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RESEARCH ARTICLE

Will PLS have to become factor-based to survive and thrive?
Ned Kock

Texas A&M Regents Professor and Chair, Division of International Business and Technology Studies, Texas A&M International University, 
Laredo, TX, USA

ABSTRACT
Structural equation modelling (SEM) is a general method that aims at estimating models with 
latent variables (LVs), where the LVs are measured indirectly and with some imprecision via 
questionnaires. This is done usually employing question-statements answered on Likert-type 
scales. In this paper we discuss various forms of SEM, and demonstrate that composite-based 
models, common in classic partial least squares (PLS) implementations, are poorly aligned with 
the very idea of SEM. We argue that minimisation of type I and II errors, or false positives and 
negatives respectively in hypothesis testing, can only happen if LVs are implemented as factors 
(and not as composites). This requires the use of modern, factor-based PLS methods, which 
have some advantages not only over classic PLS implementations, but also over covariance- 
based SEM approaches. Our main goal with this paper is to stimulate debate, whether pro or 
against our views. If we are generally correct in our thinking, the impact on how quantitative 
research is conducted in the field of information systems, as well as many other fields, could be 
quite dramatic. The reason for this is the widespread use of SEM in information systems, 
business, and the behavioural sciences.
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1. Introduction

Structural equation modelling (SEM) is a data analysis 
method that allows a researcher to test both 
a structural model and a measurement model, simul
taneously. The structural model, which aims at sum
marising elements of a theoretical model, usually 
involves a set of variables that cannot be measured 
directly without error, called latent variables (LVs); 
and causal relationships among these LVs, represented 
through arrows. The measurement model involves 
variables that measure LVs with error, typically as 
responses to question-statements on Likert-type scales 
in questionnaires. (For reference, these and other key 
terms are listed in alphabetical order, with their 
respective definitions, in Appendix A).

SEM has traditionally been associated with the 
implementation of LVs as factors; where the LVs 
cause their indicators, leading to the emergence of 
measurement residuals when the LVs are regressed 
on their indicators. (Mathematically, this can be 
done, even though the indicators are caused by the 
LVs). Each measurement residual can be seen as 
accounting for the variance in its corresponding LV 
that is not accounted for by its indicators. The variance 
accounted for by the indicators in this context is the 
true reliability associated with each LV. If the indica
tors were to account for 100 percent of the variance in 
their LVs, there would be no measurement residual, 
and thus the LVs would be composites – exact linear 
combinations of the indicators, and nothing else.

SEM with composites has been growing in use, 
particularly due to the widespread use of partial least 
squares (PLS) techniques (Ghasemy et al., 2020; Hair 
et al., 2019; Lowry & Gaskin, 2014; Memon et al., 2021; 
Ringle et al., 2020; Sarstedt et al., 2020; Shmueli et al.,  
2016). Classic PLS techniques tend to focus on the 
identification of combinations of weights through 
which indicators are aggregated into LVs, as compo
sites. The field of information systems (IS) is closely 
associated with the development, implementation, 
assessment, and use of classic PLS techniques (Chin,  
1998; Hajiheydari & Ashkani, 2018; Kock & Hadaya,  
2018; Kock & Lynn, 2012; Mahmud et al., 2017; Petter,  
2018). PLS techniques may also be used to implement 
factor-based SEM (Kock, 2019a,b), as we will discuss 
in this paper.

In this paper, we discuss various forms of SEM, and 
demonstrate that composite-based models are poorly 
aligned with the idea of measurement with error, 
whether measurement is reflective or formative. 
From a conceptual standpoint, first LVs are causally 
linked as part of the structural model to be tested in 
SEM, and then those LVs are measured with error. 
SEM allows a researcher to use this measurement with 
error approach to recover coefficients of association 
among LVs without error. This leads to the minimisa
tion of type I and II errors, or false positives and 
negatives respectively, in hypothesis testing. But this 
can only happen, we argue, if LVs are implemented as 
factors (and not as composites). We put forth a key 
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argument in this paper, which is that PLS-based meth
ods will have to become factor-based to survive and 
thrive in the context of SEM.

We also discuss a proposed solution: a new form of 
SEM that builds on PLS algorithms to generate corre
lation-preserving factors, which we see as fundamen
tally a numeric computing solution, hence its 
particular relevance to the audience of a prestigious 
IS journal such as this. It should be stressed to readers 
that the leading journal in SEM is the appropriately 
named Structural Equation Modeling journal, edited 
by someone we regard as the world’s foremost author
ity in SEM, George Marcoulides, who has also weighed 
in on issues we address here (Hardin & Marcoulides,  
2011; Marcoulides & Saunders, 2006; Marcoulides 
et al., 2009). We see IS and SEM as somewhat related 
fields; some IS inventions can be used in SEM meth
ods, and SEM is widely used by IS researchers.

To allow for a more straightforward discussion, and 
without any impact on its generality or broad applic
ability, all variables and parameters presented are stan
dardised, unless stated otherwise. That is, all variables 
are scaled so that they have a mean of zero and stan
dard deviation of one. This makes the parameters 
presented throughout our discussion directly compar
able with one another.

2. Our main goal with this paper

Our main goal with this paper is to stimulate debate, 
whether pro or against our views. If we are generally 
correct in our thinking, the impact on how quantita
tive research is conducted in the field of IS, as well as 
many other fields, could be quite dramatic. The reason 
for this is the widespread use of SEM in IS, business, 
and the behavioural sciences. Classic PLS techniques 
have made SEM analyses easier to be conducted, but 
have come under a great deal of criticism due to being 
composite-based. And for good reason.

Underscoring the need for this paper is a recently 
published issue of the journal Communications of the 
Association for Information Systems, centred on a lead 
article on recent developments in PLS. While that lead 
article was ostensibly aimed at IS researchers, it com
pletely ignored a new form of factor-based SEM that 
builds on PLS algorithms, recently developed by Kock 
(2019a), which is central to the discussion presented in 
this paper. This is problematic because this new form 
of factor-based SEM arguably addresses the vast 
majority of the criticisms in that lead article.

We believe that the lead article ignored the new 
form of factor-based SEM that builds on PLS algo
rithms, mentioned above, not because the authors of 
the lead article simply decided to ignore it. Rather, it is 
reasonable to believe that the authors needed further 
clarifications about that new SEM method, after which 
they could take a position pro or against it. Hence the 

need for this paper, where we provide such clarifica
tions through a discussion that brings together various 
different threads related to SEM. Those individual 
threads have been elaborated on elsewhere, but not 
in an integrated way. Extensive coverage of each indi
vidual thread would require multiple papers, possibly 
one paper for each of the main threads that are being 
integrated. That would, obviously, be beyond the 
scope of this paper. We hope that our discussion, 
which is fundamentally conceptual, and buttressed 
by summarised illustrations, will provide the basis 
for major progress in SEM as a whole.

3. Measurement with error and factors

LVs are representations of mental constructs, or latent 
constructs, that must exist in the mind of a person who 
wants to measure those constructs. That person is 
typically a researcher who aims to test a structural 
model that is made up of LVs. There are two main 
ways in which LV measurement can be conducted: 
reflective and formative. Generally, reflective mea
surement relies on redundant question-statements, 
and formative measurement relies on non-redundant 
question-statements. This is illustrated in Figure 1.

For example, a researcher who wants to measure 
“job satisfaction” could use question-statements like “I 
like my job” and “my job is great”, to be answered on 
Likert-type scales. This example refers to reflective LV 
measurement because respondents would tend to pro
vide highly correlated answers to these question- 
statements. On the other hand, the researcher may 
use question-statements like “I like my boss” and “I 
like my office”, which would entail formative LV mea
surement. Here highly correlated answers are not 
expected; respondents may like their bosses but not 
their offices, and vice-versa.

The mental constructs associated with LVs do not 
always have to be abstract ideas such as “job satisfac
tion”. They can be more concrete, such as the actual 
use of electronic communication media (“e-comm. 
media use”). Still, reflective measurement involves 
the use of redundant question-statements, while for
mative measurement involves the use of non- 
redundant question-statements. For example, ques
tion-statements of the type “I use e-comm. media” 
and “using e-comm. media is important to me” 
would be used in reflective measurement. question- 
statements of the type “I use email” and “I use video 
conferencing” would be used in formative 
measurement.

Non-redundant question-statements add value by 
covering different facets of an LV. But why would one 
want to use redundant question-statements at all? One 
key reason is that each question-statement is expected 
to measure the LV with some degree of imprecision, in 
part because the researcher sees the question- 
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statement as closely aligned with the underlying men
tal construct. If multiple redundant question- 
statements are used, one can then check whether: the 
respondents understood the question-statements as 
associated with the same LV as the researcher did 
(convergent validity); and the respondents did not 
mistake the question-statements as being associated 
with another LV (discriminant validity). Good con
vergent validity would imply high correlations among 
answers to question-statements for the same LV, and 
good discriminant validity would imply low correla
tions among answers to question-statements for dif
ferent LVs.

As we can see from the discussion above, if ques
tionnaires are used to measure LVs, then the mental 
constructs associated with the LVs must exist before 
the question-statements. In this scenario, the LVs are 
quantified as factors and the answers to question- 
statements as indicators, and the factors always cause 
the indicators (see Figure 2), whether measurement is 
reflective or formative. In advocating this, we are 
admittedly at odds with much of the literature on 
formative measurement in IS and other fields (see, 
e.g., Cenfetelli & Bassellier, 2009; Petter et al., 2007; 
Sarstedt et al., 2016). If we were to believe that a set of 
indicators caused their corresponding LV, then we 
would have to conclude that the indicators existed 
before the construct associated with the LV, which is 
impossible if the indicators were designed to measure 
the construct – the latter must have existed before in 
the mind of the designer of the question-statements 
associated with the LV.

If we regress a factor on its indicators, we obtain 
weights. Also, this leads to the emergence of 
a measurement residual, which accounts for the 

variance in the factor that is not accounted for by the 
indicators. Unless one of the indicators is a perfect 
measure of their LV, which would make that indicator 
identical to its factor and obviate the need for the other 
indicators, there is always some residual variance that 
is not accounted for based on the indicators. If we 
regress the indicators on their factor, we obtain load
ings, which are factor-indicator correlations. Also, this 
requires the consideration of indicator error terms, 
which account for the variance in the indicators that 
are not accounted for by their factor. The measure
ment residual could be viewed as an extra “indicator”, 
which is uncorrelated with the actual indicators, and 
for which the weight equals the loading.

At this point the reader may ask: If a factor causes 
its indicators, how can the factor be regressed on 
indicators that cannot exist before the factor? After 
all, the factor explains the indicators, not the other way 
around. The answer to this question is that, when one 
analyses empirical data, only the indicators are avail
able. Therefore, it is unavoidable that, to successfully 
estimate a factor, one needs to use the indicators. This 
can be done by mathematically expressing the LV as 
an aggregation of the indicators plus an uncorrelated 
measurement residual; even though we clearly 
acknowledge that it is the factor that causes the indi
cators. In doing so, we are not assuming that the 
indicators cause their LV. We are simply resorting to 
a mathematical formulation to express the LV in terms 
of its indicators. This applies to both reflective and 
formative measurement.

If the indicators were to be seen as giving rise to 
their LV, then the LV could be quantified as 
a composite, which would be an exact linear combina
tion of the indicators. In this case, there would be no 

Measuring “job satisfaction”

Reflective measurement is characterized by 
redundant questions, such as: 

- I like my job.
- My job is great.

Formative measurement is characterized by 
non-redundant questions, such as:

- I like my boss.
- I like my office.

In both, reflective and formative measurement, the 
construct exists in the mind of the researcher before any 

question is devised. Answers to questions give rise to 
indicators.

Measuring “e-comm. media use”

Reflective measurement is characterized by 
redundant questions, such as: 

- I use e-comm. media.
- Using e-comm. media is important to me.

Formative measurement is characterized by 
non-redundant questions, such as:

- I use email.
- I use video conferencing.

Figure 1. Latent constructs always exist before indicators.
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measurement residual. This view is often associated 
with formative measurement (Hardin et al., 2011), and 
the idea that the indicators can, under certain circum
stances, cause their factor. The problem with this idea 
is that the question-statements associated with the 
indicators are devised by a researcher based on 
a mental idea that must exist before the question- 
statements themselves. It is therefore impossible that 
indicators can cause factors.

The position that indicators cannot logically cause 
the LVs that they (i.e., the indicators) are designed to 
measure, even in formative measurement, is impor
tant in the context of this paper because we argue here 
that PLS needs to become factor-based to survive and 
thrive. If indicators were seen as causing LVs when 
formative measurement is employed, that would open 
the door for the argument that classic composite- 
based PLS should be preferred with formative LVs. 
This would provide the impetus for continued use of 
composite-based PLS, which would weaken our argu
ment. We realise however, that this is a controversial 
topic (Hardin et al., 2011).

4. Structural equation modelling

Through SEM a researcher can simultaneously test 
a structural model, specified as a set of structural 

relationships among LVs (known as the “structural 
model” or “inner model”); and a measurement 
model, specified as a set of relationships among LVs 
and indicators (also known as the “outer model”). The 
relationships among LVs are quantified in various 
ways, notably via path coefficients. The LV-indicator 
relationships are also quantified in various ways, nota
bly via loadings.

Two main classes of SEM methods find widespread 
use today: covariance-based (CB) and variance-based 
SEM (Kline, 1998; Kock & Lynn, 2012; Schumacker & 
Lomax, 1996). The former is fundamentally a factor- 
based class of methods. The latter, variance-based 
SEM, builds on PLS techniques, and can be based on 
composites and factors. These are discussed in the 
following sections.

5. CB-SEM

An analysis employing CB-SEM usually starts with 
a two-stage least squares (TSLS) regression, where 
initial values of a set of parameters, notably loadings 
and path coefficients, are estimated and stored in 
a column vector θ̂. For this the LVs are at first esti
mated based on dominant indicators; whose initial 
loadings are set to 1. The TSLS regression is an exten
sion of ordinary least squares (OLS) regression that 

Fi

xi1 xi2

λi1
λi2

xini... εi
λini

λiε

θi1 θi2 θini
θi ε

Fi

xi1 xi2

ωi1

ωi2

xini... εi
ωini

ωiε

Fi

xi1 xi2 xini... εi

Direction of causality
(always from factor to indicators)

Regress indicators on factor
to obtain loadings

Regress factor on indicators
to obtain weights

Measurement 
residual

Figure 2. Causality and regression directions. Causality direction indicated via compound arrows; regression direction indicated via 
single arrows; for the measurement residual the weight equals the loading.
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corrects for biases in path coefficients due to variation 
from omitted variables or from exogenous LVs being 
transferred to endogenous LVs indirectly; that is, in 
cases where the exogenous LVs are not modelled as 
direct causes of the endogenous LVs in question, but 
transfer variation to the endogenous LVs via 
other LVs.

Once the initial parameter estimates are generated 
and stored in θ̂, new estimates are iteratively obtained 
based on the equation below, until final convergence is 
achieved. This process does not entail the estimation 
of the LVs; their initial estimates used in the TSLS 
regression are discarded. The iterative process centred 
on the equation below is a generalisation of a method 
developed by Isaac Newton. In the equation below, 
new parameter estimates are obtained by subtracting 
from the vector of parameters θ̂ the product between 
the inverse of the Hessian matrix H θ̂

� �
and the vector 

of first derivatives u θ̂
� �

. 

Each element of u θ̂
� �

is calculated as the first deriva
tive of a function F of the difference between the 
model-implied and actual indicator covariance 
matrices, with respect to each parameter. Typically, 
the function F is the maximum likelihood function; 
though other functions can also be used, such as the 
generalised least squares function. Each element of the 
Hessian matrix H θ̂

� �
is calculated as the second deri

vative of the function F with respect to each 
parameter.

Iterations are conducted until each element of 

u θ̂
� �

approaches zero; i.e., becomes smaller than 
a small fraction. Note that in each iteration the 
Hessian matrix H θ̂

� �
has to be re-estimated, which 

makes CB-SEM a rather computationally complex 
method. While this is often not a problem in terms 
of wait time for users of CB-SEM software, it does 
seem to be associated with more variability in the final 
set of parameters for each sample being analysed, 
possibly because of propagation of sampling error. 
This means, essentially, that the standard errors for 
the parameters estimated via CB-SEM tend to be lar
ger than those generated by computationally simpler 
methods.

6. PLS-PM

Karl Jöreskog was one of the main contributors to the 
development of CB-SEM. He was a student of Herman 
Wold, who developed what is generally known as the 
PLS path modelling (PLS-PM) method. This method 
is much more computationally efficient than CB-SEM, 

and generates approximations of the LVs as compo
sites. Those LV approximations allow for a large num
ber of parameters to be obtained directly; e.g., path 
coefficients among linked LVs, and LV-indicator 
weights and loadings. However, the parameters gen
erated by PLS-PM do not converge to the true values 
as sample sizes increase. That is, the PLS-PM method 
is not “statistically consistent”.

An analysis employing PLS-PM starts with each LV 
being estimated as a composite Ĉ that is a standardised 
sum of its indicators. Then several OLS regressions are 
conducted among linked LVs and indicators, generat
ing initial values of various parameters; notably path 
coefficients, weights, and loadings. The PLS-PM 
method then proceeds by alternating between two 
steps known as the inside and outside approximations 
(Lohmöller, 1989).

The inside approximation entails re-estimating 
each composite Ĉi according to the equation below, 
where: Stdz �ð Þ is the standardisation function; and Ai 

is the number of composites bCj (j ¼ 1 . . . Ai) that are 
neighbours of the composite bCi. Two composites are 
said to be neighbours if their corresponding LVs are 
causally linked, whether they are at the beginning or 
end of the arrows. The values of ̂vij are set according to 
one of three schemes: (a) the signs of the correlations 
among neighbours, in the centroid scheme; (b) the 
correlations among neighbours, in the factorial 
scheme; or (c) the path coefficients or correlations 
among neighbours, in the path weighting scheme, 
depending on whether the arrows go in or out 
respectively. 

The outside approximation entails calculating LV- 
indicator weights ŵij employing one of two modes: 
Mode A, where the weights ŵij are calculated by 
regressing each indicator on its composite; or Mode 
B, where the weights ŵij are calculated by regressing 
each composite on its indicators. Once this is done, 
each composite Ĉi is re-estimated according to the 
equation below, where: Stdz �ð Þ is the standardisation 
function; and ni is the number of indicators xij asso
ciated with the composite Ĉi. 

Iterations are conducted until each of the weights ŵij 
differs from its value in the previous iteration by less 
than a small fraction. Note that the PLS-PM method is 
much less computationally complex than CB-SEM. 
This arguably leads to less variability in PLS-PM in 
the final set of parameters for each sample being 
analysed than in CB-SEM, where the variability possi
bly stems from the propagation of sampling error. In 
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other words, the standard errors of the parameters 
estimated via PLS-PM tend to be smaller than those 
estimated via CB-SEM.

The use of composites, as opposed to factors, brings 
about a problem that becomes more serious as LV 
reliabilities decrease: the PLS-PM method converges 
to biased parameter estimates as sample sizes grow to 
infinity. Notably, loadings tend to be overestimated, 
path coefficients for non-zero effects (at the popula
tion level) tend to be underestimated, and path coeffi
cients for zero effects tend to be overestimated. In part 
because of these biases, the PLS-PM method is often 
seen as not being an appropriate method to conduct 
SEM analyses, in contrast to CB-SEM.

7. PLSF-SEM

As noted earlier in this paper, a new form of SEM that 
builds on PLS algorithms to generate correlation- 
preserving factors (PLSF-SEM) has been recently 
developed (Kock, 2019a, b). PLSF-SEM is designed 
for SEM analyses where LVs are modelled as factors, 
and not as composites. It relies on the consistent PLS 
technique, developed by one of the greatest mathema
tical statisticians to have ever lived, the late Theo 
Dijkstra; who, like Karl Jöreskog, was one of Herman 
Wold’s former students (Huang, 2013). This new 
PLSF-SEM method starts with a PLS-PM analysis 
employing the centroid scheme. Using the weights 
generated by this analysis, two equations from the 
consistent PLS technique (see, e.g., Dijkstra & 
Schermelleh-Engel, 2014) are used to produce consis
tent estimates of LV reliabilities and LV-indicator 
loadings.

The PLSF-SEM method then proceeds in 
a stochastic fashion to a composite estimation stage. 
This stage first generates a set of independent and 
identically distributed random variables that stand in 
for the measurement residuals associated with each of 
the LVs. It then iterates across the equations below, 
where: F̂i is the factor, and Ĉi is the composite, asso
ciated with the LV indexed by i; xi is the matrix of 
indicators associated with factor F̂i; λ̂i is the vector of 
loadings associated with the factor; the 0 superscript 
indicates the transpose operation; �xixi is the covar
iance matrix of the indicators associated with factor F̂i; 
�xiθ̂i 

is the matrix of covariances among the indicators 
and their errors; diag �ð Þ is a function that returns the 
diagonal version of a matrix; and the superscript þ
denotes the Moore – Penrose pseudoinverse 
transformation. 

Since the consistent PLS equations yield consistent 
estimates of the reliabilities ρ̂i, we can calculate the 
composite and measurement residual weights as 
ω̂iC ¼

ffiffiffiffi
ρ̂i

p
and ω̂iε ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � ρ̂i

p
, respectively. 

Iterations are conducted until each of the weights ω̂i 
differs from its value in the previous iteration by less 
than a small fraction. At the end of this composite 
estimation stage we have a set of composites Ĉi that 
can be used as a basis for the generation of the final 
correlation-preserving factors.

From measurement error theory (Nunnally, 1978; 
Nunnally & Bernstein, 1994) we know that the corre
lation between each pair of factors in a model is related 
to the correlation between the corresponding compo
sites as follows: �̂FiFj ¼ �ĈiĈj

=
ffiffiffiffiffiffiffi
ρ̂iρ̂j

q
. Based on this, 

the PLSF-SEM method then proceeds to a factor esti
mation stage where iterations are conducted employ
ing the equations below, where: �F̂iF̂j 

is the correlation 
among each pair of estimated factors; �Ĉiε̂i 

is the 
correlation between an estimated composite and its 
corresponding measurement residual; and �F̂i ε̂i 

is the 
correlation between an estimated factor and its mea
surement residual. 

The iterations continue until the absolute sum of the 
differences in �F̂F̂ � �̂FF falls below a small fraction. 
When this is achieved, the correlations among the 
estimated factors �F̂F̂ match the target correlations 
�̂FF . Finally, the PLSF-SEM method ends with 
a TSLS regression, whereby consistent estimates of 
a large number of parameters become available. 
These include: path coefficients, loadings, and weights. 
Moreover, correlation-preserving estimates of the fac
tors also become available, and can be used in a variety 
of tests.

As we can see, the computational complexity of 
PLSF-SEM is higher than that of PLS-PM, but still 
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much lower than that of CB-SEM. This is so in part 
because of the latter method’s calculation and use of 
Hessian matrices, although other aspects could be 
behind this greater computation complexity (e.g., 
more parameters having to be estimated concur
rently). This leads to lower standard errors for PLSF- 
SEM than CB-SEM as sample sizes grow from small to 
very large, as both PLSF-SEM and CB-SEM converge 
to the true values of the parameters for very large 
samples. Therefore, PLSF-SEM has higher statistical 
efficiency than CB-SEM, even though both are statis
tically consistent methods.

At this point an expert reader could counter that 
Lehmann and Casella (2006) have provided 
a mathematical proof of the statistical efficiency of CB- 
SEM via maximum likelihood, which poses 
a challenge to our argument above. In our view, 
there are two ways in which we can reconcile these 
apparently contradictory views. The first is by noting 
that the proof by Lehmann and Casella (2006) makes 
a number of assumptions that are not made by PLSF- 
SEM, and whose violation could lead to exceptions to 
the proof. For example, they state that: “For small 
sample sizes, [CB-SEM via maximum likelihood] esti
mators can be unsatisfactory . . . the estimator can take 
on negative values although the estimand is known to 
be non-negative” (Lehmann & Casella, 2006, p. 99). 
Note that if a method displays higher statistical effi
ciency than another method, that advantage would be 
particularly appealing at small sample sizes. Kock 
(2019a) demonstrated that PLSF-SEM performs quite 
well with small samples.

The second way in which we can reconcile these 
apparently contradictory views is that the implemen
tation of different algorithms via software involves 
constraints that are not covered by mathematical 
proofs. Notably, an iterative algorithm that is more 
complex will tend to have more software loops that 
incorporate stop conditions (for convergence) requir
ing loss of precision and thus a greater impact of 
sampling error on standard errors. For instance, one 
such stop condition could be a change in value for 
a variable that is lower than 0.0001 from the previous 
loop’s value (implying convergence to a solution). The 
computational complexity of PLSF-SEM is much 
lower than that of CB-SEM, in part because of the 
latter method’s calculation and use of Hessian 
matrices of second order partial derivatives, thus pos
sibly leading CB-SEM to have greater standard errors.

Since in PLSF-SEM all LVs are assumed to be 
factors, whether formative or reflective measure
ment is used, there are no distinct formative and 
reflective modes as in PLS-PM (modes A and B). 
This applies to second-order LV implementations, 
which are typically assessed as formative. Because all 
of the parameters usually estimated via CB-SEM and 
PLS-PM are available from a PLSF-SEM analysis, 

empirical analyses tests designed in the context of 
those methods can be used in PLSF-SEM. For exam
ple, loadings, cross-loadings, correlations among 
LVs, and average variances extracted are used in 
PLSF-SEM (see, e.g., Amora, 2021) to conduct con
firmatory factor analyses as normally done in CB- 
SEM (Kline, 1998), also incorporating some innova
tions employed in PLS-PM (see, e.g., 
Rasoolimanesh, 2022). Fit indices obtained from 
the comparison of model-implied and empirical 
indicator covariance matrices are used in PLSF- 
SEM (see, e.g., Kock, 2020) as normally done in CB- 
SEM (Kline, 1998).

The two most widely used software tools to conduct 
PLS-PM, namely SmartPLS and WarpPLS (Memon 
et al., 2021), have been taking notably different paths 
with respect to factor-based implementations of SEM 
algorithms. Since version 4.0, the latest as of this writ
ing, SmartPLS offers CB-SEM as an addition to PLS- 
PM, but does not offer PLSF-SEM. WarpPLS has been 
offering PLSF-SEM since version 5.0 (it is in version 
8.0 at the time of this writing), as an addition to PLS- 
PM, but does not offer CB-SEM. One could argue that 
offering PLSF-SEM is more of a methodological soft
ware innovation than offering CB-SEM, since the lat
ter has been available from other SEM software tools 
for quite some time (e.g., Amos, Mplus, and Lavaan).

8. Illustrating the differences

Figure 3 shows a set of results, primarily related to 
accuracy of estimates. True values are shown on the 
top-left area. Estimates obtained with each of the three 
methods are shown on the right part of the figure. On 
the bottom-left area we present bar charts with root- 
mean-square errors (RMSEs) associated with the dif
ferences among estimates and the corresponding true 
values. We used a large sample (N = 10,000) to mini
mise sampling bias; that is, the estimates shown are 
close to the asymptotic convergence values. In keeping 
with the discussion presented so far in this paper, the 
LVs were modelled as factors that cause their corre
sponding indicators.

The model is typical of IS research, or more speci
fically of business research on technological impacts, 
from a conceptual standpoint. It predicts that the 
degree to which a technology is used (T) by various 
individuals is fully mediated via its effect on 
a mediator (M) with respect to its ultimate effect on 
the job performance of the individuals in a particular 
task (P). Consistently with the idea of full mediation, 
the true path coefficients are strong, at βMT ¼ :650 
and βPM ¼ :600, but well below the values that could 
induce full-collinearity variance inflation factors 
above the 3.3 threshold (Kock & Lynn, 2012). The 
true loadings assume a measurement model that 
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would pass widely accepted validity and reliability 
criteria.

As we can see, the PLSF-SEM and CB-SEM meth
ods present virtually the same performance in terms of 
similarity with the true values of the estimates of path 
coefficients and loadings generated by the two meth
ods (for a more elaborate validation, see: Kock, 2019a). 
The PLS-PM method performs very poorly in this 
respect, notably: underestimating the path coefficients 
associated with the two strong effects; overestimating 

the path coefficient associated with the non-existent 
(i.e., zero) effect; and overestimating the loadings.

Figure 4 shows the standard errors for the three 
methods, for the path βMT ¼ :650 and a sample size of 
300; this is a typical sample size used in IS research. 
The standard error associated with a parameter esti
mate generated by a specific method is a measure of 
the variability of that parameter estimate across sam
ples. In our illustrative model, it was generated as the 
standard deviation for the path in question across 
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1,000 samples generated through a Monte Carlo simu
lation, computed directly from the samples, where the 
simulation used the true values as the population 
values. As noted earlier, the standard error for any 
parameter is likely to go up with the computational 
complexity of the method, other things being equal. 
Typically, it is inversely related to the statistical power 
of the method, or its “sensitivity”. The higher the 
power, then the less likely it is that the method will 
not recognise non-zero effects, and thus yield false 
negatives.

It can be seen that the PLSF-SEM method has 
a lower standard error than CB-SEM, and the PLS- 
PM method has the lowest standard error among all 
three methods (see: Kock, 2019a). This means that 
PLSF-SEM has greater statistical power than CB- 
SEM. Even though PLS-PM yields the lowest standard 
errors, the power of this method is about the same as 
that of PLSF-SEM, because it underestimates path 
coefficients associated with non-zero effects. This 
underestimation offsets the benefits from its low com
putational complexity. Since only PLSF-SEM and CB- 
SEM are statistically consistent, asymptotically con
verging to the true values, it follows that PLSF-SEM 
is the most statistically efficient of the two. It con
verges to the true values faster.

Note that the zero effect is overestimated by the 
PLS-PM method as .120, while PLSF-SEM and CB- 
SEM correctly estimate it at close to .000. This pattern 
happens consistently across sample sizes (Kock, 2019a, 
b), and creates a major problem for PLS-PM – false 
positives. While PLSF-SEM and CB-SEM yield false 
positives below 5 percent across samples of various 
sizes, the percentage of false positives yielded by PLS- 
PM goes up as sample sizes increase. This is illustrated 
in Figure 5.

As we can see, with a sample size of 253, the prob
ability that PLS-PM will yield a false positive in our 
model is approximately 60 percent (much higher than 
the acceptable level of 5 percent). If the sample size is 
increased to 326, the probability of a false positive goes 

up to 70 percent. With a sample size a bit over 1,000 
a false positive is almost certain to be committed. In 
other words, the larger the sample, the more likely it is 
that PLS-PM will lead researchers to find support for 
hypotheses associated with effects that do not exist in 
reality. This is exactly the opposite to what one would 
expect from a trustworthy analysis method.

This remarkably problematic situation has 
a relatively simple cause. Since PLS-PM does not con
verge to the true values as sample sizes increase, like 
CB-SEM and PLSF-SEM do, it will converge to a value 
that is different from zero for paths that are actually 
zero at the population level. In our model, the path 
coefficient for the zero path will be overestimated by 
PLS-PM as approximately .120. Given that standard 
errors go down as sample sizes go up, the ratio 
between .120 and the standard error associated with 
the zero path in our model will progressively go up as 
sample sizes increase. As this ratio goes up, the prob
ability that a type I error, or false positive, will be 
committed also goes up. This occurs whether hypoth
esis testing relies on p values or confidence intervals.

The illustrative model results presented above are 
complemented by a set of comparable results, included 
here with permission, taken from the full-blown 
Monte Carlo simulation conducted by Kock (2019a). 
The simulation employs the approach discussed by 
Kock (2016), where the author provides a detailed 
step-by-step description of how to create and use 
simulated data (which can be seen as a pseudocode 
that can be implemented by other researchers). The 
simulations compare a slightly broader range of meth
ods: PLSF-SEM, CB-SEM through full-information 
maximum likelihood, ordinary least squares regres
sion with summed indicators, and PLS-PM. They are 
included in Appendix B (path coefficients, loadings, 
and weights), Appendix C (full collinearity variance 
inflation factors), Appendix D (standard errors), and 
Appendix E (false positives). The underlying data is 
the same as that reported by Kock (2019a), but has 
been re-organised in order to provide insights that are 
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Figure 5. Sample sizes and percentages of false positives for PLS-PM. For path βPT ¼ :000; vertical axis = sample sizes; horizontal 
axis = percentages of false positives.

890 N. KOCK



both new and directly related to the discussion above. 
As the reader will see, the results presented in these 
appendices both support and enhance the results dis
cussed above.

9. Composite-based models?

If indicators were to cause their LVs, and account for 
all of their variance, then the resulting models would 
be composite-based. There are two main possible 
alternatives for these types of models. The first 
would have independent indicators, which could be 
seen as the “ideal” of formative measurement, as there 
would be no redundancy among the indicators. 
The second alternative would have indicators depend
ing on a common variable, and thus sharing a certain 
level of redundancy. These two alternatives are illu
strated in Figure 6, which also highlights the paradox
ical nature of composite-based models.

If we have a composite-based model with indepen
dent indicators, the correlations among any pair of 
composites would be zero, because the composites 
would aggregate uncorrelated indicators. Therefore, 
all path coefficients in such a model would also be 
zero. Such a model would be of little use in testing any 
theoretical framework. Any effects at the population 
level that were hypothesised to be non-zero effects 
would be associated with zero path coefficients, thus 
possibly leading to type II errors (false negatives) 
induced by the misguided use of uncorrelated 
indicators.

On the other hand, if the indicators were to depend 
on a common variable in a composite-based model, 
where they are not caused by their LVs, we would then 
arguably have a situation resembling common method 

bias (MacKenzie & Podsakoff, 2012), even though 
common method bias could be produced by other 
issues. The non-zero path coefficients in such 
a model would differ from zero only because of the 
variation coming from the common variable. The 
non-zero path coefficients would not be due to the 
structural relationships. Here, any nonexistent effects 
at the population level that were included in the model 
(presumably by mistake) would be associated with 
non-zero path coefficients, thus leading to type 
I errors (false positives).

Additionally, no combination of weights at the 
population level would be recoverable, because an 
infinite number of combinations would lead to the 
same results. Let us say, for instance, that we had 
a composite that aggregated three indicators 
(Ci ¼ xi1ωi1 þ xi2ωi2 þ xi3ωi3) where the true weights 
were ωi1 ¼ :267, ωi2 ¼ :535, and ωi3 ¼ :802. Since the 
indicators would be either independent or dependent 
on an unknown common variable, the weights would 
not be recoverable. That is, no algorithm would con
verge to the true values of the weights. Since compo
sites are used, composite-based algorithms (e.g., PLS- 
PM) may do better than factor-based algorithms (e.g., 
PLSF-SEM), but both would yield incorrect 
approximations.

10. Analytic composites

Indices, such as the Dow Jones Industrial Average, are 
widely used in business. The Dow Jones Industrial 
Average has increasingly been dependent on technol
ogy companies, which provide the third highest per
centage of its composition, behind financial services 
and industrial companies. Indices like the Dow Jones 
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Figure 6. The paradox of composite-based models.
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Industrial Average could be seen as composites, given 
that they are aggregations of indicators.

Let us revisit our example, where we had 
a composite that aggregated three indicators 
(Ci ¼ xi1ωi1 þ xi2ωi2 þ xi3ωi3) where the true weights 
were ωi1 ¼ :267, ωi2 ¼ :535, and ωi3 ¼ :802. That is, 
the second weight is approximately twice the first 
weight, and the third weight approximately three 
times the first weight. In this example, the composite 
was designed in a particular way, presumably to serve 
a purpose. For instance, theory could have suggested 
this particular configuration of weights for the 
composite.

We refer to this type of composite as an “analytic” 
composite, because the weights of the indicators are 
what they are by design, not because an algorithm 
estimated them. We avoid the term “index”, instead 
using the term analytic composite, because of the 
model fit connotation of the former term in SEM. 
With analytic composites, there is no need to “dis
cover” the weights, because they are known, by defini
tion (the researcher sets them). Whether the 
configuration of weights of a particularly analytic 
composite is appropriate or not depends on the pur
pose of the composite.

The purpose of the Dow Jones Industrial Average, 
which is based on 30 companies and thus has 30 
indicators, has traditionally been to provide 
a representation of the overall U.S. stock market. 
However, the perception that it provides an inade
quate representation has led to the development of 
more comprehensive indices, such as the S&P 500 
and the Russell 3000 indices; following 500 and 3000 
companies, respectively.

That is, analytic composites like the Dow Jones 
Industrial Average may, or may not, fulfill the needs 
for which they were originally created. Notably, both, 
the S&P 500 and the Russell 3000, have technology 
companies making up the largest percentage of their 
composition, and thus arguably better reflect the visi
ble dominance of technology companies in the 
U.S. economy than the Dow Jones Industrial Average.

The above is an example of the use of secondary 
data to create composites, which is different from the 
use of questionnaire-based data, and apparently a case 
in which the indicators both “form” and “cause” the 
analytic composite. We prefer to view this case as one 
in which the indicators are used to design the analytic 
composite. Also, here the indicators have not been 
created beforehand to measure the analytic composite; 
they existed irrespective of the composite. In cases like 
this, there is no right combination of weights that can 
be discovered by software. In analytic composites 
weights are defined beforehand by the user of the 
composite to achieve a purpose. For example, there 
is an equal-weight version of the Dow Jones Industrial 
Average that is used as a basis for related exchange- 

traded funds (e.g., EDOW) that are favoured by some 
investors.

11. Prediction

One recent trend in the composite-based PLS-PM 
literature is to present this method as being particu
larly useful for prediction (Shmueli et al., 2016). 
Frequently this is interpreted as a justification for 
recommendations of its use in SEM. The problem is 
that prediction and SEM are very different types of 
data analysis applications. Perhaps, the most funda
mental difference is that prediction aims at extrapolat
ing parameters from one empirical sample to another, 
where the samples are often similar to one another. 
SEM aims at extrapolating parameters from one 
empirical sample to the entire population from 
which that sample was taken. This is illustrated in 
Figure 7.

Any quantitative method that is particularly good at 
prediction can obviously be put to the test in the stock 
market, where precise historical data is abundantly 
available. Even if moderately successful, the prospec
tive gains from using the method in the context of 
investing would be enormous. For example, an indi
vidual investor who could use predictive models to 
obtain a gain of only 0.5% per day in the stock market 
would theoretically be able to turn an initial invest
ment of 10 thousand dollars into almost 2 trillion 
dollars in approximately 15 years. (At the time of this 
writing, the wealthiest person in the world had a net 
worth of a little under 250 billion U.S. dollars.) While 
there is potential, we are unaware of any successful 
application of PLS-PM in the context of stock market 
prediction.

Assessing whether PLS-PM is particularly good at 
prediction is beyond the scope of this paper. 
Nevertheless, we can safely say that prediction bears 
little resemblance to SEM. One possible application in 
the stock market would be to develop a model with 
PLS-PM that would predict the price of a security (e.g., 
one share of a bitcoin fund) based on the price of other 
securities (e.g., shares of gold and silver funds, as 
indicators of a predictor LV). Here prices in the 
past year could be used for prediction of prices in the 
following month, as suggested by the model, leading to 
buy and sell (or sell short) stock trades.

Typically, as illustrated above, the base sample used 
for prediction is quite similar to the sample being 
predicted (although that is not always the case). In 
SEM, on the other hand, the analysis of an empirical 
sample is used to test a structural model summarising 
elements of a theory that explains the behaviour of an 
entire population – where the population is usually 
much larger than the sample analysed. The notions of 
type I and II errors, statistical power, minimum 
required sample size, and statistical significance, 
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among others, are well defined in the context of SEM. 
However, they would have to be re-defined, if at all 
used, in the context of prediction. In spite of this, 
composite-based PLS-PM techniques aimed at predic
tion are increasingly used to justify the use of this 
method for SEM. This is, in our view, highly 
problematic.

12. Discussion

The main underlying reason behind the problematic 
nature of composite-based PLS-PM, when used in the 
context of SEM, is that question-statements associated 
with indicators of an LV cannot be devised without the 
mental idea referring to the LV existing in the mind of 
the researcher who creates the question-statements. If 
no mental idea exists, then meaningless question- 
statements could conceivably be grouped into an LV. 
But if the question-statements are meaningless, then 
their indicators would be uncorrelated with other 
indicators.

In this scenario, the indicators of an LV would be 
correlated with the LV, which could be seen as “emer
ging” from the indicators, but would not be correlated 
with indicators of other LVs. Therefore, if LVs are 
correlated, the correlation would not be due to the 
structural model, which usually summarises elements 
of a theory. That is, any non-zero associations among 
LVs, which are typically needed for theory-testing, 
would be due to common sources of variation other 
than the structural model; which characterises com
mon method bias. The bottom line: no theory could be 
appropriately tested with such emerging LVs.

The structural model, which specifies the links 
among LVs, should not be conflated with the 
measurement model. The measurement model 

specifies LV-indicator links. Since indicators are 
supposed to measure LVs with error, they cannot 
exist before the mental ideas associated with the 
LVs. In other words, a measure of something can
not exist before that “something” that it is sup
posed to measure. In SEM question-statements are 
normally answered on Likert-type scales. Thus, 
question-statements associated with LVs are guar
anteed to measure the LVs with error, because the 
true LVs at the population level are assumed to 
exist on ratio scales. What makes SEM unique and 
extremely useful is that it allows for the estimation 
of parameters as if there was no measurement 
error.

12.1. Behavioral and design constructs

How do our views and arguments above, which 
summarise related discussions presented through
out this paper, fit with the notions that latent 
constructs (represented by LVs in SEM models) 
can be modelled as either behavioural or design 
constructs (see: Benitez et al., 2020; Henseler,  
2020; Schuberth et al., 2018), with behavioural or 
design constructs being modelled in ways that 
depend on whether they are respectively reflective 
or formative?

Müller et al. (2018) distinguish between beha
vioural and design constructs by noting that beha
vioural constructs are modelled as reflectively 
measured LVs typically used in the behavioural 
sciences, and design constructs as formatively mea
sured LVs modelled as composites and typically used 
in disciplines where “artifacts” (e.g., an index used in 
finance or economics) are the target of research. 
Within the framework proposed in this paper, 
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Figure 7. Prediction versus SEM. Sampling indicated via full arrows; extrapolation indicated via dashed arrows.
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behavioural constructs are best operationalised as fac
tors, and design constructs as analytic composites.

In our view, a behavioural construct should be 
modelled as factor-based, whether reflective or forma
tive measurement is employed, if the measures 
employed are devised to quantify the construct 
(which is usually the case in SEM). In other words, if 
a designer of a set of question-statements has the 
construct’s idea in mind, then the direction of caus
ality is LV > indicators. That is, the LV should be 
viewed as a factor-based representation of the con
struct. The fundamental reason for this is that the 
construct must exist in the researcher’s mind before 
the question-statements are created to measure it, in 
both reflective and formative measurement, thus hav
ing temporal precedence over the question-statements 
(a precondition of being a cause). Reflective measure
ment employs redundant question-statements, and 
formative measurement employs non-redundant 
question-statements.

As noted earlier, a researcher who wants to mea
sure “job satisfaction” could use question-statements 
like “I like my job” and “my job is great”, which 
would implement reflective measurement because 
respondents would tend to provide highly correlated 
answers to these redundant question-statements. On 
the other hand, the researcher may use question- 
statements like “I like my boss” and “I like my 
office”, which would entail formative measurement. 
Highly correlated answers to these question- 
statements would not be expected; respondents 
may like their bosses but not their offices, and vice- 
versa.

Now, with respect to design constructs, our view 
is that they can indeed be employed in SEM models, 
but not as LVs in the usual SEM analysis sense 
(where an SEM method is used to “discover” weights 
or loadings). Composites used in finance, such as 
the Dow Jones Industrial Average, could be seen as 
implementations of design constructs, and such 
measures are widely used in business. Measures 
like the Dow Jones Industrial Average could be 
seen as composites, given that they are aggregations 
of indicators. We refer to this type of composite as 
an “analytic” composite, because the weights of the 
indicators are what they are by design. We avoid the 
term “index”, instead using the term analytic com
posite, because of the model fit connotation of the 
former term in SEM.

With analytic composites, which are artefacts 
designed for a purpose, there is no need for an SEM 
software to “discover” the weights needed for aggre
gating the indicators into the composites; because 
those weights are known, as they are set by design. 
Therefore, we would not expect an SEM software to 
treat analytic composites as LVs measured indirectly 
through multiple indicators, even though the analytic 

composites could be included in SEM models as sin
gle-indicator variables (which are not techni
cally LVs).

Whether the configuration of indicators and 
weights of a particularly analytic composite is appro
priate or not depends on the purpose of the composite, 
and the theoretical framework used as a basis for its 
design. As we pointed out earlier in this paper, the 
purpose of the Dow Jones Industrial Average, which is 
based on 30 companies and thus has 30 indicators, has 
traditionally been to provide a representation of the 
overall U.S. stock market. Nevertheless, the view that it 
provides an inadequate representation has, in part due 
to the underrepresentation of technology companies, 
led to the development of more comprehensive analy
tic composites like the S&P 500 and the Russell 3000.

12.2. Why do we need estimates of LVs?

If CB-SEM has been successfully used for so many 
years to test models without estimating LVs, why do 
we need estimates of LVs now? The answer to this 
question is at the core of the popularity of PLS-PM; 
this method is popular in no small measure due to the 
fact that it generates approximations of LVs. This in 
turn leads to a dramatic growth in the number of tests 
that can be easily and directly implemented through 
software tools that automate the method.

For example, without LV scores it is very cumber
some to conduct and interpret the results of moderat
ing effects tests, which become very simple to conduct 
and visualise in two-dimensional and three- 
dimensional graphs if those scores are available (see 
Figure 8). The problem with PLS-PM is that it relies on 
composites, which are approximations of LVs, thus 
yielding biased parameters (e.g., path coefficients for 
moderating links). Hence the need for factor-based 
methods such as PLSF-SEM, which generate LV esti
mates (not only approximations).

At this point a reader may point out that LV 
scores can be generated based on the final results 
of a regular CB-SEM analysis. This is in fact an area 
where much research has been conducted, including 
research by André Beauducel, one of the world’s 
leading experts in LV score estimation methods 
(Beauducel & Herzberg, 2006; Beauducel & Hilger,  
2022). Several unrefined and refined methods exist 
to do so; among the refined ones that are implemen
ted in software tools are the Thurstone and Bartlett 
methods (Bartlett, 1937; DiStefano et al., 2009; 
Hershberger, 2005; Thurstone, 1935). The drawback 
here is that these methods seem to also yield low 
quality approximations of LVs. In fact, they seem to 
be in some cases of lower quality than the LV 
approximations produced by PLS-PM and ordinary 
least squares regression with summed indicators (see 
Appendix C).
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12.3. Reproducibility of results in PLSF-SEM

As noted earlier, in PLSF-SEM independent and 
identically distributed random variables that stand 
in for the measurement residuals are initially created 
for each of the LVs. The method assigns weights to 
these uncorrelated measurement residuals based on 
the consistent PLS equations. With these, and initial 
estimates of “special” composites that satisfy a small 
set of equations, the method proceeds to the gen
eration of the final correlation-preserving factors. It 
could be argued that the creation and use of random 
variables would lead to irreproducibility of results in 
PLSF-SEM.

In other words, users of software implementations 
of PLSF-SEM may obtain slightly different parameter 
estimates each time they analyse an empirical dataset, 
which is undesirable. This problem can be easily 
solved by setting the random seed to a fixed value 
prior to creating identically distributed random vari
ables that stand in for the measurement residuals. This 
essentially avoids different results each time an analy
sis is conducted with the same model and empirical 
data, making the results reproducible. Stochastic 
methods that rely on the creation of random variables 
typically require this type of solution.

12.4. Estimates of LVs and their use outside an 
SEM analysis

While we have argued in this paper that the LV esti
mates produced by PLSF-SEM are invaluable in the 
test of a structural model, which aims at summarising 
elements of a theoretical model, we do not feel as 
strongly about the use of those LV estimates outside 
the SEM analysis in which they are employed (e.g., to 
produce estimates of various other parameters).

The parameters estimated via PLSF-SEM for an 
empirical sample are used to make assumptions 
about the population from which the sample was pre
sumably drawn. However, the LV estimates are not 
assumed to be exactly the ones in the population. 
Possibly this is a limitation that also applies, in general 
terms, to the various parameters estimated in the 
context of an SEM analysis.

Using parameters outside the context of the SEM 
analysis that yielded them, based on a given sample, in 
the context of a second sample, would be better 
aligned with what we have discussed earlier in this 
paper as a prediction application. As we argued earlier, 
it is our belief that prediction bears little resemblance 
to SEM. In SEM a researcher would normally test 
hypotheses based on an empirical sample, and 

Different views of 
moderating effect 

after rotation

Figure 8. These graphs of moderating effects cannot be generated without LV scores. These graphs are among many that can be 
generated based on LV scores, helping with the visualization of complex effects.
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extrapolate the results of those tests to a population 
that is assumed to include the empirical sample. The 
results of these tests are typically in the form of sup
port, or not, for each of the hypotheses being 
considered.

12.5. Comparing PLSF-SEM with other SEM 
methods

Table 1 provides a side-by-side comparison of PLSF- 
SEM, CB-SEM, PLS-PM, and PLSc. The latter, also 
known as the consistent PLS technique, is not actually 
a full parameter estimation technique. It is a technique 
that relies on results from a PLS-PM analysis employ
ing the centroid scheme, which are then used to cor
rect certain parameters. To the best of our knowledge, 
two corrected classes of parameters are produced by 
PLSc, namely reliabilities and loadings. These are used 
by PLSF-SEM early in its formulation, as a basis for LV 
estimation. Once the LV estimates are obtained by 
PLSF-SEM, all of the parameters are re-estimated, 
including reliabilities and loadings. In practice, the 
estimates of reliabilities and loadings produced by 
PLSF-SEM are very close in value to those yielded by 
PLSc.

It appears, from this comparative analysis, that 
PLSF-SEM should always be preferred over CB-SEM, 
PLS-PM and PLSc. The exception to this general rule 
of thumb is when common method bias has been 
identified as existing in an empirical dataset, and 
must be controlled for, in which case CB-SEM 
maybe be advisable in some cases. That is, if other 
more straightforward techniques cannot be effectively 
used, such as the technique of common structural 
variation reduction (Kock, 2021). We discuss this 
further below, at the end of this subsection.

Only PLSF-SEM, CB-SEM, and PLSc conduct con
sistent parameter estimation. Only PLSF-SEM and 
PLS-PM conduct LV estimation, although PLS-PM 
actually yields approximations of LVs as composites. 
Some authors differentiate between estimates and 
approximations, using the latter term for estimates 
that are known to be biased (as is the case with PLS- 
PM). PLSc does not yield LV estimates, other than the 
ones produced by the PLS-PM analysis employing the 

centroid scheme. Those are actually de-coupled from 
the parameters corrected by PLSc.

Only PLSF-SEM and PLS-PM allow for moderating 
effects estimation, because the LV estimates are 
needed to build the interaction variables employed in 
moderating effects estimation. Only PLSF-SEM and 
PLS-PM allow for nonlinear (e.g., quadratic) relation
ship estimation, because the LV estimates are needed 
for that. PLSF-SEM, CB-SEM, and PLS-PM allow for 
endogeneity testing and control. That is done via 
instrumental variables by PLSF-SEM and PLS-PM, 
with the latter yielding biased results. In CB-SEM, 
covariances among structural errors and predictors 
of LVs can be included as parameters to be estimated, 
thus allowing for endogeneity testing and control to be 
conducted more directly.

PLSF-SEM, CB-SEM, and PLS-PM allow for com
mon method bias testing. In PLSF-SEM and PLS-PM 
that can be accomplished through tests such as the full- 
collinearity variance inflation factors test (Kock & 
Lynn, 2012), and Harman’s single factor test Kock 
(2021a). In CB-SEM common method bias testing 
can be accomplished by including covariances among 
indicator error terms as parameters to be estimated.

Only CB-SEM allows for common method bias 
control, which is accomplished by the researcher 
including covariances among indicator error terms as 
parameters to be estimated. This is the key advantage 
of CB-SEM over PLSF-SEM. However, this is 
a theoretical advantage, because common method 
bias tends to affect multiple indicators. In practice, 
this tends to cause the number of parameters to be 
estimated to become too large – resulting in model 
identification problems. That is, the number of para
meters to be estimated, which include covariances 
among indicator error terms, exceeds the information 
provided by the observed data. This is typically char
acterised by the Hessian matrix of second order partial 
derivatives not being invertible.

12.6. Can indicators be the ingredients that form 
a composite?

If indicators are question-statements designed to mea
sure a construct, our view is that the construct 

Table 1. Comparing PLSF-SEM with other SEM methods.
Feature PLSF-SEM CB-SEM PLS-PM PLSc

Consistent parameter estimation Yes Yes No Yes
LV estimation Yes No Yes No
Moderating effects estimation Yes No Yes No
Nonlinear relationship estimation Yes No Yes No
Endogeneity testing Yes Yes Yes No
Endogeneity control Yes Yes Yes No
Common method bias testing Yes Yes Yes No
Common method bias control No Yes No No

PLSc = consistent PLS technique (included for completeness); PLSc is a parameter correction technique that relies on PLS- 
PM employing the centroid scheme; PLS-PM actually yields approximations of LVs, as composites, not estimates.
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(operationalised as an LV) always causes the indica
tors. If those indicators are seen as weakly correlated 
“ingredients” that form an LV, then formative LV 
measurement may be employed. But the operationali
sation of the LV is as a factor, not as a composite. This 
will lead to the emergence of a measurement residual, 
which accounts for the variance in the LV that is not 
accounted for by the indicators. That is, the reliability 
of the LV will be lower than 1.

Note that, for a question-statement associated with 
an indicator to be created without any construct in 
mind, it would have to be something like “I like what
ever” or “&fa*y j%3$2”; to be answered on a Likert- 
type scale (e.g., going from “strongly disagree” to 
“strongly agree”). That is, the question-statement 
would have to be rather meaningless. If a question- 
statement has a clear meaning, then the creator of the 
question-statement has a construct in mind, even if 
that person does not make a conscious effort to think 
of a construct. Such question-statements could be 
aggregated into a formative LV, with the LV modelled 
as a factor (not a composite). It is our position that 
question-statements that have a clear meaning always 
have a mental construct to which they belong, even if 
the creator (or creators) of the question-statements 
does not consciously think of them as belonging to 
any construct.

13. Conclusion

In this paper, we discussed various forms of SEM, and 
demonstrated that composite-based models are poorly 
aligned with the idea of measurement with error. We 
discussed the recently developed factor-based PLSF- 
SEM method, a new form of SEM that builds on PLS 
algorithms to generate correlation-preserving factors. 
We showed that PLSF-SEM is, like CB-SEM, statisti
cally consistent, asymptotically converging to the true 
values. We also showed that PLSF-SEM is the most 
statistically efficient of the two, as it converges to the 
true values “faster”; i.e., with smaller sample sizes.

The above statistical efficiency property provides 
a strong basis for the continued use and refinement 
of the PLSF-SEM method. Our key argument put forth 
in this paper was that PLS-based methods will have to 
become factor-based, like the PLSF-SEM method is, to 
survive and thrive in the context of SEM. We have also 
expressed concern about the recent trend in the com
posite-based PLS-PM literature of presenting this 
method as being particularly useful for prediction, as 
a justification for recommendations of its use in SEM; 
primarily because prediction and SEM are very differ
ent from one another.

Could PLSF-SEM be a viable replacement for CB- 
SEM as well? We believe that the answer to this ques
tion is “yes”. Not only is PLSF-SEM more statistically 
efficient than CB-SEM, but it also presents another 

advantage. The advantage is near universal conver
gence to solutions, a property that it shares with PLS- 
PM. The inherent complexity of CB-SEM (e.g., con
current estimation of multiple parameters, generation 
of Hessian matrices and their inversion) not only leads 
to standard errors that are higher than those generated 
by PLSF-SEM; but, also, makes convergence in CB- 
SEM impossible in many cases, even when theoretical 
identification criteria are met.
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Appendix A: Glossary

Composite. A quantification of an LV, calculated as an 
exact linear combination of the LV’s indicators. 
Composites are often used as estimates of LVs, assuming 
(incorrectly, in our view) that the LVs are caused by their 
indicators and that the indicators explain 100 percent of the 
variance in their LVs. If the LVs cause their indicators, 
composites are often used as approximations of the LVs. 
In this case, the LVs are more properly estimated as factors.

Covariance-based SEM (CB-SEM). A factor-based class 
of SEM methods that provides estimates of population para
meters (e.g., path coefficients and loadings) based on 
empirical samples, without estimating LVs as part of the 
iterative convergence process.

Factor. A quantification of an LV, where the LV causes its 
indicators; leading to the emergence of a measurement resi
dual when the LV is regressed on its indicators. 
(Mathematically, this regression can be done, even though 
the indicators are caused by the LVs – not the other way 
around.)

Factor-based SEM employing PLS techniques (PLSF- 
SEM). A factor-based class of SEM methods that provide 
estimates of population parameters (e.g., path coefficients 
and loadings) based on empirical samples, estimating LVs as 
part of the iterative convergence process. One characteristic 
of this class of methods is that they allow for a much wider 
range of parameter estimates to be generated than methods 
where LVs are not estimated.

Formative measurement. Form of LV measurement that 
relies on non-redundant and weakly correlated indicators, 
which typically store responses to non-redundant question- 
statements on Likert-type scales in questionnaires. For 
example, a researcher who wants to measure “job satisfac
tion” could use question-statements like “I like my boss” 
and “I like my office”. This example refers to reflective LV 
measurement because respondents would tend to provide 
weakly correlated answers to these question-statements. 
Even though formative measurement is different from 
reflective measurement, both forms of measurement give 
rise to factors (not composites).

Indicator error term. A variable that accounts for the 
variance in an indicator that is not accounted for by the 
indicator’s LV, when the indicator is regressed on its LV. 
Under common method bias conditions, indicator error 
terms are often correlated with other indicator error terms 
associated with the same LV and other LVs.

Indicator. Variable that measures an LV with error, typi
cally as a response to a question-statement formulated to be 
answered on a Likert-type scale in a questionnaire.

Latent variables (LVs). Variables that cannot be mea
sured directly without error, and that are represented as 
mental constructs in structural models tested via SEM. 
LVs are measured indirectly through other variables, often 
referred to as manifest variables or indicators, typically as 
responses to question-statements on Likert-type scales in 
questionnaires.

Measurement residual. A variable that accounts for the 
variance in an LV that is not accounted for by the LV’s 
indicators, when the LV is regressed on its indicators. 
(Mathematically, this regression can be done, even though 
the indicators are caused by the LVs – not the other way 
around.) Measurement residuals occur when LVs are quan

tified as factors, and do not occur when LVs are quantified 
as composites.

Partial least squares path modeling (PLS-PM). 
A composite-based class of path modeling methods that 
provides approximations of population parameters (e.g., 
path coefficients and loadings) based on empirical samples, 
while approximating LVs as composites as part of the itera
tive convergence process.

Reflective measurement. Form of LV measurement 
that relies on redundant and strongly correlated indica
tors, which typically store responses to redundant (but 
different) question-statements on Likert-type scales in 
questionnaires. For example, a researcher who wants to 
measure “job satisfaction” could use question-statements 
like “I like my job” and “my job is great”. This example 
refers to reflective LV measurement because respondents 
would tend to provide highly correlated answers to these 
question-statements. Even though reflective measure
ment is different from formative measurement, both 
forms of measurement give rise to factors (not 
composites).

Structural equation modeling (SEM). A data analysis 
method that allows a researcher to simultaneously test 
a structural model and a measurement model. The struc
tural model, which aims at summarizing elements of 
a theoretical model, usually involves a set of LVs; and causal 
relationships among these LVs, represented through arrows. 
The measurement model involves links among LVs and 
indicators.

Structural error term. A variable that accounts for the 
variance in an LV that is not accounted for by the LV’s 
predictors in a structural model. Those structural model 
predictors are other LVs, and not indicators.

Appendix B: Path coefficients, loadings, and 
weights

Figure B1 shows results taken from the full-blown Monte 
Carlo simulation conducted by Kock (2019a) based on 
a relatively complex model with 5 LVs and 7 paths with 
multiple mediating effects. These are based on a large sam
ple (N = 10,000) created based on the true model, to both 
minimize sampling bias and give us access to a broader 
range of true parameters (e.g., weights) than are available 
from the true model. The bar sizes reflect aggregate differ
ences from the true values, measured as RMSEs. The smaller 
the bars, the better. The analysis methods compared are 
PLSF=PLSF-SEM; FIML=CB-SEM through full- 
information maximum likelihood; OLS=ordinary least 
squares regression with summed indicators; and PLS=PLS- 
PM.

As we can see, the PLSF and FIML methods had similar 
performance in terms of the accuracy of estimates of path 
coefficients and loadings, and performed significantly bet
ter than OLS and PLS with regards to those parameters. 
PLSF also performed quite well in terms of weights, and 
much better than OLS and PLS. Neither FIML nor other 
CB-SEM variations typically yield estimates of weights, 
which can be seen as a limitation in tests that would 
need weights; such as formative measurement quality 
assessment tests.
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Appendix C: Full collinearity variance 
inflation factors

Similarly to the previous appendix, Figure C1 shows results 
taken from the full-blown Monte Carlo simulation con
ducted by Kock (2019a) based on a relatively complex 
model with 5 LVs and 7 paths with multiple mediating 
effects. These are based on a large sample (N = 10,000) 

created based on the true model, to both minimize sampling 
bias and give us access to a broader range of true parameters 
(e.g., full collinearity variance inflation factors) than are 
available from the true model. The bar sizes reflect aggregate 
differences from the true values, measured as RMSEs. The 
smaller the bars, the better. The analysis methods compared 
are PLSF = PLSF-SEM; FIML = CB-SEM through full- 
information maximum likelihood; OLS = ordinary least 
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Path coefficients, loadings, and weights. Bar sizes reflect differences from true values, measured as RMSEs. The smaller the bars, the 
better. PLSF = PLSF-SEM; FIML = CB-SEM through full-information maximum likelihood; OLS = ordinary least squares regression 
with summed indicators; and PLS = PLS-PM.
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Figure C1. Full collinearity variance inflation factors. Bar sizes reflect differences from true values, measured as RMSEs. The smaller 
the bars, the better. PLSF = PLSF-SEM; FIML = CB-SEM through full-information maximum likelihood; OLS= ordinary least squares 
regression with summed indicators; and PLS = PLS-PM. VIFs = variance inflation factors.
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squares regression with summed indicators; and PLS = PLS- 
PM.

Past research has suggested that full collinearity var
iance inflation factors are rather sensitive parameters, 
which Kock (2019a) used to assess the quality of corre
lation-preserving approximations of factor scores. 
Several unrefined and refined methods exist to generate 
correlation-preserving approximations of factor scores 
based on FIML outputs (DiStefano et al., 2009). Kock 
(2019a) employed two refined methods, the Thurstone 
and Bartlett methods (DiStefano et al., 2009; Bartlett,  
1937; Hershberger, 2005; Thurstone, 1935). Only the 
Thurstone method yielded viable solutions, which were 
used to calculate the full collinearity variance inflation 
factors for FIML. As we can see, PLSF produced the 
highest quality estimates of correlation-preserving 
factors.

Appendix D: Standard errors

Similarly to previous appendices, Figure D1 shows results 
taken from the full-blown Monte Carlo simulation con
ducted by Kock (2019a) based on a relatively complex 
model with 5 LVs and 7 paths with multiple mediating 
effects. The bar sizes are the standard errors; i.e., the stan
dard deviations for the paths whose true values are indicated 
across 1,000 samples generated through a Monte Carlo 
simulation, computed directly from the samples, for each 
of three sample sizes (100, 300, and 500). The analysis 
methods compared are PLSF = PLSF-SEM; FIML = CB- 

SEM through full-information maximum likelihood; OLS 
= ordinary least squares regression with summed indicators; 
and PLS = PLS-PM.

As we can see, the bars for FIML are consistently larger 
than those for PLSF, for the three sample sizes employed. 
This means that there is more dispersion of path coefficient 
estimates around their average values for FIML than for 
PLSF. The OLS and PLS methods have even less dispersion, 
but the problem is that these are less accurate. As shown 
earlier with respect to accuracy of estimates, the values 
generated by OLS and PLS are farther from the true values 
than those yielded by PLSF and FIML.

Appendix E: False positives

Similarly to previous appendices, Figure E1 shows results 
taken from the full-blown Monte Carlo simulation con
ducted by Kock (2019a) based on a relatively complex 
model with 5 LVs and 7 paths with multiple mediating 
effects. The bar sizes are the percentages of false positives; 
i.e., instances where a “zero” path coefficient is deemed 
statistically significant. The percentages are based on 1,000 
samples generated through a Monte Carlo simulation, and 
were computed directly from the samples, for each of three 
sample sizes (100, 300, and 500). The analysis methods 
compared are PLSF = PLSF-SEM; FIML = CB-SEM through 
full-information maximum likelihood; OLS = ordinary least 
squares regression with summed indicators; and PLS = PLS- 
PM.
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Figure D1 Standard errors. PLSF = PLSF-SEM; FIML = CB-SEM through full-information maximum likelihood; OLS = ordinary least 
squares regression with summed indicators; and PLS=PLS-PM.
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As we can see, the percentages of false positives for PLSF 
and FIML are about 5% (by convention, the highest accep
table level) for the sample size of 100, and fall below 5% for 
sample sizes 300 and 500. The OLS and PLS methods, on the 

other hand, yield progressively higher percentages of false 
positives as sample sizes go up; exactly what one would like 
to avoid in SEM analyses. With the sample size of 500, false 
positives are between 40% and 50% for OLS and PLS.
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False positives. Bar sizes reflect the percentages of false positives. The higher the bars, the more cases in which a “zero” path 
coefficient was identified as statistically significant. PLSF = PLSF-SEM; FIML = CB-SEM through full-information maximum 
likelihood; OLS = ordinary least squares regression with summed indicators; and PLS = PLS-PM.
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