RMSE    0.0034   0.0083   0.1022   0.0957 

Weights 

   PLSF  FIML  OLS  PLS 

 True  Est. Diff.  Est. Diff.  Est. Diff.  Est. Diff. 

AC1>AC 0.1385  0.1387 0.0003  - -  0.2807 0.1423  0.2275 0.0890 

AC2>AC 0.2077  0.2132 0.0055  - -  0.2807 0.0730  0.2788 0.0711 

AC3>AC 0.2174  0.2171 -0.0003  - -  0.2807 0.0634  0.2748 0.0574 

AC4>AC 0.3168  0.3128 -0.0040  - -  0.2807 -0.0361  0.3123 -0.0045 

AC5>AC 0.3197  0.3144 -0.0053  - -  0.2807 -0.0390  0.3007 -0.0190 

RMSE    0.0038   -   0.0805   0.0577 

 

 

Figure 3. Differences (RMSEs) with respect to true values 

 

 
 

 

    The performances of PLSF and FIML were again comparable in terms of loadings, based on 

their RMSEs, which also suggest that PLSF and FIML performed significantly better than OLS 

and PLS. Again, the RMSEs for OLS and PLS were multiple orders of magnitude higher. The 

same pattern is observed with respect to weights for the PLSF method, when compared with the 

OLS and PLS methods. The FIML method does not generate weights. 
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Monte Carlo experiment 

    While the analyses of the finite population provide an idea of the comparative performance of 

the four methods, a full Monte Carlo experiment (Paxton et al., 2001; Robert & Casella, 2005) is 

needed to assess performance in terms of statistical power and percentages of false positives; as 

well as in terms of estimation of path coefficients with respect to an infinite population, where 

the distorting effect of sampling error is minimized. 

    We generated 1,000 samples of normal and non-normal data with the following sample sizes: 

100, 300 and 500. The non-normal samples were created based on independent 𝜒1
2 distributions, 

with theoretical skewness and excess kurtosis values of √8 and 12 respectively and thus severely 

non-normal. Exogenous factors, endogenous factor errors, and indicator errors were created 

independently from one another to ensure proper non-normality propagation (Kock, 2016). We 

also conducted two tests of normality on these variables in each non-normal sample: the classic 

Jarque-Bera test (Jarque & Bera, 1980; Bera & Jarque, 1981) and Gel & Gastwirth’s (2008) 

robust version of this classic test. These tests confirmed the presence of significant non-

normality. 

    We refer to the sample sizes of 100, 300 and 500 respectively as small, medium and large. Our 

simulated data generation yielded a total of 6,000 data samples, which were analyzed with the 

PLSF, FIML, OLS and PLS methods. With normal data the FIML method converged to 

solutions in all samples, and with non-normal data it failed to converge to solutions in 6.1% of 

the samples. The PLSF, OLS and PLS methods converged to solutions in all samples, both 

normal and non-normal. 

    Tables 3 and 4 show, for each of the path coefficients in our illustrative population model 

described earlier, the following estimates: the average difference between the path coefficient 

estimated by each method and the true values (rows labeled “Avg. diff.”); the statistical power of 

each method (rows labeled “Power”); the standard deviation of the estimate (rows labeled “Std. 

dev.”); the percentage of false positives yielded by each method for the path whose true value is 

zero (rows labeled “False pos.”); and, in the final rows at the bottom, the RMSE for each 

method, calculated based on the average differences. Results for normal and non-normal data are 

shown. 

    In terms of path coefficient estimation accuracy, assessed through average differences between 

estimated and true values, the performances of the PLSF and FIML methods were similar with 

both normal and non-normal data, across the three sample sizes. Both methods converged to the 

true values as sample sizes increased, with PLSF converging significantly faster. In this respect, 

the performances of PLSF and FIML were significantly better than OLS and PLS, mimicking the 

results with respect to the finite population. 

    Figure 4 highlights the performance in terms of statistical power for each of the methods. This 

figure reflects the fact that PLSF has greater power than FIML for all paths in all of the sample 

sizes considered. The focus here is on normal data; the results for the non-normal data show 

similar patterns. Six bar charts are shown. At the top of each chart the respective path is listed. 

Next to the vertical axes we show the power values achieved for each sample size. The sample 

sizes are shown underneath the horizontal axes. 
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Table 3. Monte Carlo experiment results for path coefficients (normal data) 
Sample size 100 300 500 

Method PLSF FIML OLS PLS PLSF FIML OLS PLS PLSF FIML OLS PLS 

CO>EU (0.418)             

Avg. diff. 0.0107 -0.0047 -0.0214 -0.0145 0.0035 -0.0017 -0.0221 -0.0198 0.0015 -0.0022 -0.0225 -0.0210 

Power 100.0% 98.3% 99.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Std. dev. 0.0782 0.0888 0.0764 0.0749 0.0474 0.0501 0.0454 0.0452 0.0372 0.0379 0.0354 0.0353 

CO>GT (0.515)             

Avg. diff. 0.0017 -0.0005 -0.0554 -0.0462 0.0044 0.0007 -0.0505 -0.0459 0.0040 0.0012 -0.0499 -0.0462 

Power 100.0% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Std. dev. 0.0765 0.0810 0.0699 0.0695 0.0423 0.0482 0.0389 0.0384 0.0328 0.0353 0.0299 0.0297 

CO>AC (0.288)             

Avg. diff. 0.0028 0.0049 -0.0402 -0.0174 0.0026 0.0084 -0.0402 -0.0320 0.0038 0.0080 -0.0368 -0.0316 

Power 85.9% 72.4% 76.8% 86.3% 100.0% 99.4% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 

Std. dev. 0.1004 0.1057 0.0912 0.0879 0.0586 0.0610 0.0520 0.0516 0.0443 0.0465 0.0393 0.0389 

CO>SU (0.000)             

Avg. diff. -0.0034 -0.0043 0.0848 0.0688 -0.0100 0.0010 0.0814 0.0742 -0.0052 -0.0040 0.0836 0.0784 

False pos. 5.2% 5.5% 11.6% 8.9% 3.7% 1.9% 27.2% 23.6% 4.1% 2.5% 50.0% 44.5% 

Std. dev. 0.1398 0.1337 0.1089 0.1103 0.0764 0.0700 0.0606 0.0608 0.0553 0.0531 0.0441 0.0441 

EU>SU (0.157)             

Avg. diff. 0.0092 0.0009 -0.0295 -0.0238 0.0064 0.0016 -0.0263 -0.0241 0.0014 0.0025 -0.0290 -0.0273 

Power 33.7% 22.7% 30.5% 33.2% 73.8% 57.8% 71.5% 72.0% 88.1% 81.2% 86.3% 87.7% 

Std. dev. 0.1092 0.1112 0.0888 0.0898 0.0629 0.0610 0.0520 0.0522 0.0502 0.0467 0.0421 0.0419 

GT>SU (0.542)             

Avg. diff. -0.0029 -0.0078 -0.1427 -0.1258 0.0053 -0.0130 -0.1372 -0.1279 0.0065 -0.0084 -0.1367 -0.1287 

Power 99.6% 98.3% 99.6% 99.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Std. dev. 0.1120 0.1152 0.0836 0.0844 0.0663 0.0604 0.0498 0.0497 0.0496 0.0492 0.0379 0.0375 

AC>SU (0.254)             

Avg. diff. 0.0049 0.0103 -0.0619 -0.0434 0.0052 0.0126 -0.0612 -0.0537 0.0033 0.0093 -0.0620 -0.0568 

Power 61.4% 58.8% 60.6% 67.7% 98.5% 97.5% 98.5% 98.6% 100.0% 99.8% 99.9% 100.0% 

Std. dev. 0.1146 0.1086 0.0859 0.0881 0.0601 0.0610 0.0460 0.0461 0.0470 0.0495 0.0360 0.0359 

RMSE 0.0060 0.0058 0.0731 0.0605 0.0058 0.0076 0.0702 0.0642 0.0041 0.0060 0.0704 0.0657 

 

Table 4. Monte Carlo experiment results for path coefficients (non-normal data) 
Sample size 100 300 500 

Method PLSF FIML OLS PLS PLSF FIML OLS PLS PLSF FIML OLS PLS 

CO>EU (0.418)             

Avg. diff. 0.0096 -0.0036 -0.0237 -0.0168 0.0042 -0.0011 -0.0215 -0.0191 0.0016 -0.0035 -0.0223 -0.0210 

Power 100.0% 93.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Std. dev. 0.0810 0.1218 0.0780 0.0771 0.0459 0.0710 0.0435 0.0435 0.0348 0.0569 0.0330 0.0330 

CO>GT (0.515)             

Avg. diff. 0.0016 -0.0042 -0.0572 -0.0488 0.0051 -0.0065 -0.0498 -0.0452 0.0031 -0.0042 -0.0509 -0.0472 

Power 100.0% 98.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Std. dev. 0.0742 0.1223 0.0674 0.0671 0.0439 0.0696 0.0402 0.0400 0.0341 0.0549 0.0312 0.0310 

CO>AC (0.288)             

Avg. diff. 0.0099 -0.0094 -0.0438 -0.0221 0.0073 -0.0137 -0.0359 -0.0280 0.0014 -0.0112 -0.0391 -0.0338 

Power 83.0% 68.2% 77.0% 84.2% 100.0% 99.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Std. dev. 0.1017 0.1224 0.0891 0.0896 0.0577 0.0686 0.0510 0.0509 0.0436 0.0538 0.0384 0.0384 

CO>SU (0.000)             

Avg. diff. -0.0034 -0.0015 0.0811 0.0648 -0.0104 0.0027 0.0820 0.0750 -0.0079 0.0024 0.0818 0.0764 

False pos. 4.9% 4.8% 12.7% 9.3% 4.7% 4.9% 26.2% 23.0% 5.0% 5.1% 41.4% 36.3% 

Std. dev. 0.1338 0.1365 0.1006 0.1037 0.0772 0.0734 0.0606 0.0609 0.0606 0.0580 0.0474 0.0476 

EU>SU (0.157)             

Avg. diff. 0.0081 -0.0074 -0.0243 -0.0178 0.0050 -0.0066 -0.0279 -0.0257 0.0048 -0.0022 -0.0262 -0.0246 

Power 30.8% 26.3% 27.3% 29.2% 75.2% 67.4% 70.3% 71.8% 93.4% 91.2% 91.9% 92.5% 

Std. dev. 0.1164 0.1122 0.0935 0.0955 0.0617 0.0627 0.0513 0.0513 0.0476 0.0479 0.0394 0.0394 

GT>SU (0.542)             

Avg. diff. 0.0042 0.0079 -0.1375 -0.1210 0.0071 0.0033 -0.1369 -0.1275 0.0070 0.0036 -0.1359 -0.1280 

Power 100.0% 96.6% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Std. dev. 0.1110 0.1400 0.0801 0.0812 0.0644 0.0753 0.0481 0.0480 0.0502 0.0571 0.0372 0.0371 

AC>SU (0.254)             

Avg. diff. 0.0102 -0.0105 -0.0620 -0.0433 0.0047 -0.0103 -0.0617 -0.0546 0.0030 -0.0113 -0.0623 -0.0571 

Power 61.5% 53.0% 61.1% 67.9% 97.6% 96.4% 97.7% 98.4% 99.9% 99.9% 99.9% 99.9% 

Std. dev. 0.1102 0.1231 0.0833 0.0853 0.0655 0.0675 0.0491 0.0496 0.0499 0.0520 0.0370 0.0374 

RMSE 0.0075 0.0071 0.0714 0.0588 0.0066 0.0075 0.0700 0.0640 0.0047 0.0066 0.0700 0.0654 
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Figure 4. Performance in terms of statistical power 
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    In summary, in terms of statistical power, assessed through confidence intervals (Dijkstra & 

Henseler, 2015a; Goodhue et al., 2012), PLSF and PLS presented similar performance, and 

generally better performance than FIML and OLS. In terms of avoidance of false positives, PLSF 

and FIML presented similar performance, and much better performance overall than OLS and 

PLS. With large samples (N=500) OLS and PLS performed particularly poorly with respect to 

avoidance of false positives. 

Discussion 

    There has been a continuing and often antagonistic debate among proponents and detractors of 

classic PLS methods (Goodhue et al., 2012; Kock & Hadaya, 2018; McIntosh et al., 2014; 

Rönkkö et al., 2015). This debate has frequently centered around one main problem with PLS 

methods, which is that they do not deal with factors, which we treat as aggregations of indicators 

and measurement residuals, but with composites. We made here what is arguably an important 

contribution to this debate by discussing the PLSF method, which is anchored on a new 

conceptual foundation. Our method combines elements of classic PLS methods and covariance-

based SEM, and provides estimates of the composites and factors in a path model. 

Should we really care about factors? 

    The methods we compared attempt to recover population parameters, such as path 

coefficients, based on empirical datasets. In the context of hypothesis-testing via SEM, biased 

parameters are problematic in that they may lead to type I and II errors. A type I error occurs 

when an effect that does not exist in the population is mistaken as a “real” effect based on the 

analysis of an empirical dataset, which would be a false positive. A type II error occurs when an 

effect that exists in the population is mistaken as “no effect”, a false negative. Because SEM 

investigations are typically used for hypothesis-testing, it is critical that parameter estimates be 

as accurate as possible, so that type I and II errors can be avoided. And composite-based 

methods, of which the most widely used are classic PLS methods, demonstrably generate biased 

parameters. 

    Recognition of this problem has led to a new line of prediction-oriented research employing 

classic PLS methods, particularly PLS Mode A, based on a key argument. The argument is that 

composite-based methods like classic PLS are as good for prediction as factor-based methods, if 

not better, while at the same time being simpler to use and fairly effective at converging to 

solutions (Shmueli et al., 2016). For example, let us assume that one wants to build a model of 

customer purchases at a supermarket, where purchases of a class of products (e.g., beer) are 

modeled as influencing purchases of another class of products (e.g., corn chips). According to 

this prediction argument (i.e., PLS is very good for prediction), a model built based on 

parameters obtained via classic PLS methods would be quite successful at predicting purchases 

in the future (e.g., next month) based on past purchases (e.g., last month). Following the 

prediction argument, such a model would do as good a job as a factor-based model, if not better. 

Moreover, the simplicity and computational speed of classic PLS algorithms such as PLS Mode 

A would further tip the balance in their favor in analyses of very large datasets and highly 

complex prediction-oriented models. Note that this prediction-oriented type of application is 

significantly different from hypothesis-testing in the context of SEM. 

    While a discussion of the merits of the prediction argument is outside the scope of this paper, 

its basic premise has been finding increasing support (Carrión et al., 2016; Shmueli et al., 2016). 
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The argument has also provided the impetus for related methodological perspectives, such as that 

the simplicity of classic PLS methods is in fact a virtue in prediction-oriented applications 

(Rigdon, 2012), and that classic PLS methods used in prediction-oriented scenarios should not be 

compared with factor-based methods aimed at testing hypotheses in the context of SEM (Rigdon 

et al., 2017). We find these ideas worth pursuing, and believe that there may be a bright future 

for prediction-oriented research building on classic PLS methods, particularly PLS Mode A, if 

these ideas are found to have merit. We also believe that hypothesis-testing in the context of 

SEM can greatly benefit from factor-based methods, because it relies heavily on parameter 

estimation accuracy, hence our proposal of the PLSF method. Should we care about factors? 

Yes, if we are testing hypotheses in the context of SEM. But perhaps not so much in prediction-

oriented scenarios. 

Statistical efficiency 

    We showed evidence that PLSF is statistically consistent, like covariance-based SEM; but has 

greater statistical power, more in line with PLS. For example, for the path CO > AC (0.288), 

only PLSF and PLS displayed power greater than 80% for a small sample size (N=100): 

respectively 85.9% and 86.3% with normal data, and 83.0% and 84.2% with non-normal data. 

For this same path and sample size, covariance-based SEM had a power of 72.4% with normal 

data, and 68.2% with non-normal data. 

    Since between PLSF and PLS the only statistically consistent method is PLSF, as PLSF 

asymptotically converges to the true values and PLS does not, this suggests that PLSF is a good 

candidate in the context of SEM for the statistical property of asymptotic “efficiency” (Nikitin & 

Nikitin, 1995). A method is statistically efficient in an asymptotic sense if it is statistically 

consistent and also achieves a given level of power with the smallest sample size. 

PLSF versus other similar factor-based variations 

    Our choice of comparison methods – PLS, FIML, OLS – mirrors the choices made in two 

related seminal methodological studies in the field of IS, conducted by Goodhue et al. (2012) and 

Dijkstra & Henseler (2015a). Both studies provided evidence that parameters can be corrected 

for attenuation. Goodhue et al. (2012) proposed the use of ordinary least squares regression with 

summed indicators and attenuation correction based on the Cronbach’s alpha coefficient, 

whereas Dijkstra & Henseler (2015a) the use of consistent PLS with attenuation correction based 

on its own true reliability estimate. 

    While our PLSF method is not a parameter correction method, one could argue that the 

methods proposed by Goodhue et al. (2012) and Dijkstra & Henseler (2015a) could be used with 

the technique of variation sharing employed in Stage 3 of PLSF to provide the basis for two 

additional methods against which PLSF could be compared. This would allow for the calculation 

of a wide range of parameters, well beyond the ones originally targeted for correction for 

attenuation by the two methods. It could be interesting to see how these parameters differ from 

the true values in our finite population. We conducted such a comparison and reported the results 

in Appendix D, where the two new methods are referred to respectively as OLSa and PLSc. We 

found that PLSF outperformed OLSa and PLSc in terms of estimation of path coefficients, full 

collinearity VIFs, loadings, and weights. 

    The main reason why PLSF outperformed these methods is that it estimates composites, in its 

Stage 2, in a way that is arguably more mathematically sound than OLSa and PLSc do. OLSa 

non-iteratively estimates composites as standardized sums of indicators, whereas PLSc employs 
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the iterative PLS Mode A algorithm with the centroid scheme (Lohmöller, 1989, p. 29). These 

lead to biased weights for both OLSa and PLSc, weights that are necessary for producing 

composites. The final outcome are composite approximations that are not the ideal starting point 

for the calculation of composite correlations to be corrected for attenuation. 

    It is important to note that the approximations of weights produced by consistent PLS in Stage 

1 of the PLSF method are useful in that they contribute to increasing the computational 

efficiency of the composite estimation stage of PLSF (Stage 2). Without those weights the PLSF 

method would have to depart from unit weights, which are not as good as starting points as are 

the consistent PLS weights obtained via the PLS Mode A algorithm with the centroid scheme 

(Lohmöller, 1989). 

What if CO had been measured via multiple indicators? 

    As noted earlier, our decision to include a single-item construct (CO) allowed us to pose an 

important challenge to our PLSF method. This prevented this construct from receiving variation 

when we went from composites to factors, because, being a single-item construct, CO was 

essentially measured without error. That is, the single indicator used to measure CO was 

assumed in our data creation and subsequent analysis to be a perfect measure of the construct. 

This is of course different from using a single indicator to measure a construct with error 

(Bergkvist & Rossiter, 2007; Sarstedt et al., 2016; Wanous & Reichers, 1996; Wanous et al., 

1997), which would in fact reduce the reliability associated with the construct, and is a practice 

that is generally not advisable. 

    One could argue that different results would have been obtained in our analysis had CO been 

measured via multiple indicators. We addressed this in Appendix E, where we present the results 

of an analysis with CO measured through a set of 5 indicators with heterogeneous loadings. As 

we expected, neither the performance of PLSF nor that of FIML was noticeably affected. We did 

notice a further deterioration in the performances of OLS and PLS with respect to path 

coefficients and full collinearity VIFs. This further deterioration is not particularly surprising 

since neither OLS nor PLS explicitly accounts for measurement error. 

Advantages and disadvantages of PLSF 

    The PLSF method presents a few notable advantages when compared with existing SEM 

methods. It shares the property of consistency with covariance-based SEM, yielding 

asymptotically unbiased estimates of various parameters, but like classic PLS has greater 

statistical power. Computationally the PLSF method is much simpler than covariance-based 

SEM. Unlike the PLSF method, covariance-based SEM requires the calculation of matrices of 

second-order partial derivatives (Hessian matrices) and their inversion, which is often impossible 

or leads to unacceptable results (Kline, 2010; Mueller, 1996). Finally, the PLSF method provides 

estimates of factor scores, which can subsequently be used in a variety of other tests. Among 

such tests are two that have been developed in the field of IS and have been widely used in a 

variety of fields since their publication: full collinearity tests, which concurrently assess both 

lateral and vertical collinearity among factors (Kock & Lynn, 2012), and can be used in common 

method bias assessments (Kock & Lynn, 2012; Kock, 2015); and factor-factor nonlinearity tests, 

where best-fitting nonlinear functions are estimated for each pair of causally linked factors, and 

then used in the estimation of modified path coefficients that take nonlinearity into consideration 

(Guo et al., 2011; Kock, 2010; Moqbel et al., 2013). 
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    The PLSF method presents a notable theoretical disadvantage when compared with 

covariance-based SEM. The PLSF method does not allow for the estimation of correlations 

among indicator error terms, which are correlations that can lead to common method bias (Kock, 

2015). In covariance-based SEM the estimation of correlations among indicator error terms is 

theoretically possible, as is controlling for those correlations in the estimation of other 

parameters. In practice this estimation often leads to identification problems. These identification 

problems arise from the increase in the number of parameters to be estimated, now including 

various correlations among indicator error terms, and the consequent need for the problematic 

calculation and inversion of matrices of second-order partial derivatives. As noted above, the 

PLSF method allows for common method bias assessment, but not for removal of pathological 

common method variation. A promising new line of research, which we recommend, is the use 

of the technique of variation sharing employed in Stage 3 of the PLSF method to remove 

pathological common method variation from empirical datasets. 

    With respect to the disadvantage of PLSF discussed above, it is important to note that it is a 

disadvantage primarily when we compare the use of the PLSF method against covariance-based 

SEM assuming that the model we are analyzing is correct. In covariance-based SEM the model-

implied network of links among factors and indicators strongly influences the estimation of 

parameters (Kline, 2010). In other words, in covariance-based SEM it is critical that we get the 

model right prior to estimating parameters based on empirical data. This is much less so in the 

PLSF method, similarly to PLS in general (Lohmöller, 1989), because the factors estimated by 

PLSF are based on composites. In PLSF, we go from composites to factors, based on correlations 

among composites. Those correlations are present due to an underlying model structure, but are 

not as influenced as in covariance-based SEM by a hypothesized model structure. 

Conclusion 

    The new PLSF method discussed here combines elements of classic PLS and covariance-

based SEM methods. Like classic PLS it generates parameter estimates after it creates factor 

scores, with the key difference that PLSF yields estimates of the factors while classic PLS 

produces approximations. Also like classic PLS, it makes no data distribution assumptions, 

which is a characteristic of robust nonparametric methods (Siegel & Castellan, 1998). Like 

covariance-based SEM the PLSF method fits covariance matrices, with the key difference that 

PLSF fits factor covariance matrices while in covariance-based SEM the fitting involves 

indicator covariance matrices. 

    Since the PLSF method builds on the consistent PLS technique, it can be seen as an 

endorsement of the use of that technique as a basis for the development of factor-based path 

analysis methods. In this respect it arguably constitutes an important methodological 

contribution. The reason for this is that in parameter correction techniques, such as consistent 

PLS, typically a different equation has to be developed to correct each parameter class; e.g., one 

equation to correct path coefficients, one equation to correct loadings etc. The PLSF method, on 

the other hand, estimates prototypical elements from which parameters are directly derived 

without any need for corrections. This places a large number of parameters in the hands of 

researchers (e.g., indicator weights and model-wide full collinearity VIFs), which can then be 

used in a variety of tests, including tests that currently do not exist because of limited access to 

parameter estimates. 

    While flexibility has not been directly addressed in our discussion, it is worth noting that the 

PLSF method is very flexible, arguably more so than classic PLS and related methods, allowing 
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for many constraints to be imposed or relaxed. In this aspect it is similar to covariance-based 

SEM. For example, while in our analyses we assumed the common factor model property that 

indicator errors are uncorrelated, this assumption can be relaxed. To do this, we would use an 

appropriately modified version of the equation relating weights and loadings employed in the 

composite estimation stage of PLSF. On the other hand, we could impose constraints by fixing 

parameters instead of relaxing assumptions. This could be done in any of the four stages. 

    Covariance-based SEM is often presented as a step beyond Wright’s (1934; 1960) path 

analysis method; because covariance-based SEM, unlike path analysis, deals with factors. 

However, while covariance-based SEM is a factor-based technique in a mathematical sense, 

since its underlying mathematics assumes the existence of factors, it does not directly estimate 

factors as part of its parameter estimation process. In covariance-based SEM factors are akin to 

“black holes” in that they indirectly and greatly influence the estimation of parameters, but are 

never directly “seen”. Arguably the PLSF method contributes to filling this gap; in it, SEM is 

truly an extension of Wright’s path analysis, with factors estimated directly and subsequently 

used to estimate model parameters.  
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Appendix A: Derivations of equations 

    Equations (A.1), (A.2) and (A.3) below provide the foundation of ℱ2, the composite 

estimation function. In these equations 𝑥𝑖 is a matrix where each column refers to one of the 

indicators associated with composite 𝐶̂𝑖 (and thus with factor 𝐹̂𝑖); 𝜆̂𝑖
′
 is the transpose of 𝜆̂𝑖, the 

column vector storing the loadings associated with the indicators; 𝜃𝑖 is the matrix of indicator 

error terms; 𝜔̂𝑖𝐶 is the composite weight; 𝜔̂𝑖𝜀 is the measurement residual weight; 𝜔̂𝑖 is the 

column vector of indicator weights; the superscript −1 denotes the classic matrix inversion; and 

the superscript + denotes the Moore–Penrose pseudoinverse transformation. 

 

𝐹̂𝑖 = 𝑆𝑡𝑑𝑧(𝐶̂𝑖𝜔̂𝑖𝐶 + 𝜀𝑖̂𝜔̂𝑖𝜀). (A.1) 

𝜃𝑖 = 𝑥𝑖 − 𝐹̂𝑖𝜆̂𝑖
′
. (A.2) 

𝜔̂𝑖 = 𝛴𝑥𝑖𝑥𝑖

−1 (𝛴𝑥𝑖𝑥𝑖
− 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃̂𝑖

)) 𝜆̂𝑖
′+

. (A.3) 

 

    Derivation of (A.1). From our previous discussion on composites and factors, we know that 

        𝐹𝑖 = 𝑥𝑖𝜔𝑖 + 𝜀𝑖𝜔𝑖𝜀, 𝑥𝑖𝜔𝑖 = 𝐶𝑖𝜔𝑖𝐶. 

    Thus it follows that 

        𝐹𝑖 = 𝐶𝑖𝜔𝑖𝐶 + 𝜀𝑖𝜔𝑖𝜀 , 
    where 𝐹𝑖 is expected to be standardized. 

 

    Derivation of (A.2). From our previous discussion on composites and factors, we know that 

        𝑥𝑖 = 𝐹𝑖𝜆𝑖
′ + 𝜃𝑖 . 

    Thus it follows that 

        𝜃𝑖 = 𝑥𝑖 − 𝐹𝑖𝜆𝑖
′. 

 

    Derivation of (A.3). From our previous discussion on composites and factors, we know that 

        𝑥𝑖 = 𝐹𝑖𝜆𝑖
′ + 𝜃𝑖, 𝐹𝑖 = 𝑥𝑖𝜔𝑖 + 𝜀𝑖𝜔𝑖𝜀 . 

    Combining these two equations we obtain 

        𝑥𝑖 = (𝑥𝑖𝜔𝑖 + 𝜀𝑖𝜔𝑖𝜀)𝜆𝑖
′ + 𝜃𝑖 → 

        𝑥𝑖 = 𝑥𝑖𝜔𝑖𝜆𝑖
′ + 𝜀𝑖𝜔𝑖𝜀𝜆𝑖

′ + 𝜃𝑖. 

    Applying covariance properties to the above we obtain 

        𝛴𝑥𝑖𝑥𝑖
= 𝛴𝑥𝑖𝑥𝑖

𝜔𝑖𝜆𝑖
′ + 𝛴𝑥𝑖𝜀𝑖

𝜔𝑖𝜀𝜆𝑖
′ + 𝛴𝑥𝑖𝜃𝑖

 → 

        𝛴𝑥𝑖𝑥𝑖
= 𝛴𝑥𝑖𝑥𝑖

𝜔𝑖𝜆𝑖
′ + 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃𝑖

) → 

        𝛴𝑥𝑖𝑥𝑖
𝜔𝑖𝜆𝑖

′ = 𝛴𝑥𝑖𝑥𝑖
− 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃𝑖

) → 

        𝜔𝑖𝜆𝑖
′ = 𝛴𝑥𝑖𝑥𝑖

−1 (𝛴𝑥𝑖𝑥𝑖
− 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃𝑖

)), 

    where the superscript −1 denotes the classic matrix inversion. 

    To isolate 𝜔𝑖 in the equation above we need to use the Moore–Penrose pseudoinverse 

transformation, since the classic matrix inversion transformation cannot be applied to a vector. 

Doing this, we obtain 

        𝜔𝑖 = 𝛴𝑥𝑖𝑥𝑖

−1 (𝛴𝑥𝑖𝑥𝑖
− 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃𝑖

)) 𝜆𝑖
′+

, 

    where the superscript + denotes the Moore–Penrose pseudoinverse transformation. 
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    Equations (A.4), (A.5) and (A.6) below provide the foundation of ℱ3, the factor estimation 

function. Each of these equations includes a variable being updated with a “mix” of itself and 

other variables, a technique we refer to as “variation sharing”, which causes that variable to 

receive or lose variation that resides in those other variables. Whether variation is gained or lost 

depends on the sign of the multiplier attached to those other variables. For example, let us 

consider the simple assignment 𝑌 = 𝑆𝑡𝑑𝑧(𝑌 + 𝑎𝑋), where both 𝑌 and 𝑋 are standardized. The 

variable 𝑌 gains variation from the variable 𝑋 if 𝑎 > 0, and loses variation from 𝑋 if 𝑎 < 0. In 

either case the amount of variation gained or lost is reflected in the correlation between 𝑌 and 𝑋, 

which itself is a function of 𝑎. The more variation 𝑌 and 𝑋 share, the greater is the correlation 

between them. If 𝑎 = 0 no variation is gained or lost. 

 

𝜀𝑖̂ = 𝑆𝑡𝑑𝑧 (𝜀𝑖̂ + (𝛴̂𝐹𝑖𝐹𝑗
− 𝛴𝐹̂𝑖𝐹̂𝑗

)
𝛴̂𝐹𝑖𝐹𝑗

𝜔̂𝑖𝜀
(𝐶̂𝑗𝜔̂𝑗𝐶 + 𝜀𝑗̂𝜔̂𝑗𝜀)). 

 

(A.4) 

𝐹̂𝑖 = 𝑆𝑡𝑑𝑧(𝐹̂𝑖 + (𝜔̂𝑖𝐶 − 𝛴𝐹̂𝑖𝐶̂𝑖
)𝐶̂𝑖𝜔̂𝑖𝐶). (A.5) 

𝜀𝑖̂ = 𝑆𝑡𝑑𝑧(𝜀𝑖̂ −  𝛴𝐶̂𝑖𝜀̂𝑖
𝐶̂𝑖𝜔̂𝑖𝐶 + (𝜔̂𝑖𝜀 − 𝛴𝐹̂𝑖𝜀̂𝑖

)𝐹̂𝑖𝜔̂𝑖𝜀). (A.6) 

 

    Derivation of (A.4). From our previous discussion on composites and factors, we know that 

for each pair of correlated factors 𝐹𝑖 and 𝐹𝑗 we have 

        𝐹𝑖 = 𝐶𝑖𝜔𝑖𝐶 + 𝜀𝑖𝜔𝑖𝜀, 𝐹𝑗 = 𝐶𝑗𝜔𝑗𝐶 + 𝜀𝑗𝜔𝑗𝜀, 𝐹𝑖 = 𝛴𝐹𝑖𝐹𝑗
𝐹𝑗 + 𝛿𝑖𝑗, 

    where 𝛿𝑖𝑗 is an error term that accounts the variance in 𝐹𝑖 that is not explained by 𝐹𝑗. 

    Combining these equations we have 

        𝐶𝑖
𝜔𝑖𝐶

𝜔𝑖𝜀
+ 𝜀𝑖 =

1

𝜔𝑖𝜀
𝛴𝐹𝑖𝐹𝑗

(𝐶𝑗𝜔𝑗𝐶 + 𝜀𝑗𝜔𝑗𝜀) +
𝛿𝑖𝑗

𝜔𝑖𝜀
. 

    We can see that 𝜀𝑖 shares variation with 𝐶𝑗 and 𝜀𝑗 proportionally to 

        
𝛴𝐹𝑖𝐹𝑗

𝜔𝑖𝜀
(𝐶𝑗𝜔𝑗𝐶 + 𝜀𝑗𝜔𝑗𝜀). 

    Thus, in order to make 𝛴𝐹̂𝑖𝐹̂𝑗
= 𝛴̂𝐹𝑖𝐹𝑗

  we iteratively assign 

        𝜀𝑖̂ = 𝑆𝑡𝑑𝑧 (𝜀𝑖̂ + (𝛴̂𝐹𝑖𝐹𝑗
− 𝛴𝐹̂𝑖𝐹̂𝑗

)
𝛴̂𝐹𝑖𝐹𝑗

𝜔̂𝑖𝜀
(𝐶̂𝑗𝜔̂𝑗𝐶 + 𝜀𝑗̂𝜔̂𝑗𝜀)). 

    Note that as 𝜀𝑖̂ changes so does 𝐹̂𝑖 because 𝐹𝑖 = 𝐶𝑖𝜔𝑖𝐶 + 𝜀𝑖𝜔𝑖𝜀, and also that this assignment is 

only made if 𝜔̂𝑖𝜀 > 0. 

 

    Derivation of (A.5). As noted above 

        𝐹𝑖 = 𝐶𝑖𝜔𝑖𝐶 + 𝜀𝑖𝜔𝑖𝜀 . 
    We can see that 𝐹𝑖 shares variation with 𝐶𝑖 proportionally to 

        𝐶𝑖𝜔𝑖𝐶 . 
    Thus, in order to make 𝛴𝐹̂𝑖𝐶̂𝑖

= 𝜔̂𝑖𝐶 we iteratively assign 

        𝐹̂𝑖 = 𝑆𝑡𝑑𝑧(𝐹̂𝑖 + (𝜔̂𝑖𝐶 − 𝛴𝐹̂𝑖𝐶̂𝑖
)𝐶̂𝑖𝜔̂𝑖𝐶). 

 

    Derivation of (A.6). From our previous discussion on composites and factors, we know that 

        𝜀𝑖 ⊥ 𝐶𝑖, 𝜀𝑖 = 𝐹𝑖𝜔𝑖𝜀 + 𝜃𝑖𝜀. 

    where ⊥ means “orthogonal to”, and 𝜃𝑖𝜀 is an error term that accounts for the variation in 𝜀𝑖 

that is not explained by 𝐹𝑖. Note that 𝜔𝑖𝜀 = 𝜆𝑖𝜀. 
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    We can see that 𝜀𝑖 shares no variation with 𝐶𝑖, and also that  𝜀𝑖 shares variation with 𝐹𝑖 

proportionally to 

        𝐹𝑖𝜔𝑖𝜀. 

    Thus, in order to make 𝛴𝐶̂𝑖𝜀̂𝑖
= 0 and 𝛴𝐹̂𝑖𝜀̂𝑖

= 𝜔̂𝑖𝜀 we iteratively assign 

        𝜀𝑖̂ = 𝑆𝑡𝑑𝑧(𝜀𝑖̂ −  𝛴𝐶̂𝑖𝜀̂𝑖
𝐶̂𝑖𝜔̂𝑖𝐶 + (𝜔̂𝑖𝜀 − 𝛴𝐹̂𝑖𝜀̂𝑖

)𝐹̂𝑖𝜔̂𝑖𝜀). 

    Note that the multiplier − 𝛴𝐶̂𝑖𝜀̂𝑖
 is derived from 0 −  𝛴𝐶̂𝑖𝜀̂𝑖

.  
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Appendix B: Algorithmic formulation of PLSF 

    In this appendix we provide all of the equations that make up the PLSF method, for each of 

the four functions, as well as the algorithmic sequence of their execution and related explanatory 

notes. We do this with the goal of facilitating the implementation of the method in any numeric 

computing environment, including open source environments such as R and GNU Octave. 

Function 𝓕𝟏: The consistent PLS function 

    In the steps below, 𝑖 = 1 … 𝑁𝐶, and 𝑗 = 1 … 𝑛𝑖, where 𝑁𝐶 is the number of composites in the 

model (the same as the number of factors), and 𝑛𝑖 is the number of indicators associated with 

each composite 𝐶𝑖. The steps 1.1 to 1.7 implement the basic design of PLS Mode A, also known 

as PLS Mode A employing the centroid scheme. 

 

Step 1.1. Initialize each indicator weight 𝜔̂𝑖𝑗 with 1. 

 

Step 1.2. Store each indicator weight in 𝜔̿𝑖𝑗 for later comparison. 

 

Step 1.3. Estimate each composite 𝐶̂𝑖 as 

        𝐶̂𝑖 = 𝑆𝑡𝑑𝑧(∑ 𝜔̂𝑖𝑗
𝑛𝑖
𝑗=1 𝑥𝑖𝑗). 

    where 𝑆𝑡𝑑𝑧(∙) is the standardization function. 

 

Step 1.4. Set each inner weight 𝑣𝑖𝑗 as 

       𝑣𝑖𝑗 = 𝑆𝑖𝑔𝑛 (𝛴𝐶̂𝑖𝐶̂𝑗
). 

    Here the inner weights are set as the signs (−1 or +1) of the estimated correlations among 

“neighbor” composites. Neighbor composites are those that are linked to a composite by arrows, 

either by pointing at or being pointed at by the composite. 

 

Step 1.5. Estimate each composite 𝐶̂𝑖 as 

        𝐶̂𝑖 = 𝑆𝑡𝑑𝑧(∑ 𝑣𝑖𝑗
𝐴𝑖
𝑗=1 𝐶̂𝑗), 

    where 𝑆𝑡𝑑𝑧(∙) is the standardization function; and 𝐴𝑖 is the number of composites 𝐶𝑗̂ (𝑗 =

1 … 𝐴𝑖) that are neighbors of the composite 𝐶𝑖̂. 

 

Step 1.6. Solve for each indicator weight 𝜔̂𝑖𝑗 the equation 

        𝑥𝑖𝑗 = 𝐶̂𝑖𝜔̂𝑖𝑗 + 𝜖𝑖̂𝑗, 

    where 𝜖𝑖̂𝑗 is an error term that accounts for the variation in 𝑥𝑖𝑗 that is not explained by 𝐶̂𝑖. 

 

Step 1.7. Go back to Step 1.2 if any indicator weight 𝜔̂𝑖𝑗 differs from the previously stored 

estimate 𝜔̿𝑖𝑗 by more than a small fraction. 

 

Step 1.8. Estimate each reliability 𝜌̂𝑖 and loading vector 𝜆̂𝑖 as 

        𝜌̂𝑖 = (𝜔̂𝑖
′𝜔̂𝑖)

2 (𝜔̂𝑖
′(𝛴𝑥𝑖𝑥𝑖

− 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝑥𝑖
))𝜔̂𝑖) (𝜔̂𝑖

′(𝜔̂𝑖𝜔̂𝑖
′ − 𝑑𝑖𝑎𝑔(𝜔̂𝑖𝜔̂𝑖

′))𝜔̂𝑖)⁄ , 

        𝜆̂𝑖 = (𝜔̂𝑖√𝜌̂𝑖) (𝜔̂𝑖
′𝜔̂𝑖)⁄ , 
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    where the superscript ′ denotes the transpose operation, 𝛴𝑥𝑖𝑥𝑖
 is the covariance matrix of the 

indicators associated with composite 𝐶𝑖, and the function 𝑑𝑖𝑎𝑔(∙) returns the diagonal of a 

matrix. 

 

Function 𝓕𝟐: The composite estimation function 

    In the steps below, 𝑖 = 1 … 𝑁𝐶, where 𝑁𝐶 is the number of composites (the same as the 

number of factors) in the model. From the previous function come estimates of reliabilities and 

indicator loadings. Also from the previous function come initial estimates of composites and 

indicator weights. 

 

Step 2.1. Set each measurement residual 𝜀𝑖̂, composite weight 𝜔̂𝑖𝐶, and measurement residual 

weight 𝜔̂𝑖𝜀 as 

        𝜀𝑖̂ = 𝑆𝑡𝑑𝑧(𝑅𝑛𝑑(𝑁)), 

        𝜔̂𝑖𝐶 = √𝜌̂𝑖, 

        𝜔̂𝑖𝜀 = √1 − 𝜌̂𝑖, 

    where 𝑅𝑛𝑑(𝑁) is a function that returns an independent and identically distributed (i.i.d.) 

variable with 𝑁 rows, with 𝑁 being the sample size. In software implementations the random 

seed may be set to a fixed value prior to setting 𝜀𝑖̂ in order to avoid different results each time an 

analysis is conducted with the same model and empirical data. 

 

Step 2.2. Store all weight vectors 𝜔̂𝑖 in 𝜔̿𝑖 for later comparison. 

 

Step 2.3. Set each factor 𝐹̂𝑖 as 

        𝐹̂𝑖 = 𝑆𝑡𝑑𝑧(𝐶̂𝑖𝜔̂𝑖𝐶 + 𝜀𝑖̂𝜔̂𝑖𝜀). 

 

Step 2.4. Set each indicator error matrix 𝜃𝑖 as 

        𝜃𝑖 = 𝑥𝑖 − 𝐹̂𝑖𝜆̂𝑖
′
, 

    where 𝑥𝑖 is the matrix of indicators associated with factor 𝐹̂𝑖, 𝜆̂𝑖 is the vector of loadings 

associated with the factor, and the ′ superscript indicates the transpose operation. 

 

Step 2.5. Estimate each weight vector 𝜔̂𝑖 as 

        𝜔̂𝑖 = 𝛴𝑥𝑖𝑥𝑖

−1 (𝛴𝑥𝑖𝑥𝑖
− 𝑑𝑖𝑎𝑔(𝛴𝑥𝑖𝜃̂𝑖

)) 𝜆̂𝑖
′+

, 

    where 𝛴𝑥𝑖𝑥𝑖
 is the covariance matrix of the indicators associated with factor 𝐹̂𝑖, 𝛴𝑥𝑖𝜃̂𝑖

 is the 

matrix of covariances among the indicators and their errors, 𝑑𝑖𝑎𝑔(∙) is a function that returns the 

diagonal version of a matrix, and the superscript + denotes the Moore–Penrose pseudoinverse 

transformation. 

 

Step 2.6. Estimate each composite 𝐶̂𝑖 as 

        𝐶̂𝑖 =
1

𝜔̂𝑖𝐶
(𝑥𝑖𝜔̂𝑖) . 

 

Step 2.7. Go back to Step 2.2 if any element of any of the weight vectors 𝜔̂𝑖 differs from the 

previously stored estimates in 𝜔̿𝑖 by more than a small fraction. 
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Function 𝓕𝟑: The factor estimation function 

    In the steps below 𝑖, 𝑗 = 1 … 𝑁𝐹. Here 𝑁𝐹 is the number of factors in the model. Each 

combination (𝑖, 𝑗) refers to a pair of correlated elements in the model; factors, composites, or 

measurement residuals. From the previous function come estimates of composites, indicator 

weights, composite weights, and measurement residual weights. Also come from the previous 

function initial estimates of measurement residuals. The steps below are carried out for a given 

factor only if 𝜔̂𝑖𝜀 > 0. 

 

Step 3.1. Initialize each factor 𝐹̂𝑖 as 

        𝐹̂𝑖 = 𝑆𝑡𝑑𝑧(𝐶̂𝑖𝜔̂𝑖𝐶 + 𝜀𝑖̂𝜔̂𝑖𝜀). 

 

Step 3.2. Set each element of the estimated matrix of correlations among factors 𝛴̂𝐹𝑖𝐹𝑗
 as 

        𝛴̂𝐹𝑖𝐹𝑗
=

𝛴𝐶̂𝑖𝐶̂𝑗

√𝜌̂𝑖𝜌̂𝑗

, 

    where 𝛴𝐶̂𝑖𝐶̂𝑗
 is the corresponding element of the matrix of correlations among estimated 

composites. 

 

Step 3.3. Calculate the matrix of correlations among estimated factors 𝛴𝐹̂𝐹̂ and store it in 𝛴𝐹̂𝐹̂ for 

later comparison. Note that this is not the same as the estimated matrix of correlations among 

factors 𝛴̂𝐹𝐹, which is fixed after Step 3.2. 

 

Step 3.4. Add or remove variation in each measurement residual 𝜀𝑖̂ by making 

        𝜀𝑖̂ = 𝑆𝑡𝑑𝑧 (𝜀𝑖̂ + (𝛴̂𝐹𝑖𝐹𝑗
− 𝛴𝐹̂𝑖𝐹̂𝑗

)
𝛴̂𝐹𝑖𝐹𝑗

𝜔̂𝑖𝜀
(𝐶̂𝑗𝜔̂𝑗𝐶 + 𝜀𝑗̂𝜔̂𝑗𝜀)), 

    where 𝛴𝐹̂𝑖𝐹̂𝑗
 is the correlation among each pair of estimated factors. 

 

Step 3.5. Add or remove variation in each factor 𝐹̂𝑖 by making 

        𝐹̂𝑖 = 𝑆𝑡𝑑𝑧(𝐹̂𝑖 + (𝜔̂𝑖𝐶 − 𝛴𝐹̂𝑖𝐶̂𝑖
)𝐶̂𝑖𝜔̂𝑖𝐶) , 

    where 𝛴𝐹̂𝑖𝐶̂𝑖
 is the correlation among an estimated factor and its composite. 

 

Step 3.6. Add or remove variation in each measurement residual 𝜀𝑖̂ by making 

        𝜀𝑖̂ = 𝑆𝑡𝑑𝑧(𝜀𝑖̂ −  𝛴𝐶̂𝑖𝜀̂𝑖
𝐶̂𝑖𝜔̂𝑖𝐶 + (𝜔̂𝑖𝜀 − 𝛴𝐹̂𝑖𝜀̂𝑖

)𝐹̂𝑖𝜔̂𝑖𝜀) , 

    where 𝛴𝐶̂𝑖𝜀̂𝑖
 is the correlation between an estimated composite and its corresponding 

measurement residual, and 𝛴𝐹̂𝑖𝜀̂𝑖
 is the correlation between an estimated factor and its 

measurement residual. 

 

Step 3.7. Estimate each factor 𝐹̂𝑖 as 

        𝐹̂𝑖 = 𝑆𝑡𝑑𝑧(𝐶̂𝑖𝜔̂𝑖𝐶 + 𝜀𝑖̂𝜔̂𝑖𝜀). 

 

Step 3.8. Estimate each measurement residual 𝜀𝑖̂ as 
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        𝜀𝑖̂ = 𝑆𝑡𝑑𝑧 (
1

𝜔̂𝑖𝜀
(𝐹̂𝑖 − 𝐶̂𝑖𝜔̂𝑖𝐶)). 

 

Step 3.9. Go back to Step 3.3 if the absolute sum of the differences in 𝛴𝐹̂𝐹̂ − 𝛴̂𝐹𝐹 and in 𝛴𝐹̂𝐹̂ −

𝛴𝐹̂𝐹̂ both fall above a small fraction. 

 

Function 𝓕𝟒: The full parameter estimation function 

    In the steps below, 𝑖 = 1 … 𝑁𝐹, where 𝑁𝐹 is the number of factors in the model. From the 

previous function come estimates of factors, measurement residuals, composite weights, and 

measurement residual weights. 

 

Step 4.1. Update each composite 𝐶̂𝑖 as 

        𝐶̂𝑖 = 𝑆𝑡𝑑𝑧 (
1

𝜔̂𝑖𝐶
(𝐹̂𝑖 − 𝜀𝑖̂𝜔̂𝑖𝜀)). 

 

Step 4.2. Update each weight vector 𝜔̂𝑖 as 

        𝜔̂𝑖 = 𝑥𝑖
+𝐶̂𝑖𝜔̂𝑖𝐶 . 

 

Step 4.3. Update each loading vector 𝜆̂𝑖 as 

        𝜆̂𝑖 = 𝑥𝑖
′𝐹̂𝑖

′+
. 

 

Step. 4.4. Estimate each indicator residual 𝜃𝑖 as 

        𝜃𝑖 = 𝑥𝑖 − 𝐹̂𝑖𝜆̂𝑖
′
. 

 

Step 4.5. Solve for each path coefficient 𝛽̂𝑖𝑗 the equation involving an endogenous factor 

        𝐹̂𝑖 = ∑ 𝛽̂𝑖𝑗
𝑁𝑖
𝑗=1 𝐹̂𝑗 + 𝛽̂𝑖𝐼𝑖 + 𝜁𝑖 , 

    where 𝜁𝑖 is the residual associated with the endogenous factor 𝐹̂𝑖, and 𝐹̂𝑗 (𝑗 = 1 … 𝑁𝑖) are the 

factors that point at the endogenous factor. The instrumental variables 𝐼𝑖 implement a two-stage 

least squares estimation; they exist for all endogenous factors in the model that contain variation 

from other factors but are not directly linked with those factors. 

 

Step 4.6. Estimate each endogenous factor residual 𝜁𝑖 as 

        𝜁𝑖 = 𝐹̂𝑖 − ∑ 𝛽̂𝑖𝑗
𝑁𝑖
𝑗=1 𝐹̂𝑗 − 𝛽̂𝑖𝐼𝑖. 

 

    At the end of the above steps for the four functions, which implement the four stages that 

make up the PLSF method, we are left with estimates of the following: 𝐹̂, 𝐶̂, 𝜀̂, 𝜁, 𝜔̂, 𝜔̂𝐶, 𝜔̂𝜀, 𝜆̂, 

𝛽̂ and 𝜃. To the best of our knowledge, no other SEM method provides such an extensive set of 

estimates. Given this, it is reasonable to expect that these estimates could serve as the basis for 

the development of a number of new tests that are not currently possible.  
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Appendix C: Loadings and weights for constructs other than AC 

    Table C.1 below lists loadings and weights for constructs other than AC. These were not 

provided earlier, on the main body of the paper, to avoid crowding. The FIML method does not 

generate estimates of weights, which is why they are not listed in the table. The column labeled 

“True” lists the true values in our finite population of various parameters. The “Est.” columns list 

the corresponding estimates employing each method. The “Diff.” columns list the differences 

between estimates and true values for each method. 
 

Table C.1. Loadings and weights for constructs other than AC in finite population (N=10,000) 

 

Loadings 

   PLSF FIML OLS PLS 

 True  Est. Diff.  Est. Diff.  Est. Diff.  Est. Diff. 

CO1<CO 1.0000  1.0000 0.0000  1.0000 0.0000  1.0000 0.0000  1.0000 0.0000 

EU1<EU 0.7988  0.7985 -0.0003  0.7994 0.0005  0.8439 0.0451  0.8420 0.0432 

EU2<EU 0.7988  0.7986 -0.0002  0.7992 0.0004  0.8432 0.0445  0.8438 0.0451 

EU3<EU 0.7964  0.8012 0.0048  0.8024 0.0061  0.8452 0.0488  0.8460 0.0496 

EU4<EU 0.7993  0.8016 0.0022  0.8017 0.0024  0.8447 0.0454  0.8453 0.0459 

EU5<EU 0.8018  0.7996 -0.0022  0.7987 -0.0031  0.8431 0.0414  0.8430 0.0413 

GT1<GT 0.6062  0.6119 0.0057  0.6116 0.0054  0.7155 0.1093  0.7021 0.0959 

GT2<GT 0.5943  0.5945 0.0001  0.5980 0.0037  0.7096 0.1153  0.6913 0.0970 

GT3<GT 0.6988  0.6978 -0.0011  0.6935 -0.0053  0.7630 0.0641  0.7660 0.0671 

GT4<GT 0.6981  0.7043 0.0062  0.6989 0.0008  0.7675 0.0694  0.7727 0.0746 

GT5<GT 0.7968  0.7924 -0.0044  0.7982 0.0013  0.8155 0.0187  0.8355 0.0386 

SU1<SU 0.5461  0.5480 0.0019  0.5476 0.0015  0.6753 0.1293  0.6472 0.1011 

SU2<SU 0.6000  0.6065 0.0065  0.6033 0.0033  0.7085 0.1085  0.6957 0.0957 

SU3<SU 0.6594  0.6560 -0.0034  0.6568 -0.0025  0.7354 0.0761  0.7409 0.0816 

SU4<SU 0.6981  0.6906 -0.0075  0.6968 -0.0014  0.7596 0.0614  0.7702 0.0721 

SU5<SU 0.7496  0.7507 0.0011  0.7498 0.0002  0.7847 0.0351  0.8048 0.0552 

Weights 

   PLSF FIML OLS PLS 

 True  Est. Diff.  Est. Diff.  Est. Diff.  Est. Diff. 

CO1>CO 1.0000  1.0000 0.0000  - -  1.0000 0.0000  1.0000 0.0000 

EU1>EU 0.2242  0.2121 -0.0122  - -  0.2370 0.0127  0.2317 0.0075 

EU2>EU 0.2257  0.2268 0.0010  - -  0.2370 0.0112  0.2386 0.0129 

EU3>EU 0.2140  0.2137 -0.0003  - -  0.2370 0.0229  0.2393 0.0253 

EU4>EU 0.2234  0.2271 0.0037  - -  0.2370 0.0135  0.2384 0.0150 

EU5>EU 0.2342  0.2337 -0.0005  - -  0.2370 0.0028  0.2367 0.0025 

GT1>GT 0.1628  0.1687 0.0059  - -  0.2652 0.1023  0.2392 0.0763 

GT2>GT 0.1566  0.1613 0.0047  - -  0.2652 0.1086  0.2329 0.0763 

GT3>GT 0.2398  0.2232 -0.0165  - -  0.2652 0.0254  0.2644 0.0246 

GT4>GT 0.2355  0.2404 0.0049  - -  0.2652 0.0297  0.2706 0.0351 

GT5>GT 0.3787  0.3777 -0.0010  - -  0.2652 -0.1135  0.3106 -0.0681 

SU1>SU 0.1559  0.1534 -0.0025  - -  0.2730 0.1171  0.2293 0.0735 

SU2>SU 0.1838  0.1890 0.0052  - -  0.2730 0.0892  0.2482 0.0645 

SU3>SU 0.2383  0.2321 -0.0062  - -  0.2730 0.0347  0.2771 0.0388 

SU4>SU 0.2735  0.2694 -0.0041  - -  0.2730 -0.0006  0.2885 0.0150 

SU5>SU 0.3435  0.3463 0.0028  - -  0.2730 -0.0705  0.3123 -0.0312 
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Appendix D: PLSF versus other similar factor-based variations 

    In this appendix the PLSF method is compared against two additional methods. These 

methods are: ordinary least squares regression with summed indicators and attenuation 

correction based on the Cronbach’s alpha coefficient (OLSa); and consistent PLS with 

attenuation correction based on its own true reliability estimate (PLSc). The former (i.e., OLSa) 

has been proposed in general terms by Goodhue et al. (2012), and the latter (i.e., PLSc) by 

Dijkstra & Henseler (2015a). 

    Table D.1 lists the path coefficients and full collinearity VIFs for the same finite population 

used earlier in this paper. Table D.2 lists a summarized set of loadings and weights for the finite 

population. To avoid crowding, and since the patterns observed here repeat themselves across 

latent variables and indicators, this summarized set focuses on accuracy (AC, 𝐹4) and its 

respective indicators AC1, AC2 ... AC5. 

    In each table the column labeled “True” lists the true values in our finite population of various 

parameters. The “Est.” columns list the corresponding estimates employing each method. The 

“Diff.” columns list the differences between estimates and true values for each method. The row 

labeled “RMSE” lists root-mean-square errors associated with the differences between estimates, 

calculated as the square roots of the averages of the squared differences, which provide a 

summarized performance measure for each of the methods. 
 

Table D.1. Path coefficients and full collinearity VIFs for finite population (N=10,000) 

 

Path coefficients 

   PLSF OLSa PLSc 

 True  Est. Diff.  Est. Diff.  Est. Diff. 

CO>EU 0.4223  0.4208 -0.0015  0.4167 -0.0056  0.4161 -0.0062 

CO>GT 0.5074  0.5066 -0.0008  0.5060 -0.0013  0.5070 -0.0003 

CO>AC 0.2947  0.3021 0.0074  0.3043 0.0096  0.3059 0.0112 

CO>SU 0.0146  0.0137 -0.0009  0.0167 0.0021  0.0140 -0.0006 

EU>SU 0.1466  0.1479 0.0013  0.1433 -0.0033  0.1442 -0.0023 

GT>SU 0.5356  0.5331 -0.0025  0.5308 -0.0049  0.5343 -0.0013 

AC>SU 0.2562  0.2565 0.0003  0.2708 0.0146  0.2720 0.0158 

RMSE    0.0031   0.0073   0.0078 

Full collinearity VIFs 

   PLSF OLSa PLSc 

 True  Est. Diff.  Est. Diff.  Est. Diff. 

CO 1.6618  1.6752 0.0135  1.6591 -0.0026  1.6626 0.0008 

EU 1.2575  1.2541 -0.0034  1.2486 -0.0089  1.2500 -0.0076 

GT 1.8865  1.8921 0.0055  1.8747 -0.0118  1.8894 0.0028 

AC 1.2186  1.2181 -0.0005  1.2397 0.0211  1.2440 0.0253 

SU 1.8813  1.8892 0.0079  1.8859 0.0046  1.9028 0.0215 

RMSE    0.0076   0.0118   0.0153 
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Table D.2. Summarized loadings and weights for finite population (N=10,000) 

 

Loadings 

   PLSF OLSa PLSc 

 True  Est. Diff.  Est. Diff.  Est. Diff. 

AC1<AC 0.4955  0.5007 0.0052  0.6507 0.1552  0.6288 0.1333 

AC2<AC 0.5959  0.6005 0.0046  0.7048 0.1089  0.7038 0.1079 

AC3<AC 0.5986  0.5969 -0.0017  0.6993 0.1007  0.6967 0.0980 

AC4<AC 0.7003  0.6999 -0.0004  0.7540 0.0537  0.7658 0.0655 

AC5<AC 0.7010  0.6981 -0.0028  0.7517 0.0507  0.7626 0.0617 

RMSE    0.0034   0.1015   0.0971 

Weights 

   PLSF OLSa PLSc 

 True  Est. Diff.  Est. Diff.  Est. Diff. 

AC1>AC 0.1385  0.1387 0.0003  0.2782 0.1398  0.2458 0.1073 

AC2>AC 0.2077  0.2132 0.0055  0.2802 0.0725  0.2766 0.0689 

AC3>AC 0.2174  0.2171 -0.0003  0.2806 0.0632  0.2731 0.0558 

AC4>AC 0.3168  0.3128 -0.0040  0.2827 -0.0340  0.3011 -0.0157 

AC5>AC 0.3197  0.3144 -0.0053  0.2820 -0.0378  0.2992 -0.0206 

RMSE    0.0038   0.0792   0.0633 

 

 

    Figure D.1 highlights the differences (RMSEs) with respect to true values for each of the 

methods. 
 

Figure D.1. Differences (RMSEs) with respect to true values 

 

 
 

 

    As we can see, PLSF outperformed OLSa and PLSc in terms of estimation of path 

coefficients, full collinearity VIFs, loadings, and weights. The main reason why PLSF 

outperformed these methods is that it estimates composites in a way that is arguably more 

mathematically sound than the approaches employed by the two comparison methods. 
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    Composites in OLSa are produced by simply summing indicators; whereas in PLSc they are 

produced via the basic design of PLS Mode A (Lohmöller, 1989, p. 29), also known as PLS 

Mode A employing the centroid scheme. Both OLSa and PLSc, like PLSF, perform an 

attenuation correction. A fundamental difference here, however, is that PLSF uses better 

estimates of the composites as departure points for attenuation correction.  
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Appendix E: What if CO had been measured via multiple indicators? 

    In this appendix we present the results of an analysis with communication flow orientation 

(CO) measured through a set of 5 indicators with heterogeneous loadings. The true loadings are 

listed below, together with other parameters and corresponding true values. In this new analysis 

we employed the same finite population used earlier in this paper, with the key difference that 

we used the previous scores for CO (measured through single indicator) to generate the 5 new 

indicators. We then employed the four methods to estimate CO based on those 5 new indicators, 

in the same way that other latent variables were estimated. 

    Table E.1 lists the path coefficients and full collinearity VIFs for this modified finite 

population. Table E.2 lists a summarized set of loadings and weights for this finite population. 

To avoid crowding, and since the patterns observed here repeat themselves across latent 

variables and indicators, this summarized set focuses on communication flow orientation (CO, 

𝐹1) and its respective indicators CO1, CO2 ... CO5. The FIML method does not generate 

estimates of weights, which is why they are not listed. 

    In each table the column labeled “True” lists the true values in our finite population of various 

parameters. The “Est.” columns list the corresponding estimates employing each method. The 

“Diff.” columns list the differences between estimates and true values for each method. The row 

labeled “RMSE” lists root-mean-square errors associated with the differences between estimates, 

calculated as the square roots of the averages of the squared differences, which provide a 

summarized performance measure for each of the methods. 
 

Table E.1. Path coefficients and full collinearity VIFs for finite population (N=10,000) 

 

Path coefficients 

   PLSF FIML OLS PLS 

 True  Est. Diff.  Est. Diff.  Est. Diff.  Est. Diff. 

CO>EU 0.4223  0.4216 -0.0007  0.4143 -0.0081  0.3461 -0.0762  0.3463 -0.0760 

CO>GT 0.5074  0.5013 -0.0061  0.4979 -0.0095  0.4014 -0.1060  0.4156 -0.0917 

CO>AC 0.2947  0.3001 0.0054  0.2948 0.0001  0.2295 -0.0652  0.2311 -0.0635 

CO>SU 0.0146  0.0130 -0.0016  0.0206 0.0060  0.0684 0.0538  0.0679 0.0533 

EU>SU 0.1466  0.1461 -0.0005  0.1485 0.0019  0.1270 -0.0196  0.1325 -0.0141 

GT>SU 0.5356  0.5342 -0.0014  0.5262 -0.0094  0.4066 -0.1290  0.4091 -0.1265 

AC>SU 0.2562  0.2566 0.0004  0.2623 0.0061  0.2122 -0.0440  0.2073 -0.0489 

RMSE    0.0032   0.0068   0.0785   0.0753 

Full collinearity VIFs 

   PLSF FIML OLS PLS 

 True  Est. Diff.  Est. Diff.  Est. Diff.  Est. Diff. 

CO 1.6618  1.6616 -0.0002  1.8146 0.1529  1.3802 -0.2815  1.3884 -0.2734 

EU 1.2575  1.2549 -0.0026  1.3267 0.0692  1.1674 -0.0901  1.1691 -0.0884 

GT 1.8865  1.8837 -0.0028  2.4026 0.5161  1.4454 -0.4411  1.4560 -0.4305 

AC 1.2186  1.2132 -0.0054  1.3684 0.1498  1.1216 -0.0970  1.1238 -0.0948 

SU 1.8813  1.8877 0.0064  2.5220 0.6407  1.4547 -0.4267  1.4649 -0.4164 

RMSE    0.0041   0.3814   0.3077   0.3001 
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Table E.2. Summarized loadings and weights for finite population (N=10,000) 

 

Loadings 

   PLSF FIML OLS PLS 

 True  Est. Diff.  Est. Diff.  Est. Diff.  Est. Diff. 

CO1<CO 0.7540  0.7573 0.0032  0.7497 -0.0043  0.7871 0.0331  0.8062 0.0522 

CO2<CO 0.6981  0.7020 0.0039  0.6931 -0.0050  0.7603 0.0622  0.7749 0.0768 

CO3<CO 0.6552  0.6563 0.0012  0.6531 -0.0021  0.7356 0.0804  0.7376 0.0824 

CO4<CO 0.5959  0.5913 -0.0046  0.5899 -0.0060  0.7076 0.1117  0.6939 0.0979 

CO5<CO 0.5455  0.5442 -0.0014  0.5485 0.0029  0.6783 0.1328  0.6507 0.1051 

RMSE    0.0032   0.0043   0.0911   0.0849 

Weights 

   PLSF FIML OLS PLS 

 True  Est. Diff.  Est. Diff.  Est. Diff.  Est. Diff. 

CO1<CO 0.3512  0.3502 -0.0010  - -  0.2730 -0.0783  0.3095 -0.0417 

CO2<CO 0.2728  0.2752 0.0023  - -  0.2730 0.0001  0.2967 0.0238 

CO3<CO 0.2320  0.2280 -0.0039  - -  0.2730 0.0410  0.2698 0.0378 

CO4<CO 0.1800  0.1822 0.0022  - -  0.2730 0.0929  0.2473 0.0672 

CO5<CO 0.1527  0.1540 0.0013  - -  0.2728 0.1201  0.2286 0.0759 

RMSE    0.0024   -   0.0786   0.0529 

 

 

    Figure E.1 highlights the differences (RMSEs) with respect to true values for each of the 

methods. 
 

Figure E.1. Differences (RMSEs) with respect to true values 

 

 
 

 

    As can be inferred from the results summarized above, the performances of PLSF and FIML 

were similar in terms of estimation of path coefficients, and significantly better in that respect 

than OLS and PLS. In terms of full collinearity VIFs the PLSF method performed significantly 

better than the other three methods, with the performance of FIML being the poorest. 
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    The performances of PLSF and FIML were similar in terms of loadings, and significantly 

better in that respect than OLS and PLS. The same pattern was observed with respect to weights 

for the PLSF method, when this method was compared with the OLS and PLS methods. As 

previously noted, the FIML method does not generate weights. 


