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Abstract 

Structural equation modeling (SEM) is a data analysis method that is widely used in business 

communication research, as well as research in many other fields, when scholars need to test 

complex models with multiple outcomes, interactions, or operations across different situations. 

To date, however, researchers have had to choose between using covariance-based SEM, and 

dealing with convergence problems; or composite-based SEM, and facing serious 

methodological issues. This article describes a way to combine strong aspects of both SEM types 

through PLSF-SEM. By utilizing this novel method, empirical researchers can employ several of 

the same tests traditionally used in covariance-based SEM, as well as new tests that rely on 

latent variable estimates, in a succinct and scholarly way. PLSF-SEM builds on partial least 

squares (PLS) algorithms to generate correlation-preserving factors; the F refers to it being 

factor-based, as opposed to composite-based. A primer on the use of PLSF-SEM in business 

communication research is provided, based on an illustrative model inspired by motivating 

language theory, and where simulated data was analyzed with the software WarpPLS. 
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Introduction 

    Business communication research has become increasing complex over the past decades. To 

capture this complexity business communication researchers have increasingly turned to more 

sophisticated methods – with structural equation modeling (SEM) being one of the most 

advanced methods used for cross-sectional analyses (Alikaj & Hanke, forthcoming; 

Charoensukmongkol & Phungsoonthorn, 2022). SEM allows a researcher to test both a structural 

model and a measurement model, simultaneously (Kock, 2023). The structural model, which 

aims at summarizing elements of a theoretical model, usually involves a set of variables – called 

latent variables (LVs) – that cannot be measured directly without error. At the same time, SEM 

can test causal relationships among these LVs (represented through arrows) in the same way a 

regression or path analysis can. The measurement model involves variables called indicators that 

measure LVs with error, as well as LV-indicator associations; where indicators are commonly 

quantified as responses to question-statements on Likert-type scales in questionnaires. 

    Partial least squares path modeling (PLS-PM) has emerged recently as an intended alternative 

to the more established covariance-based (CB) approach to SEM (Kock, 2019a; 2019b; 2023). 

Examples of widely used software tools that implement these methods are WarpPLS, for PLS-

PM, and Amos, for CB-SEM. PLS-PM has one major advantage over CB-SEM that makes the 

method attractive to business communication researchers – it almost always converges to a 

solution. While this advantage may seem esoteric, it gives the business communication 

researcher the opportunity to model highly complex models with multiple independent, 

dependent, moderating, and mediating variables. 

    As most business communication researchers understand, communication presents complex 

processes that can involve multiple, interacting relationships between constructs. If we ignore 
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this complexity, we risk simplifying communication processes to a point where they have no 

application in the real world. But this complexity also makes it difficult to find a suitable 

analysis method. With CB-SEM, models that have too much complexity will often fail to provide 

any viable solution. Software tools implementing CB-SEM will simply not have the capacity to 

analyze a complex model we need to use to reflect reality. PLS-PM on the other hand, can 

handle a model of almost any level of complexity. 

    The main disadvantage of PLS-PM is that it approximates LVs through composites, instead of 

factors, which leads to biased parameters. This disadvantage tends to be particularly problematic 

with effects that do not exist at the population level, which tend to be estimated as nonzero 

effects by PLS-PM, leading to unacceptably high incidences of type I errors (Kock, 2019a; 

2019b). This has spurred vociferous criticism (Kock, 2019a; 2023), and calls for automatic desk 

rejections by journal editors of articles employing PLS-PM. 

    The potential of biased parameters and increased type I errors creates special problems for 

business communication researchers due to the field’s focus on using research for practical 

solutions. Biased parameters may also lead to the magnitude of relationships being misestimated, 

so that what may appear to be a strong relationship being weak or vice-versa. These 

misestimations could lead to wrong managerial decisions or policy implementations. The 

increase in type I errors can lead researchers to believe relationships exist when they do not, 

again potentially leading to costly training on communication methods that do not work. 

    Proponents of the use of PLS-PM for SEM have sought several ways to overcome these 

limitations. They have proposed, over the past several years, new terminology and a variety of 

new tests and criteria aimed at working around the problems stemming from approximating LVs 

through composites, without actually addressing the main cause of those problems. This has left 
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users with a bewildering array of ad hoc tests, which have drawn even stronger criticism. 

Examples are the heterotrait-monotrait (HTMT), HTMT2, PLSpredict, confirmatory tetrad, 

importance-performance, and data segmentation tests, among others. Empirical researchers are 

caught in the middle, with increasingly louder calls to ban PLS-PM from major journals, and 

with a bewildering array of tests to report in order to legitimize their use of PLS-PM. The need to 

report many tests leads to long papers with unfocused methodological sections. Generally, 

review panels do not like to start with long papers, because papers tend to grow larger with 

revisions and resubmissions. Thus, other things being equal, long papers are more likely to be 

rejected. 

    A new form of SEM that builds on PLS algorithms to generate correlation-preserving factors 

(PLSF-SEM) has been recently developed (Kock, 2019a; 2019b). Through it, empirical 

researchers can use several of the same tests traditionally used in CB-SEM, as well as new tests 

that rely on LV estimates (which are typically not available from CB-SEM), in a succinct and 

scholarly way. As of this writing, PLSF-SEM is implemented through the software WarpPLS 

(Kock, 2022a), with other implementations (including R packages) on the way. PLSF-SEM is 

designed for SEM analyses where LVs are modeled as factors, and not as composites. It is, like 

CB-SEM, statistically consistent, asymptotically converging to the true values of parameters 

(e.g., loadings and path coefficients) as sample sizes increase. Also, PLSF-SEM presents greater 

statistical efficiency than CB-SEM, converging to the true values faster; i.e., with smaller sample 

sizes (Kock, 2019a). In this paper, we provide a discussion on how PLSF-SEM can be used in 

business communication research, in a fashion that is both succinct and scholarly. 
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Some disclosures 

    Citations. This journal is arguably the premier scholarly outlet in the world covering business 

communication and related research. It deserves from authors the highest standards of 

scholarship and integrity. As noted above, we are fairly critical of the ways in which proponents 

of the use of PLS-PM for SEM sought to legitimize the method; see our comment on: HTMT, 

HTMT2, PLSpredict, confirmatory tetrad, importance-performance, and data segmentation. 

However, this is a scholarly viewpoint, as we also believe that those proponents are well-

intentioned. Given this, and to affirm our commitment to integrity, we avoided citations that 

would give the impression that we wanted to attack individuals, publication outlets, or 

publishers. Therefore, the citations below should be seen as recognition of well-intentioned work 

on our part, and not as targeted criticism. 

    HTMT – Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing 

discriminant validity in variance-based structural equation modeling. Journal of the Academy of 

Marketing Science, 43, 115-135. 

    HTMT2 – Roemer, E., Schuberth, F., & Henseler, J. (2021). HTMT2–an improved criterion 

for assessing discriminant validity in structural equation modeling. Industrial Management & 

Data Systems, 121(12), 2637-2650. 

    PLSpredict – Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J. H., Ting, H., Vaithilingam, S., & 

Ringle, C. M. (2019). Predictive model assessment in PLS-SEM: Guidelines for using 

PLSpredict. European Journal of Marketing, 53(11), 2322-2347. 

    Confirmatory tetrad – Gudergan, S. P., Ringle, C. M., Wende, S., & Will, A. (2008). 

Confirmatory tetrad analysis in PLS path modeling. Journal of Business Research, 61(12), 1238-

1249. 



6 

 

    Importance-performance – Hauff, S., Richter, N. F., Sarstedt, M., & Ringle, C. M. (2024). 

Importance and performance in PLS-SEM and NCA: Introducing the combined importance-

performance map analysis (cIPMA). Journal of Retailing and Consumer Services, 78, 103723. 

    Data segmentation – Schlittgen, R., Ringle, C. M., Sarstedt, M., & Becker, J. M. (2016). 

Segmentation of PLS path models by iterative reweighted regressions. Journal of Business 

Research, 69(10), 4583-4592. 

    Consistent PLS. As noted by Kock (2019a), the new PLSF-SEM method relies on the 

consistent PLS technique, developed in the 1980s by one of the greatest mathematical 

statisticians to have ever lived, the late Theo Dijkstra (Huang, 2013). The PLSF-SEM method 

starts with a PLS-PM analysis employing the centroid scheme. Using the weights generated by 

this analysis, two equations from the consistent PLS technique (see, e.g.: Dijkstra & 

Schermelleh-Engel, 2014) are used to produce consistent estimates of LV reliabilities and LV-

indicator loadings. The PLSF-SEM method then proceeds in a stochastic fashion to a composite 

estimation stage employing the Moore–Penrose pseudoinverse calculation procedure, which is 

then followed by a factor-estimation stage employing a novel variation sharing technique, and 

finally by a full parameter estimation stage implementing the two-stage least squares procedure 

utilizing stochastic instrumental variables. Consistent PLS is a small but important element of 

PLSF-SEM. We have previously developed a version of PLSF-SEM that does not employ the 

consistent PLS technique, and it seems to perform very well, but primarily when LV-indicator 

loadings are relatively homogeneous (Kock, 2015a). 

    WarpPLS. This article has extensively used the commercial WarpPLS software in examples 

of how to utilize PLSF-SEM. As stated in the article, this software has been developed by the 

author. The author had to rely on WarpPLS so extensively for the examples because – at the time 
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of the article’s writing – the software provides the only implementation of the discussed 

statistical method. However, other researchers are currently working on implementing the 

method through different software resources (including such open-source statistical software as 

R). The author regularly announces such developments on his web site (warppls.com) and will 

provide links to these implementations as they become available. 

 

Illustrative Model 

    The illustrative model shown in Figure 1 is used in our discussion on how PLSF-SEM can be 

employed in business communication research. The model contains one exogenous LV, namely 

motivating language (ML); and three endogenous LVs, which are job satisfaction (JS), 

organizational commitment (OC) and job performance (JP). Exogenous LVs have no LVs 

pointing at them. Endogenous LVs are those that are pointed at by at least one other LV. 

 

Figure 1: Illustrative model 
 

 
Notes: the model has one exogenous LV: motivating language (ML); and three endogenous LVs: job satisfaction 

(JS), organizational commitment (OC), and job performance (JP). 
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    All LVs in our model are assumed to be measured reflectively. That is, redundant question-

statements of the type I like my job and My job fulfills me were assumed to have been used (in 

this example, for JS); as opposed to non-redundant question statements of the type I like my boss 

and I like my office equipment. The latter would characterize formative measurement, whose 

appropriate coverage would be outside the scope of this paper. 

    The model is consistent with motivating language theory (Mayfield & Mayfield, 2017), a 

seminal theoretical framework widely used in business communication research. There are 6 

hypotheses to be tested in our illustrative model; such tests envisioned as being based on 

structural model results. These are primarily the path coefficients for the arrows among LVs, 

which can be found to be statistically significant or nonsignificant. In scientific writing, the word 

nonsignificant is preferred over insignificant; the latter usually implies lack of importance, 

without statistical connotations. 

    Our past experience writing papers summarizing empirical studies employing PLSF-SEM 

suggests that authors should aim for manuscripts with 6,000 to 7,000 words for initial 

submissions to most selective journals. Generally speaking, papers much larger than this would 

not be well received by review panels. The review process for selective journals, such as this, is 

likely to significantly increase the word count of manuscripts (e.g., from 6,000 to 10,000) as 

revisions and resubmissions take place. 

    Model complexity tends to be correlated with word count. Typically, an empirical study with 5 

to 9 hypotheses (the magical number 7, plus or minus 2) will be amenable to succinct reporting 

with 6,000 to 7,000 words. Researchers desiring to test more complex models may want to 

consider splitting the reporting into two or more papers, each with 5 to 9 hypotheses. A greater 
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number of hypotheses would tend to lead to not only longer theoretical background sections, but 

also longer methods and results sections. 

    As with the figure showing the model with main structural results, presented later in this 

paper, it is generally not recommended to use model screen shots taken directly from the 

WarpPLS software (or other SEM software) in papers summarizing empirical studies. The 

website warppls.com contains samples of PowerPoint files with the symbols typically used in 

models showing hypotheses and corresponding structural results. These can be used to create 

figures that will then be imported into a Word file, via an intermediate figure-editing software 

(e.g., Paint). 

 

Three Key Methodological Sections 

    Here we discuss three key methodological sections, related to data collection, measurement 

model assessment, and reporting of model indices and structural results. These sections form the 

foundation of our recommendation for both succinct and scholarly methodological reporting by 

researchers employing the PLSF-SEM method. They are envisioned as being sections, not 

subsections (as presented here), of empirical papers. 

 

Data Collection 

    In our illustrative example, the analyses were based on a simulated dataset, created through the 

Monte Carlo method (Kock, 2016). The simulated dataset was created with a size of 500, based 

on the illustrative model. Researchers analyzing empirical samples should provide a discussion 

of their data collection here, as well as their prospective minimum sample size requirements 
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estimation (see below). For example, one could say that 500 questionnaires were collected, and 

that the questionnaires were completed by respondents from the USA. Details on questionnaire 

administration, respondents’ demographics, and response rates should also be provided here. 

    Let us assume that theory and past empirical research suggest that the minimum absolute path 

coefficient associated with a real (i.e., nonzero at the population level) effect in our model is 

0.147. Given this, we should conduct a prospective statistical power analysis to establish the 

minimum sample size required. Employing the inverse square root and gamma-exponential 

methods (Kock, 2023; Kock & Hadaya, 2018) with the significance level set at 0.05, the power 

level set at 0.8, and the minimum expected absolute path coefficient in the model set at 0.147, we 

obtained minimum required sample size estimates of 287 and 273, respectively. Since our 

sample size is 500, it handily meets minimum sample size requirements in our example, because 

500 is much higher than the more conservative estimate of 287 yielded by the inverse square root 

method. Appendix A shows how this estimation can be conducted with WarpPLS. 

    One of the most controversial issues involving proponents of the use of PLS-PM for SEM and 

their detractors (mostly in the CB-SEM camp) has been that of minimum sample size estimation, 

for which the 10-times rule has been a favorite in PLS-PM studies due to its ease of use, even 

though it tends to yield grossly imprecise underestimations in many cases (Kock, 2023). 

According to this rule, the minimum required sample size is the smallest integer equal to or 

greater than 10 times the maximum number of structural or measurement model links pointing at 

any LV in the model, which in our case would be 30 since all of our LVs are reflectively 

measured and the maximum number of structural links is 3 (pointing at JP). This number (i.e., 

30) would have been a gross underestimation in our case (for a discussion, see: Kock & Hadaya, 

2018). The inverse square root and gamma-exponential methods were developed to address this 
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problematic state of affairs, and are the methods recommended in PLSF-SEM for statistical 

power and minimum sample size estimation. 

 

Measurement Model Assessment 

    Good measurement model quality is a pre-condition for hypothesis testing employing 

structural model coefficients. A succinct and scholarly measurement model assessment in PLSF-

SEM should cover the following elements: convergent validity, discriminant validity, reliability, 

common method bias, and multivariate normality. The first four are also typical in CB-SEM 

assessments. The fifth, multivariate normality, is aimed at providing a compelling justification 

for the use of PLSF-SEM (instead of CB-SEM or other parametric approaches), since PLSF-

SEM is a nonparametric SEM method that does not assume that LVs (or indicators) are normally 

distributed (Kock, 2016). Non-normality is often a problem in CB-SEM. 

    Convergent validity. Table 1 shows all loadings and cross-loadings among indicators and 

LVs in our model, which provide the basis on which convergent validity can be assessed. 

Appendix B shows how these loadings and cross-loadings would look in WarpPLS. As we can 

see, all loadings are greater than 0.5, suggesting good convergent validity. That is, they suggest 

that the respondents appeared to have understood the question-statements associated with each of 

the LVs in the same way as the designers of the questionnaire did. Loadings are unrotated and 

cross-loadings are oblique-rotated. Cross-loadings are oblique-rotated because LVs are not 

expected to be orthogonal. It is important to include oblique-rotated cross-loadings in this type of 

assessment; these tend to be lower than unrotated cross-loadings. Oblique-rotated cross-loadings 

> 0.5 are warning signs, indicating possible measurement model problems. 
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Table 1: Loadings and cross-loadings for LVs 
 

 ML JS OC JP 
ML1 (0.761) -0.015 -0.060 -0.042 
ML2 (0.788) 0.009 -0.100 -0.028 
ML3 (0.751) -0.076 -0.032 -0.060 
JS1 0.085 (0.766) -0.188 -0.066 
JS2 -0.097 (0.756) -0.020 -0.066 
JS3 -0.071 (0.760) 0.001 -0.111 
OC1 -0.070 -0.125 (0.747) -0.065 
OC2 -0.052 -0.028 (0.760) -0.167 
OC3 -0.078 -0.059 (0.790) -0.047 
JP1 0.075 -0.104 -0.213 (0.769) 
JP2 -0.104 0.007 -0.087 (0.758) 
JP3 -0.098 -0.137 0.023 (0.775) 

Notes: Loadings are unrotated and cross-loadings are oblique-rotated. Loadings shown within parentheses in shaded 

cells. Loadings > 0.5 suggest good convergent validity. Oblique-rotated cross-loadings > 0.5 would be warnings. 
 

 

    As noted earlier, proponents of the use of composite-based PLS-PM for SEM have offered 

new criteria that are purported to work around the problems stemming from approximating LVs 

through composites. One such criterion is the adoption of a higher threshold for loadings (e.g., 

0.7) to be employed in the assessment of convergent validity. The reason for this is that loadings 

are overestimated by PLS-PM, yielding higher values than PLSF-SEM (and also CB-SEM). 

Even though all of the loadings are greater than 0.7 in our example, we recommend that the 

threshold of 0.5 be used with PLSF-SEM, since this method does not overestimate loadings. 

Adopting a higher threshold could lead to methodological decisions that would detract from the 

overall measurement model quality; e.g., removal of what appear to be offending indicators 

could lead to an artificial decrease in reliability. 

    Discriminant validity. Table 2 shows correlations and square roots for average variances 

extracted (AVEs) for our main model’s LVs, which allow for discriminant validity to be 

assessed. As we can see, all square roots of AVEs were greater than the correlations in the same 

columns, suggesting good discriminant validity. That is, the respondents seemed to have not 

mistaken question-statements as associated with LVs that were not the ones intended by the 
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designers of the questionnaire. This validation approach, generally known as the Fornell-Larcker 

criterion test, is one of the most popular in SEM in general. 

 

Table 2: Correlations and square roots of AVEs for LVs 
 

 ML JS OC JP 
ML (0.767) 0.627 0.722 0.678 
JS 0.627 (0.761) 0.756 0.758 
OC 0.722 0.756 (0.766) 0.763 
JP 0.678 0.758 0.763 (0.767) 

Notes: Square roots of AVEs show along diagonal within parentheses in shaded cells. Square roots of AVEs greater 

than the correlations in the same column suggest good discriminant validity. 
 

 

    Again, since composite-based PLS-PM yields biased estimates of AVEs and LV correlations, 

proponents of the use of PLS-PM for SEM have offered new ad hoc tests that are purported to 

work around the problems stemming from approximating LVs through composites. Two such 

tests build on the HTMT and HTMT2 ratios (mentioned earlier); these tests are not needed in 

PLSF-SEM. Nevertheless, WarpPLS provides the necessary coefficients for these tests to be 

conducted, if review panels ask for them. The sub-option Discriminant validity coefficients 

(extended set), under the WarpPLS menu option Explore additional coefficients and indices, can 

be used to obtain those coefficients. WarpPLS also implements many other tests used by 

proponents of the use of PLS-PM in SEM, which are made available in the software for 

completeness. 

    Reliability, common method bias, and multivariate normality. Table 3 shows selected LV 

coefficients for our main model’s LVs. These coefficients are available from two main areas in 

WarpPLS: (a) the menu sub-option View latent variable coefficients, under the View/save 

analysis results button; and (b) the menu sub-option Explore additional coefficients and indices, 

under the Explore menu option. They are used for tests of reliability, common method bias, and 

multivariate normality. 
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Table 3: LV coefficients 
 

 ML JS OC JP 
Factor reliability 0.811 0.805 0.810 0.811 
Cronbach’s alpha 0.810 0.805 0.810 0.811 
Full collinearity VIF 2.235 2.803 3.754 3.484 
Jarque-Bera test of normality No No No No 
Robust Jarque-Bera test of normality No No No No 
Notes: Composite reliabilities and Cronbach’s alphas > 0.6 suggest good reliability. FCVIFs < 10 suggest no 

common method bias. Multivariate non-normality, indicated by the Jarque-Bera test and its robust variation, provide 

support for the use of the non-parametric PLSF-SEM method. 
 

 

    The factor reliabilities and Cronbach’s alphas were all greater than 0.6, suggesting good 

reliability. As we can see, these two reliability measures are almost identical in value in our 

example. This usually happens when loadings are homogenous, otherwise factor reliabilities 

would tend to be higher than Cronbach’s alphas. In such cases, it is recommended that factor 

reliabilities be compared against the threshold of 0.6, but not Cronbach’s alphas, because the 

latter would tend to underestimate the reliabilities (with respect to the true values). The PLS-PM 

equivalent, composite reliabilities, typically overestimate reliabilities; which has prompted 

proponents of the use of PLS-PM for SEM to offer higher thresholds (e.g., 0.7) to make up for 

the overestimation. Good reliability generally means that the respondents appeared to have 

understood the question-statements used to measure each LV in the same way among themselves 

(i.e., the respondents). 

    All full collinearity variance inflation factors (FCVIFs) were significantly lower than 10, 

suggesting no common method bias. This threshold of 10 is recommended for PLSF-SEM. The 

threshold of 3.3, employed in a widely used PLS-PM version of this test (Kock, 2015; Kock & 

Lynn, 2012), is too low for PLSF-SEM. The difference is due to PLS-PM’s underestimation of 

FCVIFs with respect to the true values (Kock, 2023). This full collinearity test in PLSF-SEM, 

with a threshold of 10, is more sensitive to common method bias than Harman’s single factor test 

employing PLSF-SEM (Kock, 2021a). Nevertheless, absence of common method bias may be 
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further assessed through Harman’s test, which can be easily implemented with WarpPLS (see: 

Kock, 2021a). If common method bias is found to exist, the common structural variation 

reduction technique can be employed with WarpPLS to ameliorate the situation (Kock, 2021b), 

even though this technique does not extract common method variation from indicators (only 

from LVs, hence its name). 

    In our example, multivariate non-normality was indicated, by the Jarque-Bera test and its 

robust variation (the robust Jarque-Bera test of normality), as existing in all of the LVs in our 

model. This provides support for our use of PLSF-SEM, and is recommended to be reported in 

empirical studies employing this method. As previously noted, PLSF-SEM is a factor-based 

nonparametric SEM method that does not assume multivariate normality. This is in contrast to 

CB-SEM, which is a parametric method that does assume multivariate normality. In our 

experience assisting WarpPLS users to conduct SEM analyses over many years, where we 

usually test for multivariate normality, it seems that virtually all datasets employed in SEM 

analyses fail meet the assumption of multivariate normality. 

 

Model Indices and Structural Results 

    The use of the PLSF-SEM method allows empirical researchers to assess the quality of their 

models via various structural and measurement model indices, most of which cannot be 

calculated in CB-SEM and would be biased with PLS-PM. Table 4 shows the quality indices 

calculated for our model. The sub-option Model fit and quality indices (extended set), under the 

WarpPLS menu option Explore additional coefficients and indices, can be used to obtain the 

values of these indices, after the SEM analysis of an empirical dataset is conducted. 
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Table 4: Model quality indices 
 

Index Value Interpretation 
Average R-squared (ARS) 0.593 P<0.001 
Average adjusted R-squared (AARS) 0.592 P<0.001 
Average block VIF (AVIF) 2.187 acceptable if <= 5, ideally <= 3.3 
Average full collinearity VIF (AFVIF) 3.069 acceptable if <= 5, ideally <= 3.3 
Tenenhaus GoF (GoF) 0.589 small >= 0.1, medium >= 0.25, large >= 0.36 
Simpson's paradox ratio (SPR) 1.000 acceptable if >= 0.7 
R-squared contribution ratio (RSCR) 1.000 acceptable if >= 0.9 
Standardized root mean squared residual 

(SRMR) 
0.039 acceptable if <= 0.1 

Standardized mean absolute residual (SMAR) 0.030 acceptable if <= 0.1 
 

 

    Both the average R-squared (ARS) and the average adjusted R-squared (AARS) suggest 

significant levels of variance explained in the model’s endogenous variables. The variance 

inflation factor (VIF) indices, namely the average block VIF (AVIF) and average full collinearity 

VIF (AFVIF), were both below 3.3, suggesting low levels of vertical and lateral collinearity 

(Kock, 2014; Kock & Lynn, 2012). Finding low levels of vertical and lateral collinearity 

essentially means that the LVs used in the model appeared to measure different underlying 

constructs. The low values of the AVIF and AFVIF indices also suggest that the model is 

generally free from common method bias, serving as model-wide complements to the FCVIFs 

calculated for individual LVs that were presented earlier (Kock, 2015; Kock & Lynn, 2012). 

    The Tenenhaus GoF (GoF), named in honor of Michel Tenenhaus, suggests a large level of 

goodness-of-fit between the model and the data (Kock, 2014; 2022a). The next two rows in the 

table provide the values of the following causality assessment indices (Kock, 2022b): Simpson's 

paradox ratio (SPR) and R-squared contribution ratio (RSCR). Those values suggest that the 

model is generally sound in terms of its causality assumptions. That is, the directions of causality 

implied by the links connecting the variables in the model appear to be correct. 

    The last two rows of the table provide the values of the following indices, which are gauges of 

the difference between the model-implied and actual indicator correlation matrices: Standardized 
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root mean squared residual (SRMR) and standardized mean absolute residual (SMAR). Measures 

of the difference between the model-implied and actual indicator correlation matrices are key 

ingredients of CB-SEM. They are highly recommended in PLSF-SEM (Kock, 2020), because 

they provide an important global (i.e., broad) measure of fit between the model and the data. In 

our example, these indices yielded values of 0.039 and 0.030 respectively, both well below the 

threshold of 0.1, thus suggesting that there was a good fit between the model and the data (Kock, 

2020). 

    Figure 2 shows the main structural model results of our analyses, in the form of direct effects 

and R-squared coefficients. If moderating effects were present, they would also be summarized 

here. The same is true for the effects of control variables, if those were included. Often studies 

control for the effects of several demographic variables, which could have biased some of the 

results if omitted from the model. These may be included in WarpPLS models through single-

indicator LVs pointing at endogenous LVs that are expected to share variation with the 

underlying control variables. 

    The path coefficients and respective P values for the causal links referring to direct effects 

were: ML > JS (β=0.627, P<0.001), ML > OC (β=0.409, P<0.001), ML > JP (β=0.147, P<0.001), 

JS > OC (β=0.500, P<0.001), JS > JP (β=0.334, P<0.001), and OC > JP (β=-0.446, P<0.001). 

The individual R-squared coefficients associated with each of the endogenous LVs suggest 

considerable levels of variance explained in those variables. Those R-squared coefficients would 

typically be the same with CB-SEM and much lower with PLS-PM. R-squared coefficients can 

be seen as measures of combined effect sizes. And effect sizes > 0.15 and > 0.35 are considered 

to be medium and large, respectively (Cohen, 1988). Thus, R-squared values > 0.15 and > 0.35 
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should be considered medium and large, respectively, in business communication research; as 

well as in behavioral research in general. 

 

Figure 2: Structural model results 
 

 
Notes: results obtained from the analysis of data generated via the Monte Carlo method; all path coefficients 

significant at the P < 0.001 level; if that were not the case, the superscript notation would be as follows; *** = 

significant at the P < 0.001 level; ** = significant at the P < 0.01 level; * = significant at the P < 0.05 level; NS = 

nonsignificant. 
 

 

    As noted earlier, the results shown are based on a simulated dataset, created through the 

Monte Carlo method (Kock, 2016); the simulated dataset was created with a size of 500, based 

on the illustrative model. All path coefficients turned out to be significant at the P < 0.001 level. 

This is in part due to the sample size, as P values are very sensitive to sample sizes. If that were 

not the case, the recommended superscript notation used would have been as follows: *** = 

significant at the P < 0.001 level; ** = significant at the P < 0.01 level; * = significant at the P < 

0.05 level; NS = nonsignificant. 
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    Appendix C shows how the illustrative model would look in WarpPLS. Again, it is generally 

not recommended to use model screen shots taken directly from the software in papers 

summarizing empirical studies. A possible exception to this general rule of thumb would be 

methodological papers like this, but arguably only when these papers are published in tool-

specific journals (e.g., the Data Analysis Perspectives Journal). 

    The outer (i.e., measurement) model analysis algorithm setting in WarpPLS used to generate 

the results using PLSF-SEM in our illustrative analysis was Factor-Based PLS Type CFM3. Like 

CB-SEM algorithms, this algorithm is factor-based and fully compatible with common factor 

model assumptions (Kock, 2019a; 2019b), which form the foundation on which SEM in general 

rests. The inner (i.e., structural) model analysis algorithm used was Linear. This algorithm does 

not perform any warping of relationships (an important feature of WarpPLS, not covered here). 

Both outer and inner model algorithms are fully compatible with the way in which the simulated 

data was created via the Monte Carlo method. 

 

Discussion and Conclusion 

    The three key methodological sections that have been just discussed form the foundation of 

our recommendation for both succinct and scholarly methodological reporting by researchers 

employing the PLSF-SEM method. We would also recommend a table summarizing the support 

for the hypotheses based on the results, as the core of a discussion section, to be included in 

papers after the three methodological sections. Table 5 is an example based on our illustrative 

model and related analyses. 
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Table 5: Support for the hypotheses based on the results 
 

Hypothesis Supported? 
H1: Motivating language use is positively associated with job satisfaction. Yes 
H2: Motivating language use is positively associated with organizational commitment. Yes 
H3: Motivating language use is positively associated with job performance. Yes 
H4: Job satisfaction is positively associated with organizational commitment. Yes 
H5: Job satisfaction is positively associated with job performance. Yes 
H6: Organizational commitment is positively associated with job performance. Yes 
 

 

    One important consideration should be made regarding the hypothesis Motivating language 

use is positively associated with job performance. The path coefficient for the corresponding link 

was found to be positive and statistically significant: ML > JP (β=0.147, P<0.001). However, if 

that were not the case, one could hardly conclude that motivating language use had no positive 

effect on job performance, because the total effect could have been positive. The β=0.147 refers 

to the effect for the link ML > JP after controlling for the competing effects of job satisfaction 

and organizational commitment on job performance. 

    Therefore, the ML > JP hypothesis could be re-worded as follows, for clarity: Motivating 

language use is positively associated with job performance, after controlling for the effects of job 

satisfaction and organizational commitment. Alternatively, that hypothesis could be replaced 

with a different one: The effect of motivating language use on job performance is only partially 

mediated by job satisfaction and organizational commitment. Full mediation would be associated 

with a nonsignificant path coefficient for ML > JP. 

    As it can be seen, we employed the term motivating language use, instead of simply 

motivating language. This is an instance of minor liberties that can be taken by researchers if 

they feel that particular hypothetical formulations may help readers better understand what they 

are hypothesizing and testing. A similar variation could be to use something like: An increase in 

motivating language use is associated with an increase in job satisfaction; instead of: Motivating 
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language use is positively associated with job satisfaction. These essentially mean the same 

thing. More statistically sound but difficult to understand formulations, such as those building on 

null hypotheses, are generally discouraged. After all, it is commonly understood that hypotheses 

can never be proven through empirical research, only supported or not supported. 

    It should be noted that the word perceived is nowhere to be found in our hypothesis 

formulation. This is by design, not an oversight. In factor-based SEM methods, LVs are 

measured indirectly and with error via question-statements, which themselves (i.e., the question-

statements) capture perceptions. In PLSF-SEM, perception-based indicators are then aggregated, 

together with a measurement residual, to produce LV scores that quantify the mental constructs 

that refer to the LVs. 

    That is, in PLSF-SEM perception-based data is used to produce estimates of the mental 

constructs that gave rise to the quantified perceptions. It is reasonable to assume, conceptually, 

that this is also true for other factor-based SEM approaches like CB-SEM, even though in CB-

SEM parameters are estimated without aggregation of indicators into LVs. However, we cannot 

necessarily say the same for PLS-PM. The reason is that composites do not conform well with 

the idea of measurement with error. In LVs approximated via composites, the indicators explain 

100 percent of the variance in the LV, with no room for a measurement residual (Kock, 2019b; 

2023). 

    Given this, if the PLSF-SEM method is used, arguably the constructs should not be referred to 

as perceived, for one of two main reasons, depending on perspective. One reason, which we do 

not entirely agree with, is that it would be redundant to do so. The other, which is diametrically 

opposed and more in line with our view, is that the underlying constructs are something other 

than the perceptions that are used to measure them, at least until they are measured as 
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perceptions (with error) and subsequently quantified as LVs. Either way, if the PLSF-SEM 

method is used, a hypothesis should not be worded as: Perceived motivating language use is 

positively associated with perceived job satisfaction. In other words, in PLSF-SEM one does not 

test the effects of perceptions on perceptions. One tests the effect of LVs on LVs, where the LVs 

are quantifications of entities that temporally precede perceptions – mental constructs. 

    We hope that this paper will be useful to business communication researchers employing 

PLSF-SEM. Other topics related to PLSF-SEM that are beyond the scope of this paper are 

covered in various documents and videos available from warppls.com. Among them are topics 

relevant in the context of SEM in general such as the operationalization of control variables, 

indirect and total effects, estimation and use of effect sizes, modeling and assessment of 

moderating effects, moderated mediation effects, full latent growth analyses, missing data 

imputation, multilevel analyses, use of logistic regression with certain endogenous variables, 

common structural variation removal, nonlinear relationships identification and modeling, testing 

of competing linear and nonlinear relationships, modeling and testing of reciprocal relationships, 

and endogeneity assessment and control. 
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Appendix A: Minimum sample size estimation in WarpPLS 

    Figure A.1 shows how one can use the sub-option Explore statistical power and minimum 

sample size requirements, under the Explore menu option in WarpPLS. The significance level 

was set at 0.05, the power level was set at 0.8, and the minimum expected absolute path 

coefficient in the model was set at 0.147. Based on these settings (the first two are standard 

settings in SEM), we obtained minimum required sample size estimates of 287 and 273, 

respectively for the inverse square root and gamma-exponential methods. 

 

Figure A.1: Minimum sample size estimation in WarpPLS 
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Appendix B: Loadings and cross-loadings for LVs in WarpPLS 

    Figure B.1 shows how the loadings and cross-loadings for LVs would look in WarpPLS. The 

cells containing the loading and cross-loadings are shown under the columns indicated as ML, 

JS, OC and JP. We selected them and copied their contents into the clipboard. We then pasted 

the contents into Word as unformatted text, and inserted a table around them. This procedure 

makes the transfer of content from WarpPLS into Word a fairly straightforward task. 

 

Figure B.1: Loadings and cross-loadings for LVs in WarpPLS 
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Appendix C: Illustrative model in WarpPLS 

    Figure C.1 shows how the illustrative model would look in WarpPLS. As noted earlier, it is 

generally not recommended to use model screen shots taken directly from the software. One 

possible exception to this general rule of thumb would be methodological articles such as this, 

but primarily when these articles are published in tool-specific journals (e.g., the Data Analysis 

Perspectives Journal). 

 

Figure C.1: Illustrative model in WarpPLS 
 

 
Notes: ML = motivating language; JS = job satisfaction; OC = organizational commitment; JP = job performance; 

notation under LV acronym describes measurement approach and number of indicators, e.g., (R)3i = reflective 

measurement with 3 indicators. 
 

 


